
The 12th Conference of the International Research Group on the Biochemistry of Exercise was held at Maastricht University,

Maastricht, The Netherlands on 13–16 July 2003

Symposium 2: The fatty acid transporters of skeletal muscle

Studies of plasma membrane fatty acid-binding protein and other
lipid-binding proteins in human skeletal muscle

C. Roepstorff, J. Wulff Helge, B. Vistisen and B. Kiens*
Copenhagen Muscle Research Centre, Department of Human Physiology, Institute of Exercise and Sport Sciences,

University of Copenhagen, 13 Universitetsparken, 2100 Copenhagen Ø, Denmark

The first putative fatty acid transporter identified was plasma membrane fatty acid-binding
protein (FABPpm). Later it was demonstrated that this protein is identical to the mitochondrial
isoform of the enzyme aspartate aminotransferase. In recent years data from several cell types
have emerged, indicating that FABPpm plays a role in the transport of long-chain saturated and
unsaturated fatty acids. In the limited number of studies in human skeletal muscle it has been
demonstrated that dietary composition and exercise training can influence the content of
FABPpm. Ingestion of a fat-rich diet induces an increase in FABPpm protein content in human
skeletal muscle in contrast to the decrease seen during consumption of a carbohydrate-rich diet.
A similar effect of a fat-rich diet is also observed for cytosolic fatty acid-binding protein and
fatty acid translocase/CD36 protein expression. Exercise training up regulates FABPpm protein
content in skeletal muscle, but only in male subjects; no significant differences were observed
in muscle FABPpm content in a cross-sectional study of female volunteers of varying training
status, even though muscle FABPpm content did not depend on gender in the untrained state. A
higher utilization of plasma long-chain fatty acids during exercise in males compared with
females could explain the gender-dependent influence of exercise training on FABPpm. The
mechanisms involved in the regulation of the function and expression of FABPpm protein
remain to be clarified.

Diet: Gender: Exercise: Training: Lipid-binding proteins

In recent years data have been obtained suggesting that
fatty acid-binding proteins participate in the transport of
long-chain fatty acids (LCFA) in different tissues (Bonen
et al. 1998a,b; Abumrad et al. 1999). Among these
proteins are particularly: (1) plasma membrane fatty acid-
binding protein (FABPpm), an approximately 43 kDa
protein located peripherally on the plasma membrane; (2)
fatty acid translocase (FAT)/CD36, an 88 kDa integral
membrane glycoprotein, with two predicted transmem-
brane domains, which is identical to glycoprotein IV or
CD36 of human blood platelets and leucocytes (Abumrad
et al. 1993); (3) fatty acid transport protein, a 63 kDa
integral protein with six predicted transmembrane domains

(Schaffer & Lodish, 1994; Hirsch et al. 1998; Bonen et al.
1999). Furthermore, two proteins are responsible for the
transport of LCFA and long-chain acyl-CoA esters in the
aqueous cytoplasm: the 14–15 kDa cytosolic fatty acid-
binding protein (FABPc; Glatz et al. 1993; Glatz & Storch,
2001) and the 10 kDa acyl-CoA-binding protein (Mogensen
et al. 1987; Faergeman & Knudsen, 1997).

FABPpm was isolated in 1985 from highly-purified rat
liver plasma membranes by high-affinity chromatography
(Stremmel et al. 1985) and was the first putative fatty acid
transporter identified. Binding studies indicated that the
protein had a high affinity for LCFA, and antibodies raised
against the protein confirmed its location on the plasma
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membrane (Stremmel et al. 1985; Stump et al. 1993). A
role for FABPpm in the transport of long-chain saturated
and unsaturated fatty acids has been suggested from the
use of antibodies against FABPpm, which leads to
inhibition of LCFA uptake in various cell types and of
transport of LCFA into giant vesicles of skeletal muscle in
rats in a dose-dependent manner (Schwieterman et al.
1988; Sorrentino et al. 1988; Stremmel, 1988; Zhou et al.
1992; Bonen et al. 1998b; Turcotte, 1999). However,
elucidation of the role of FABPpm in LCFA transport was
challenged by the finding that FABPpm is identical to the
mitochondrial isoform of the enzyme aspartate amino-
transferase (mAspAT; Stremmel et al. 1985; Berk et al.
1990; Stump et al. 1993; Bradbury & Berk, 2000). A role
for mAspAT/FABPpm in fatty acid binding was suggested
by molecular-modelling studies of the crystal structure of
mAspAT that have identified a pocket, within the larger
domain of the enzyme, that is of sufficient size to
accommodate the typical LCFA (Berk & Stump, 1999).
Whether this pocket serves as a fatty acid-binding site
remains to be elucidated. Recently, a study using a
polyclonal antibody against rat mAspAT in immunogold
electron microscopy of rat tissue sections has shown a
strong labelling of mitochondria in several cell types
(Cechetto et al. 2002). Labelling was also observed in
other locations, such as endothelial cell surfaces, and it
was concluded from these observations that mAspAT/
FABPpm is both a mitochondrial enzyme and a plasma
membrane protein (Cechetto et al. 2002).

Influence of diet on plasma membrane fatty
acid-binding protein, fatty acid translocase/CD36

and cytosolic fatty acid-binding protein

As both the membrane-associated (FABPpm, FAT/CD36,
fatty acid transport protein) and cytoplasmic (FABPc, acyl-
CoA-binding protein) lipid-binding proteins are involved
in the lipid metabolism of the cell, interventions leading to
changes in lipid metabolism may also induce altered
regulation of these proteins. Dietary manipulation is one
such intervention, but there is little information in the
literature on the effects of diet and dietary composition on
the different lipid-binding proteins. Available information
is mainly on the cytoplasmic FABPc. Moreover, most data
have been derived from rat studies in which animals were
fed a fat-rich diet, mainly composed of saturated fatty
acids (Coe & Bernlohr, 1998). Collectively, these data
have shown that FABPc in heart and skeletal muscle does
not respond to an increase in dietary fatty acids (Coe &
Bernlohr, 1998; Storch & Thumser, 2000). In contrast, a
recent study in rat heart and skeletal muscle has shown that
ingestion of a diet rich in n-3 fatty acids markedly
increases FABPc content (Clavel et al. 2002), suggesting
that the length and extent of saturation of the C chain of
the fatty acids are important for the regulation of FABPc.

To evaluate the influence of dietary composition in
human skeletal muscle a group of healthy non-obese young
male subjects aged 30–40 years was studied. The subjects
were randomly assigned to two groups, with one group
consuming a fat-rich diet and the other group consuming a

carbohydrate-rich diet for 4 weeks. During the intervention
period the subjects kept their physical activity habits
unchanged and all subjects followed well-controlled
experimental diets. The nutrient composition (% energy)
of the experimental diets was carbohydrate 65, protein 15
and fat 20 for the carbohydrate-rich diet and carbohydrate
21, protein 17 and fat 62 for the fat-rich diet. The fat
ingested in the fat-rich diet had a high content of n-3 fatty
acids and n-6 fatty acids, as described previously (Helge
et al. 1996, 1998). Ingestion of the carbohydrate-rich diet
for 4 weeks did not influence the FABPc protein content in
m. vastus lateralis, whereas ingestion of the fat-rich diet
induced a significant increase in FABPc content (P< 0.05;
Fig. 1(c)). It has been suggested that FAT/CD36 and
FABPc cooperate in the uptake of LCFA in cardiac and
skeletal muscle (Luiken et al. 1999). Interestingly, in the
dietary intervention study a similar change was observed in
FABPc and FAT/CD36; an increase in FAT/CD36 protein
content in m. vastus lateralis was seen during the fat-rich
diet whereas no change was obtained during the carbo-
hydrate-rich diet (Fig. 1(b)). Similar findings for the
effect of diet on FAT/CD36 have emerged from the study
by Cameron-Smith et al. (2003), in which the dietary
intervention period was only 5 d. In the present diet study
an increase in the content of FABPpm was also observed
after 4 weeks, but only when the fat-rich diet was
consumed. In fact, when the carbohydrate-rich diet was
consumed a decrease in FABPpm content in m. vastus
lateralis was obtained (Fig. 1(a)). There was no response
in skeletal muscle FABPpm content to 1 week of dietary
intervention. This finding is supported by the results of a
recent study (Cameron-Smith et al. 2003) in which well-
trained male subjects ingested either a carbohydrate-rich
diet (70–75% energy as carbohydrate and <15% energy as
fat) or a fat-rich diet (>65% energy as fat and <20%
energy as carbohydrate) for 5 d; no change in the protein
content of FABPpm in skeletal muscle was detected.

In summary, these data show that FABPpm expression
requires a long-term (>1 week) dietary change for
adaptations to take place in human skeletal muscle and
that the adaptations to a fat-rich diet and a carbohydrate-
rich diet occur in opposite directions. The data also
indicate that the FAT/CD36 protein content of human
skeletal muscle is increased by ingestion of a fat-rich diet
for 5 d and that the long-term (4 weeks) increase in FAT/
CD36 is paralleled by an increase in FABPc protein
content.

Influence of exercise training on plasma membrane
fatty acid-binding protein

It is well known that exercise training induces an increased
capacity for lipid oxidation in skeletal muscle (Kiens et al.
1993). Only limited information is available on the
influence of exercise training on the different lipid-binding
proteins in skeletal muscle. Data from rats have revealed a
55% higher FABPpm protein content in red muscle of
trained rats compared with untrained rats (Turcotte et al.
1999). The higher FABPpm protein content was associated
with a higher palmitate uptake in the trained rats at rest
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(48%), and during exercise both uptake and oxidation of
palmitate were higher (57%) in the trained rats compared
with the untrained rats (Turcotte et al. 1999). The authors
suggested that the enhanced content of FABPpm could
partly explain the training-induced increase in LCFA
oxidation (Turcotte et al. 1999). Similarly, in healthy
non-obese male volunteers 3 weeks of exercise training
with knee extensors of one leg resulted in an increase in
FABPpm protein content whereas no changes were
observed in the contralateral untrained leg (Kiens et al.
1997). These findings in human skeletal muscle were
supported by a recent cross-sectional study (B Kiens, C
Roepstorff, JFC Glatz, A Bonen, P Schjerling, J Knudsen
and JN Nielsen, unpublished results), which showed that
the FABPpm protein content of m. vastus lateralis was
significantly higher (P< 0.05) in a group of endurance-
trained male volunteers who had been exercise training
for several years, compared with an untrained male group.
In contrast to these findings, the FABPpm protein content
in m. vastus lateralis measured in female volunteers, who
were matched to the male subjects according to peak
VO2

/kg lean body mass and training history, was similar in
the untrained and the endurance-trained female groups and
not significantly different from that for untrained males
(B Kiens, C Roepstorff, JFC Glatz, A Bonen, P Schjerling,
J Knudsen and JN Nielsen, unpublished results). Further-
more, no effect of training status was observed in skeletal
muscle FAT/CD36 or FABPc content in either males or
females (B Kiens, C Roepstorff, JFC Glatz, A Bonen, P
Schjerling, J Knudsen and JN Nielsen, unpublished
results). The fact that training induced up-regulation of
FABPpm protein content was seen only in male subjects
could explain, or could be explained by, the gender-related
difference in utilization of the different lipid sources
during exercise. Recent findings (C Roepstorff and B
Kiens, unpublished results) provide support for such a
notion. Untrained males (n 7) and females (n 7) as well as
endurance-trained males (n 7) and females (n 7) exercised
on a bicycle ergometer at the same relative work load
(60% peak VO2

) for 90 min. [13C]palmitate was infused
intravenously and arterial blood samples were obtained at
rest and during exercise. Quantification of the rate of
disappearance and oxidation of systemic plasma fatty acid
was performed as described elsewhere (Roepstorff et al.
2002). The data demonstrated that during exercise the
rate of disappearance of systemic plasma fatty acid
was not significantly different for the untrained (26.6
(SE 4.8)mmol/kg lean body mass per min) and endurance-
trained (19.1 (SE 3.1)mmol/kg lean body mass per min)
female volunteers (C Roepstorff and B Kiens, unpublished
results), which parallels the observation of no difference in
FABPpm protein content in skeletal muscle between the
two groups (B Kiens, C Roepstorff, JFC Glatz, A Bonen,
P Schjerling, J Knudsen and JN Nielsen, unpublished
results). In contrast, a significantly higher (P< 0.05) rate of
disappearance of plasma fatty acid was observed during
exercise in the endurance-trained male subjects (21.1
(SE 4.9)mmol/kg lean body mass per min) compared
with the untrained male subjects (11.2 (SE 2.9)mmol/kg
lean body mass per min) (C Roepstorff and B Kiens,
unpublished results). These two groups also differed
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Fig. 1. Content of lipid-binding proteins in m. vastus lateralis of

human volunteers before, during, and after ingestion of a fat-rich

diet (&) or a carbohydrate-rich diet ( ) for 4 weeks. (a) Plasma

membrane fatty acid-binding protein (FABPpm); (b) fatty acid

translocase (FAT)/CD36; (c) cytosolic fatty acid-binding protein

(FAPBc). AU, arbitrary units. Values are means with their standard

errors represented by vertical bars. Mean values were significantly

different from those at 0 weeks on the corresponding diet:

*P < 0.05.
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significantly (P<0.05) in their skeletal muscle content of
FABPpm (B Kiens, C Roepstorff, JFC Glatz, A Bonen,
P Schjerling, J Knudsen and JN Nielsen, unpublished
results). These data suggest that the greater reliance on
plasma LCFA as an energy substrate during exercise in
endurance-trained males compared with untrained males
stimulates the up-regulation of the FABPpm protein in
skeletal muscle. Alternatively, the higher FABPpm in
endurance-trained males compared with untrained males
may induce the greater reliance during exercise on blood-
borne fatty acids in endurance-trained males than in
untrained males.

Regulation of lipid-binding proteins

It may be hypothesized as to why dietary interventions but
not exercise training can lead to such marked overall
responses in the expression of lipid-binding proteins as
those illustrated earlier. When a fat-rich diet is consumed,
the expression of several lipid-binding proteins is up-
regulated. In addition, consumption of a fat-rich diet also
enhances the b-oxidative enzyme capacity of skeletal
muscle (Helge & Kiens, 1997). Despite an increased
b-oxidative capacity after consumption of a fat-rich diet,
the LCFA taken up by muscle cells are obviously not all
metabolized, as re-esterification to triacylglycerol in the
muscle cell has been reported under such circumstances
(Kiens et al. 1987; Helge et al. 2001). It has been
suggested that the excess delivery and uptake of plasma
LCFA in skeletal muscle as compared with the oxidation
rate of LCFA, which is the case during consumption of a
fat-rich diet, will lead to the accumulation of cellular fatty
acids that are then available to stimulate up-regulation of
transcription of the different lipid-binding proteins. In
contrast, when exercise induces an increase in plasma
LCFA concentration and uptake into muscle, this increase
is paralleled by an increased lipid oxidation rate in the
mitochondria as a result of enhanced energy demand.
Under these circumstances accumulation of cellular fatty
acids may not take place and, hence, no up-regulation of
the lipid-binding proteins will occur. One exception is
FABPpm, as exercise training induces an increase in
FABPpm content in skeletal muscle, but in males only. A
possible explanation of this gender-related effect of
exercise training on FABPpm could be the larger depen-
dence on plasma lipids during exercise in males than in
females. Females, in contrast, rely to some extent on other
lipid sources during exercise, such as intramuscular
triacylglycerols (Roepstorff et al. 2002; Steffensen et al.
2002).

The mechanism associated with the up-regulation of
lipid-binding proteins by training and diet has not been
fully elucidated, particularly in relation to FABPpm, and
certainly not in skeletal muscle. Recent studies in other
tissues have indicated that LCFA act as modulators of gene
expression (Grimaldi et al. 1999), and have suggested that
the effects of LCFA are mediated by activation of the
PPAR. The findings indicate that fatty acids of different
chain length and extent of saturation interact with PPAR
(Xu et al. 1999). After activation by LCFA, the PPAR/
retinoid X receptor heterodimer is able to bind to the

peroxisome proliferator response element found in a large
number of genes encoding for proteins involved in lipid
metabolism, such as FAT/CD36 (Van Bilsen et al. 2002)
and FABPc (Besnard et al. 2002).

Interestingly, recent data on hepatocytes have shown
that the liver isoform of FABPc induces the fatty acid
transfer to the nuclear receptors through direct protein–
protein interaction with PPARa and PPARg, indicating
that FABPc exerts an active role in gene regulation
(Wolfrum et al. 2001). However, studies on the effects of
specific PPAR activators on mRNA levels of FAT/CD36
and mAspAT/FABPpm in liver of mice suggest that
expression of only FAT/CD36 mRNA, but not mAspAT/
FABPpm mRNA, is under the control of PPARa (Motojima
et al. 1998).

Conclusion

FABPpm has not been as well studied in rodent models or
in man as other fatty acid transporters such as FAT/CD36
and FABPc. The available evidence indicates that FABPpm

protein is identical to mAspAT. The protein has been
shown to be located in the mitochondria in several tissues,
including skeletal muscle, and also in other sites, including
the endothelial cell surface. The fatty acid content of the
diet is involved in modulating FABPpm protein expression
in human skeletal muscle, whereas exercise training only
seems to influence the FABPpm protein content in males,
as no effect of training status has been observed in
females.
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