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Abstract. Let F2 be the space of the holomorphic foliations on ��2 of degree 2.
In this paper we study the linear action PGL(3, �) × F2 → F2 given by gX = DgX ◦
(g−1) in the sense of the Geometric Invariant Theory. We obtain a characterisation of
unstable and stable foliations according to properties of singular points and existence
of invariant lines. We also prove that if X is an unstable foliation of degree 2, then X
is transversal with respect to a rational fibration. Finally we prove that the geometric
quotient of non-degenerate foliations without invariant lines is the moduli space of
polarised del Pezzo surfaces of degree 2.
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1. Introduction. In this paper we study the properties of holomorphic foliations
through the Geometric Invariant Theory (GIT), which was mainly developed by
Hilbert and Mumford (see [6]).

The Geometric Invariant Theory tells us that it is possible to study the action of
a reductive group G on a projective variety V by stratifying the points of variety in
two categories: unstable points and semistable points. By restricting the action of G to
the semistable points we obtain what is called a good quotient. The set of semistable
points contains the open set of stable points and the restriction of the action to the
stable points gives us a geometric quotient.

In most of the cases the variety V consists of certain geometric objects, such as
algebraic curves or hypersurfaces. Furthermore, the usual action of G on V is such
that objects are in the same orbit if and only if they are isomorphic.

The unstable points form a Zariski closed set in V and are in some sense degenerate
objects. For example, if we consider the natural action of PGL(3, �) on ��9, where
��9 is the space of plane curves of degree 3, then a cubic plane curve is unstable if and
only if it has a triple point, or a cusp, or two components tangent at a point. Another
example is the action of PGL(2, �) in the space of binary forms of degree d. In this
case a binary form of degree d is semistable if and only if it has no root of multiplicity
greater that d

2 (see [13]).

The author was partially supported by CONACyT Grant 058486 and the Laboratorio Internacional
Solomon Lefschetz (France-México).
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When V is the space of holomorphic foliations of degree d on the complex
projective space ��n and the group of automorphisms of ��n acts by change of
coordinates, Gómez-Mont and Kempf have proved in [7] that a foliation with only
non-degenerate singularities is stable and that the distribution of its singular set is also
stable. In the particular case of the projective plane ��2 that we have, an unstable
foliation has degenerate singularities and, in some cases, it has an invariant line
(see [1]).

In this work we analyse the properties of stable and unstable holomorphic foliations
on ��2 of degree 2. In the following two sections we will make a summary of the
Geometric Invariant Theory and the Theory of Holomorphic Foliations on ��2. In
Section 4 we obtain the generators of unstable foliations, and give a characterisation
of unstable and stable foliations according to the multiplicity and the Milnor number
of its singular points and the existence of invariant lines.

In the next section we show that a generic unstable foliation of degree 2 is a Riccati
foliation, i.e., there exists a rational fibration on ��1 whose generic fibre is transverse to
the leaves of the foliation. In the last section we will prove that the geometric quotient
of non-degenerate holomorphic foliations on ��2 of degree 2 without invariant lines
is the coarse moduli space of the polarised del Pezzo surfaces of degree 2.

2. Geometric Invariant Theory (see [13]). The following is a summary of the
Geometric Invariant Theory, which will be required for the sequel. All the definitions
and results can be found in [13].

Let V be a projective variety in ��n, and consider a reductive group G acting
linearly on V .

DEFINITION 1. Let x ∈ V ⊂ ��n, and consider x ∈ �n+1 such that x ∈ x. Denote
by O(x) the orbit of x in the affine cone of V , then
(i) x is unstable if 0 ∈ O(x).
(ii) x is semistable if 0 /∈ O(x). The set of semistable points will be denoted by Vss.
(iii) x is stable if it is semistable, the orbit of x, O(x), is closed in Vss and dim O(x) =
dim G. The set of stable points will be denoted by Vs.

The main result in the Geometric Invariant Theory is the following:

THEOREM 1. (i) There exists a good quotient (Y, φ) of Vss by G, where Y is projective,
and
(ii) there exists an open set Y s ⊂ Y such that φ−1(Y s) = Vs and (Y s, φ) is a geometric
quotient of Vs by G.

Now we describe the Hilbert-Mumford criterion for finding the unstable points
for a linear action. Let λ : �∗ → G be a 1-parameter subgroup (1-PS). Then we have a
morphism, which we also denote by λ:

�∗ → GL(n + 1, �),

t �→ λ(t) : �n+1 → �n+1, v �→ λ(t)v,

and we know that this is a diagonal representation of �∗. Therefore there exists a basis
{v0, . . . , vn} of �n+1 such that, for all t ∈ �∗, λ(t)vi = trivi, where ri ∈ �. This integer ri

is called the weight of vi with respect to the action of λ on �n+1.
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DEFINITION 2. Let x ∈ V and let λ be a 1-PS. If x̄ ∈ x and x̄ = ∑n
i=0 aivi, then

λ(t)x̄ = ∑n
i=0 tri aivi. We define the following function:

μ(x, λ) := min{ri : ai 	= 0}.

The numerical criterion can now be stated.

THEOREM 2. (i) x is stable if and only if μ(x, λ) < 0 for every 1-PS, λ, of G,
(ii) x is unstable if and only if there exists a 1-PS, λ, of G such that μ(x, λ) > 0.

DEFINITION 3. We will say that a point x ∈ V is λ-unstable or unstable with respect
to λ if μ(x, λ) > 0.

The following is a useful tool for the method of 1-PS when G = SL(n, �). We
formulate the result for the case n = 3.

LEMMA 1. Every 1-parameter subgroup of SL(3, �) can be written as

gλ(t)g−1 = g

⎛⎜⎝ tn0 0 0

0 tn1 0

0 0 tn2

⎞⎟⎠g−1,

for some g ∈ SL(3, �), where n0 ≥ n1 ≥ n2 and n0 + n1 + n2 = 0. We will denote the
above diagonal 1-PS, λ, by λ(n0,n1) and will assume that the integers are relative primes.

REMARK 1. If n0 ≥ n1 ≥ n2 and n0 + n1 + n2 = 0, then 1
2 ≤ − n2

n0
≤ 2.

In this paper we use the group SL(3, �) instead of PGL(3, �) because these are
isogenous.

3. Foliations on ��2. This section provides the definitions and results that we
need to know about the holomorphic foliations on ��2 for the development of the
paper.

DEFINITION 4. A holomorphic foliation X on ��2 of degree d is a non-trivial
morphism of vector bundles:

X : O��2 (1 − d) → T��2
,

where T��2 is the tangent bundle of ��2; modulo the multiplication by a non-zero
scalar. Then the space of foliations of degree d is Fd := �H0(��2

, T��2(d − 1)),
where d ≥ 0.

PROPOSITION 1. (see [8]) Every foliation X ∈ Fd can be written as

X = P(x, y, z)
∂

∂x
+ Q(x, y, z)

∂

∂y
+ R(x, y, z)

∂

∂z
=

⎛⎝ P(x, y, z)
Q(x, y, z)
R(x, y, z)

⎞⎠,

where P, Q, R ∈ �[x, y, z] are homogeneous of degree d, modulo multiplication by a
non-zero scalar, and if we consider the radial foliation

E = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,
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then X and X + F(x, y, z)E represent the same foliation for all F ∈ �[x, y, z]
homogeneous of degree d − 1.

DEFINITION 5. A point p = (a : b : c) ∈ ��2 is singular for the above foliation X
if (P(a, b, c), Q(a, b, c), R(a, b, c)) = (ka, kb, kc) for some k ∈ �. The set of singular
points of X will be denoted by Sing(X).

DEFINITION 6. Let X ∈ Fd and let p be an isolated singularity of X . Let(
Q(y, z) = Qm(y, z) + Qm+1(y, z) + · · ·
R(y, z) = Rn(y, z) + Rn+1(y, z) + · · ·

)

be a local generator of X in p = (1 : 0 : 0), where Qi, Ri are homogeneous of degree
i, and Qm, Rn are not identically zero. We define the Milnor number of p by
μp(X) := dim�

O
�2,p

<Q,R>
and the multiplicity of p by mp(X) := min{m, n}.

In the sequel, if there is no confusion with point p, we will use the following notation

I(Q, R) = dim�
O

�2 ,p

<Q,R>
.

PROPOSITION 2. (see [2]) Let X be a foliation on ��2 of degree d with isolated
singularities, then

d2 + d + 1 =
∑

p∈��2

μp(X).

DEFINITION 7. A foliation X is non-degenerate if it has isolated singularities and
every singular point has Milnor number 1.

DEFINITION 8. An irreducible plane curve defined by a polynomial F(x, y, z) is
an algebraic solution for X or invariant by X if and only if there exists a polynomial
H(x, y, z) such that

P(x, y, z)
∂F(x, y, z)

∂x
+ Q(x, y, z)

∂F(x, y, z)
∂y

+ R(x, y, z)
∂F(x, y, z)

∂z
= F(x, y, z)H(x, y, z).

DEFINITION 9. A foliation X is a Riccati foliation if there exists a rational fibration
(maybe with singular fibres) on a surface S, obtained from ��2 after a finite number
of blow-ups, whose generic fibre is transverse to the lifted foliation of X in S.

REMARK 2. A non-degenerate foliation X of degree d has a line solution L if and
only if L has d + 1 singular points.

Proof. If the line L = ax + by + cz has d + 1 singular points of X = P(x, y, z) ∂
∂x +

Q(x, y, z) ∂
∂y + R(x, y, z) ∂

∂z , then the polynomial of degree d, aP(x, y, z) + bQ(x, y, z) +
cR(x, y, z) and L have d + 1 common zeros. Hence by Bézout, L is a factor of this
polynomial.

Suppose z is a solution for X , then we can write X = P(x, y, z) ∂
∂x + Q(x, y, z) ∂

∂y , so

SingX ∩ {(x : y : z) ∈ ��2 : z 	= 0} = V (P(x, y, 1), Q(x, y, 1)) has at most d2 different
points. Hence, SingX ∩ V (z) = V (yP(x, y, z) − xQ(x, y, z), z) has d + 1 points. �
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4. Characterisation of unstable and stable Holomorphic Foliations of degree 2. The
group PGL(3, �) of automorphisms of ��2 is a reductive group (see page 48 of [13])
and it acts linearly on F2 by change of coordinates:

PGL(3, �) × F2 → F2

(g, X) �→ gX = DgX ◦ (g−1).

Before establishing the results of this section it is useful to recall the following:
Generically a foliation does not have algebraic solutions, this is a theorem by

Jouanolou and was completed by Neto and Soares (see [10] and [12]).

THEOREM 3. For d ≥ 2, the subset {X ∈ Fd : X has no algebraic solutions} is non-
empty and dense in Fd and contains an open and dense subset.

Consider the following projective subspaces in F2:

CN1 = �

〈
xy

∂

∂x
, xz

∂

∂x
, y2 ∂

∂x
, yz

∂

∂x
, z2 ∂

∂x
, y2 ∂

∂y
, yz

∂

∂y
, z2 ∂

∂y
y2 ∂

∂z

〉

CN2 = �

〈
xz

∂

∂x
, y2 ∂

∂x
, yz

∂

∂x
, z2 ∂

∂x
, xz

∂

∂y
, yz

∂

∂y
, z2 ∂

∂y

〉
,

we know by Proposition 2 that a foliation with isolated singularities of degree 2 has
seven singularities counting Milnor number. In this section we prove the following:

THEOREM 4. Let X ∈ F2 be a foliation with isolated singularities, then X is unstable
if and only if it has one of the following properties:
(i) There exists a singular point p of multiplicity 2, or
(ii) has an invariant line with a unique singular point with multiplicity 1 and Milnor
number 5.

Moreover, a foliation X satisfies (i) if and only if there exists g ∈ SL(3, �) such
that gX ∈ CN1 and it satisfies (ii) if and only if there exists g ∈ SL(3, �) such that
gX ∈ CN2 − CN1.

With this theorem we will see that every unstable foliation has an invariant line. We
also have the following:

THEOREM 5. Let X ∈ F2 be a foliation with isolated singularities, then X is semistable
but not stable if and only if the multiplicity of every singular point is one, and X has an
invariant line L with one singular point with Milnor number 3 or 4 or L has two different
singular points, one of them with Milnor number 3, 4, 5 or 6.

COROLLARY 1. A foliation X ∈ F2 with isolated singularities is stable if and only if
every singular point of X has multiplicity one and if we have one of the following: X does
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not have invariant lines, or if L is an invariant line for X, then

(1) L has two different singularities, one with Milnor number 2 and the other with
Milnor Number 1; or

(2) L has two different singularities, both with Milnor number 2; or
(3) L has three different singularities.

To prove these results we need the following:

LEMMA 2. Let X be a foliation of degree 2. Then, X is unstable if and only if there
exists g ∈ SL(3, �) such that gX is unstable with respect to λ1 := λ(2,−1) or with respect
to λ2 := λ(4,1).

Proof. Consider the monomial foliations: Xi0j0 = x2−j0 yj0−i0 zi0 ∂
∂x , Xi1j1 =

x2−j1 yj1−i1 zi1 ∂
∂y and Xi2j2 = x2−j2 yj2−i2 zi2 ∂

∂z , where jl ≥ il, l = 0, 1, 2 and jl, il = 0, 1, 2.
The weight of the foliation Xiljl with respect to λ(n0,n1) is nl − n0(2 − jl) − n1(jl − il) −
n2il.

It is easy to check the following: μ(Xi0j0 , λ1) > 0 if and only if j0 = 1, 2;
μ(Xi1j1 , λ1) > 0 if and only if j1 = 2 and μ(Xi2j2 , λ1) > 0 if and only if j2 = 2.

We conclude that a foliation X , which is a linear combination of Xiljl , is unstable
with respect to λ1 if and only if its non-zero foliations Xiljl satisfy j0 = 1 or j0 = 2,
j1 = 2 and j2 = 2. For λ2 we have

μ(Xi0j0 , λ2) > 0 ⇔ 3j0 + 6i0 > 4 ⇔ j0 = i0 = 1 or j0 = 2,

μ(Xi1j1 , λ2) > 0 ⇔ 3j1 + 6i1 > 7 ⇔ j1 = i1 = 1 or j1 = i1 = 2 or j1 = 2, i1 = 1,

μ(Xi2j2 , λ2) > 0 ⇔ 3j2 + 6i2 > 13 ⇔ j2 = i2 = 2.

On the other hand, in every case the conditions to have nl − n0(2 − jl) − n1(jl − il) −
n2il > 0 are as follows:

j0 = i0 = 0 is not possible, j1 = i1 = 0 ⇔ n2

n0
< −3, j2 = i2 = 0 ⇔ n2

n0
> 2,

j0 = 1, i0 = 0 ⇔ n2

n0
> −1, j1 = 1, i1 = 0 is not possible, j2 = 1, i2 = 0 ⇔ n2

n0
> 0,

j0 = i0 = 1 ⇔ n2

n0
< 0, j1 = i1 = 1 ⇔ n2

n0
< −1, j2 = i2 = 1 is not possible,

j0 = 2, i0 = 0 ⇔ n2

n0
> −3

2
, j1 = 2, i1 = 0 ⇔ n2

n0
> −1, j2 = 2, i2 = 0 ⇔ n2

n0
> −2

3
,

j0 = 2, i0 = 1 ⇔ n2

n0
> −2, j1 = 2, i1 = 1 ⇔ n2

n0
< 0, j2 = 2, i2 = 1 ⇔ n2

n0
> −1,

j0 = i0 = 2 ⇔ n2

n0
<

1
2
, j1 = i1 = 2 ⇔ n2

n0
< −1

3
, j2 = i2 = 2 ⇔ n2

n0
< 0.

We can suppose that n0 ≥ n1 ≥ n2, then − 1
2 ≥ n2

n0
≥ −2; with the above we conclude

that if − 2
3 < n2

n0
< − 1

3 or − 3
2 < n2

n0
< −1, then we obtain maximal sets of generators
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for unstable foliations, which are as follows:

CN1 =
{

X : μ
(
X, λ(n0,n1)

)
> 0 ∀n2

n0
∈

(
−2

3
,−1

3

)}
= �

〈
xy

∂

∂x
, xz

∂

∂x
, y2 ∂

∂x
, yz

∂

∂x
, z2 ∂

∂x
, y2 ∂

∂y
, yz

∂

∂y
, z2 ∂

∂y
y2 ∂

∂z

〉
CN2 =

{
X : μ

(
X, λ(n0,n1)

)
> 0 ∀n2

n0
∈

(
−3

2
,−1

)}
= �

〈
xz

∂

∂x
, y2 ∂

∂x
, yz

∂

∂x
, z2 ∂

∂x
, xz

∂

∂y
, yz

∂

∂y
, z2 ∂

∂y

〉
To finish the proof we must note that CN1 = {X : μ(X, λ1) > 0} and CN2 = {X :

μ(X, λ2) > 0}. �
Proof of Theorem 4. Let

X =

⎛⎜⎝ a0x2 + a1xy + a2xz + a3y2 + a4yz + a5z2

b0x2 + b1xy + b2xz + b3y2 + b4yz + b5z2

c0x2 + c1xy + c3y2

⎞⎟⎠
a generic foliation of degree 2 with isolated singularities. In the affine chart U0 we have
the following foliation:

X0 =
(

b0 + (b1 − a0)y + b2z + (b3 − a1)y2 + (b4 − a2)yz + b5z2 − a3y3 − a4y2z − a5yz2

c0 + c1y − a0z + c3y2 − a1yz − a2z2 − a3y2z − a4yz2 − a5z3

)
,

if p0 = (1 : 0 : 0), then mp0 (X) > 1 if and only if a0 = b0 = b1 = b2 = c0 = c1 = 0, i.e.
if and only if X ∈ CN1.

Now, let X ∈ CN2 − CN1,

X =

⎛⎜⎝ a2xz + a4yz + a3y2 + a5z2

xz + b4yz + b5z2

0

⎞⎟⎠ .

The point p0 is singular for this foliation and in the affine chart U0, the foliation X is

X0 =
(

z + (b4 − a2)yz + b5z2 − a3y3 − a4y2z − a5yz2

−a2z2 − a3y2z − a4yz2 − a5z3

)
.

Let

Q(y, z) = z + (b4 − a2)yz + b5z2 − a3y3 − a4y2z − a5yz2,

R(y, z) = −a2z2 − a3y2z − a4yz2 − a5z3.

Since X has isolated singularities, a3 	= 0, and with this it is easy to see that
I(Q, R) = μp0 (X) = 5. Note that p0 is the unique singular point in the invariant line
z = 0.

Now we will suppose that the foliation X has an invariant line with a unique
singular point with Milnor number 5. We can suppose that the line is z and that the
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point is p0. Then X has the form:

X =

⎛⎜⎝ a0x2 + a1xy + a2xz + a3y2 + a4yz + a5z2

b0x2 + b1xy + b2xz + b3y2 + b4yz + b5z2

0

⎞⎟⎠
Condition 1. If p0 is singular, then b0 = 0.
Condition 2. If (0 : 1 : 0) is not singular, then a3 	= 0, let us suppose a3 = 1.
If a0 	= 0, in the affine chart U0 we have:

X0 =
(

(b1 − a0)y + b2z + (b3 − a1)y2 + (b4 − a2)yz + b5z2 − y(y2 + a4yz + a5z2)

−z(a0 + a1y + a2z + y2 + a4yz + a5z2)

)
,

therefore

μp0 (X) = I(z, (b1 − a0)y + (b3 − a1)y2 − y3) ≤ 3,

hence a0 = 0 and

X0 =
(

b1y + b2z + (b3 − a1)y2 + (b4 − a2)yz + b5z2 − y(y2 + a4yz + a5z2)

−z(a1y + a2z + a3y2 + a4yz + a5z2)

)
.

We must note that (y, 0) is singular for this local vector field if and only if b1y + (b3 −
a1)y2 − y3 = 0 and this polynomial has its three roots equal to zero if and only if
b1 = b3 − a1 = 0, therefore,

X0 =
(

b2z + (b4 − a2)yz + b5z2 − y(y2 + a4yz + a5z2)

−z(a1y + a2z + a3y2 + a4yz + a5z2)

)
.

Moreover, because mp0 (X) = 1, then b2 	= 0 and μp0 (X) = I(z, y3) + I(a1y + a2z +
y2 + a4yz + a5z2, b2z + (b4 − a2)yz + b5z2 − y(y2 + a4yz + a5z2) = 4 if and only if
a1 	= 0. Then

X =

⎛⎜⎝ a2xz + y2 + a4yz + a5z2

b2xz + b4yz + b5z2

0

⎞⎟⎠,

and I(a2z + y2 + a4yz + a5z2, b2z + (b4 − a2)yz + b5z2 − y(y2 + a4yz + a5z2) = I(a2

z + y2 + a4yz + a5z2, b2z + b4yz + b5z2) = I(y2, z) = 2. Therefore μp0 (X) = 5 and X ∈
CN2 − CN1. �

REMARK 3. An unstable foliation X ∈ F2 with isolated singularities has an
invariant line.

Proof. If α is such that α3c3 − α2b3 − αb4 − b5 = 0, then y − αz is an invariant
line for a foliation in CN1; and z is an invariant line for a foliation in CN2. �

LEMMA 3. Let X ∈ F2 with the following properties: Every singularity of X has
multiplicity one and X has an invariant line with a unique singularity p. Then μp(X) = 5, 4
or 3.
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Proof. We follow the notation of Theorem 4. If z is the invariant line, p1 = (0 : 1 : 0)
is singular and p0 = (1 : 0 : 0) is not singular, then in the affine chart U1 we have

X1 =
(

a0x2 + a1x + a2xz + a4z + a5z2 − x(x2 + b1x + b2xz + b3 + b4z + b5z2)

−z(x2 + b1x + b2xz + b3 + b4z + b5z2)

)

=
(

(a1 − b3)x + a4z + (a0 − b1)x2 + (a2 − b4)xz + a5z2 − x3 − a2x2z − b5xz2

−z(b3 + b1x + b4z + x2 + a2xz + b5z2)

)
.

Note that (x, 0) is singular in this chart if and only if (a1 − b3)x + (a0 − b1)x2 −
x3 = 0, and this polynomial has its three roots equal to zero if and only if a1 = b3

and a0 = b1. Therefore μp1 (X) ≥ I(z, x3 + zH(x, z) = 3, and we can conclude that
μp1 (X) = 3 if and only if b3 	= 0.

If b3 = 0, and if mp1 (X) = 1, then we must have a4 	= 0. Hence μp1 (X) = 4 if and
only if b1 	= 0; moreover, μp1 (X) = 3 + Ip(z, x2) = 5 if and only if b1 = 0 (in this last
case the foliation is unstable). �

Proof of Theorem 5. We know that a foliation X is semistable but not stable if
and only if X is not unstable and there exists g ∈ SL(3, �) and a diagonal 1-PS, λ,
of SL(3, �) such that μ(X, gλg−1) = 0. The weights of the monomial foliations with
respect to the one-parameter subgroup λ(1,r), where − 1

2 ≤ r ≤ 1 are

x2 xy xz y2 yz z2

∂

∂x
−1 −r 1 + r 1 − 2r 2 3 + 2r

∂

∂y
r − 2 −1 2r −r 1 + r 3r + 2

∂

∂z
−r − 3 −2 − 2r −1 −1 − 3r −r 1 + r.

The unique cases where we can have any weight equal to zero with the condition
r ∈ � ∩ [− 1

2 , 1] are the following:

r = 0 x2 xy xz y2 yz z2 r = 1
2

x2 xy xz y2 yz z2

∂

∂x
−1 0 1 1 2 3

∂

∂x
−1 −1

2
3
2

0 2 4

∂

∂y
−2 −1 0 0 1 2

∂

∂y
−3

2
−1 1 −1

2
3
2

7
2

∂

∂z
−3 −2 −1 −1 0 1

∂

∂z
−7

2
−3 −1 −5

2
−1

2
3
2

r = −1
3

x2 xy xz y2 yz z2

∂

∂x
−1

1
3

2
3

5
3

2
7
3

∂

∂y
−7

3
−1 −2

3
1
3

2
3

3

∂

∂z
−8

3
−4

3
−1 0

1
3

2
3
.
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The monomial foliations with non-negative weights for r = 1
2 also have non-

negative weights for r = 0, and the monomial foliations with non-negative weights
for r = − 1

3 are in CN1. Then, the unique case to consider is

X =

⎛⎜⎝ a1xy + a2xz + a3y2 + a4yz + a5z2

b2xz + b3y2 + b4yz + b5z2

0

⎞⎟⎠,

the point p0 = (1 : 0 : 0) is singular and the line z = 0 is invariant for the foliation. In
the affine chart U0, X is

X0 =
(

b2z + (b3 − a1)y2 + (b4 − a2)yz + b5z2 − a3y3 − a4y2z − a5yz2

−z(a1y + a2z + a3y2 + a4yz + a5z2)

)
,

the multiplicity of p0 is one because otherwise the foliation is unstable, then we can
consider b2 = 1. The Milnor number of p0 is

μp0 (X) = I(z, (b3 − a1)y2 − a3y3) + I(a1y + a2z + a3y2 + a4yz

+a5z2, z + (b3 − a1)y2 + (b4 − a2)yz + b5z2 − a3y3 − a4y2z − a5yz2).

We will see now the remaining singular points in z = 0. We have that (α : 1 : 0) is
singular if and only if (a1 − b3)α + a3 = 0, therefore the line has at most two singular
points.

Case 1. a1 	= b3, then ( a3
b3−a1

: 1 : 0) is the other singular point in z different from p0

and μp0 (X) ≥ 2 + 1, this value could be 3, 4, 5 or 6.

Case 2. a1 = b3, then a3 	= 0, if not, z = 0 will be a curve of singularities. Therefore
z = 0 has only the singularity p0 and by Lemma 3 its Milnor number is 3 or 4. �

5. An unstable Foliation is a Riccati Foliation. In this section we prove the
following:

THEOREM 6. The generic unstable foliation on ��2 of degree 2 is Riccati.

Now we give the proof of this result.

LEMMA 4. Let X be a foliation of ��2 of degree 2 with isolated singularities. Then
X ∈ CN1 if and only if X is transversal with respect to the rational fibration given by the
flow of λ1 and the Milnor number of p0 = (1 : 0 : 0) is greater than 1.

Proof. Let X be a generic point in CN1, i.e.

X =

⎛⎜⎝ a1xy + a2xz + a3y2 + a4yz + a5z2

b3y2 + b4yz + b5z2

c3y2

⎞⎟⎠,

where ai, bi, ci ∈ �. Since mp0 (X) > 1, then μp0 (X) ≥ 4.
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The associated foliation to the flow given by λ1 is Xλ1 = 2x ∂
∂x − y ∂

∂y − z ∂
∂z . It has

a line of singularities defined by x = 0, and its leaves are the lines passing through the
singular point p0. Then we must blow up once the point p0 to separate the leaves and
thus obtain a rational fibration, we will denote the corresponding foliation by X̃λ1 .

The foliation X in the affine chart U0 is

X0 =
(

(b3 − a1)y2 + (b4 − a2)yz + b5z2 − a3y3 − a4y2z − a5yz2

c3y2 − a1yz − a2z2 − a3y2z − a4yz2 − a5z3

)
.

Lifting the foliation X with the same blow-up we obtain

X̃0 =
(

w2
1

(
a3 + a4w2 + a5w

2
2

) − w1
(
(b3 − a1) + (b4 − a2)w2 + b5w

2
2

)
−c3 + b3w2 + b4w

2
2 + b5w

3
2

)
.

Then the fibres of the rational fibration obtained by X̃λ1 and the leaves of X̃ are
tangent only in the common leaves w2 − k = 0, where k is a root of the polynomial
−c3 + b3w2 + b4w

2
2 + b5w

3
2.

In the line x = 0 we have the same property. We conclude that X is λ1 − Riccati.
Now, let

X =

⎛⎜⎝ a0x2 + a1xy + a2xz + a3y2 + a4yz + a5z2

b0x2 + b1xy + b2xz + b3y2 + b4yz + b5z2

c0x2 + c1xy + c2xz + c3y2 + c4yz + c5z2

⎞⎟⎠
be a foliation of degree 2 with isolated singularities, λ1 − Riccati and such that
μp0 (X) > 1.

The first condition in the coefficients is b0 = c0 = 0 because p0 is a singular point
for the foliation.

In order to separate the leaves of Xλ1 we must blow up the point p0, then we lift
the foliation X with this blow-up and see the condition in the coefficients of X to have
transversality with the rational fibration defined by Xλ1 . As before, we have

X̃0=
⎛⎝ w3

1

(
a3 + a4w2 + a5w

2
2

) + w2
1

(
(a1 − b3) + (a2 − b4)w2 − b5w

2
2

)
+w1((a0 − b1) − b2w2)

w1
( − c3 + (b3 − c4)w2 + (b4 − c5)w2

2 + b5w
3
2

) + ( − c1 + (b1 − c2)w2 + b2w
2
2

)
⎞⎠.

Then, to have transversality with the fibration defined by Xλ1 , either of the following
conditions is satisfied:
a3 + a4w2 + a5w

2
2 = 0 and −c3 + (b3 − c4)w2 + (b4 − c5)w2

2 + b5w
3
2 = 0; or −c1 +

(b1 − c2)w2 + b2w
2
2 = 0. This means a3 = a4 = a5 = c3 = b5 = 0, b3 = c4 and b4 = c5;

or c1 = b2 = 0 and b1 = c2.
The first one implies

X =

⎛⎜⎝ a0x2 + a1xy + a2xz

b1xy + b2xz

c1xy + c2xz

⎞⎟⎠,
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but it has a curve of singularities defined by x. Thus, we must have the second condition,
i.e.

X =

⎛⎜⎝ a0x2 + a1xy + a2xz + a3y2 + a4yz + a5z2

b3y2 + b4yz + b5z2

c3y2 + c4yz + c5z2

⎞⎟⎠.

The hypothesis μp0 (X) > 1 for X implies a0 = 0. Then X ∈ CN1. �

PROPOSITION 3. Let Y be a generic foliation in CN2. Then the Kodaira dimension of
Y is 1.

Proof. Let Y ∈ CN2, then

Y =

⎛⎜⎝ a2xz + a3y2 + a4yz + a5z2

b2xz + b4yz + b5z2

0

⎞⎟⎠ ,

we must reduce the singularities of Y in the sense of [14].
We note that the multiplicity of p0 = (1 : 0 : 0) is 5. Generically we need two

blow-ups to obtain the reduced foliation, X = Yred, birational to Y . Let S be the
surface where X has only reduced singularities, let L ⊂ S be the strict transform
of a line that does not pass through the point p01, where we made the blow-up

in �̃�2, and let L1 ⊂ �̃�2 be the strict transform of line L0 in ��2, which does
not pass through p0. We have the following:

Blowing-up Exceptional divisor Foliation Canonical bundle

˜̃
��2 := S

π

��

E X KX = OS(L − E)

p01 ∈ �̃�2

π1

��

E1 Ỹ KỸ = O
�̃�2 (L1)

p0 ∈ ��2 Y KY = O��2 (1),

where L · E = 0, L · L = 1, E2 = −1, E ≈ ��1.
The linear part of the reduced foliation X , in the unique singular point in E is

DX(0, 0) =
(

2b2 0

0 −b2

)
,

then 2b2
−b2

= −2 /∈ �+.
In [11] the author gives the definition of the Kodaira dimension for reduced

foliations and proves analogous results to the case of algebraic varieties. In this case
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the Kodaira dimension of the foliation X is calculated as follows:

kod(X) = lim sup
n→∞

1
log n

log h0(S,OS(nL − nE)),

and to compute it we consider the Riemann–Roch formula for surfaces: Let n ∈ �>0,
we obtain

h0(S,OS(n(L − E))) = 1
2

(−nL · KS + nE · KS) + χ (OS) + h1(S,OS(n(L − E)))

− h2(S,OS(n(L − E))).

If E1 is the exceptional divisor of the first blowing-up, π1, then

KS = π∗K
�̃�2 + E = π∗(π∗

1 K��2 + E1) + E = π∗(π∗
1 O��2 (−3) + E1) + E.

Also we have

L · KS = L · π∗K
�̃�2 = π∗L1 · π∗K

�̃�2 = L1 · K
�̃�2 = L1 · (π∗

1 (O��2 (−3)) + E1)

= π∗
1 (L0) · π∗

1 O��2 (−3) = O��2 (1) · O��2 (−3) = −3,

and E · KS = E · (π∗K
�̃�2 + E) = −1, χ (OS) = χ (O��2 ) = 1.

Then,

h0(S,OS(n(L − E))) = n + 1 + h1(S,OS(n(L − E))) − h2(S,OS(n(L − E))).

If we consider n sufficiently large, we can assume by Serre’s Theorem (see [15]) that
h1(S,OS(n(L − E))) = 0 and h2(S,OS(n(L − E)) = 0. Finally we obtain

kod(X) = lim sup
n→∞

1
log n

log h0(S,OS(nL − nE)) = lim sup
n→∞

log(n + 1)
log n

= 1.

�
LEMMA 5. The canonical bundle, KX = OS(L − E), of the reduced foliation arising

from Y ∈ CN2 defines a linear system of dimension 1 without base points.

Proof. Since kod(X) = 1, then h0(S,OS(L − E)) ≤ 2. We consider the exact
sequence of sheaves

0 −→ OS(L − E) −→ OS(L) −→ OE −→ 0,

this induces the following sequence:

0 −→ H0(S,OS(L − E)) −→ H0(S,OS(L)) −→ H0(E,OE)

−→ H1(S,OS(L − E)) −→ 0.

Then, we have h0(S,OS(L − E)) = h0(S,OS(L)) − h0(E,OE) + h1(S,OS(L − E)) =
2 + h1(S,OS(L − E)) ≥ 2.

Therefore, h0(S, KX ) = 2. If we assume that s0, s1 ∈ H0(S, KX ) and (s0)0 ∩ (s1)0 	=
∅, then K2

X = (s0)0 · (s1)0 > 0, but K2
X = (L − E)2 = 0. Therefore, H0(S,OS(L − E))

does not have base points. �
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THEOREM 7. The generic foliation Y in CN2 is Riccati with respect to the rational
fibration defined by the pencil of the canonical bundle of the reduced foliation birrational
to Y.

Proof. The above pencil defines a fibration f : S → ��1. The generic fibre of this
fibration is linearly equivalent to the divisor L − E, then the genus of this curve is

g = (L − E)2 + (L − E) · KS + 2
2

= 0.

We then see that f is a rational fibration that satisfies K∗
X · (L − E) = (E − L) · (L −

E) = 0. Then the reduced foliation X is Riccati (see page 50 of [2]). �

6. Geometric Quotient of non-degenerate Foliations without Invariant Lines. By
Theorem 1 we know that there exists a geometric quotient of stable foliations of degree
2 by the action of PGL(3, �). In this section we prove that this quotient contains
another geometric quotient, which is the coarse moduli space of polarised del Pezzo
surfaces of degree 2 (see [9]).

For this we will need the following:

DEFINITION 10. A set of seven points in ��2 is said to be in general position if no
three of these lie on one line and no six of them lie on one conic.

THEOREM 8. The geometric quotient by PGL(3, �) of non-degenerate holomorphic
foliations of degree 2 without invariant lines is the coarse moduli space of polarised del
Pezzo surfaces of degree 2.

Proof. We begin by noting that the set F0
2 = {X ∈ F2 : X is non-degenerate without

invariant lines} is an open PGL(3, �)-stable set of F2. To see that this set is open, it is
sufficient to use part 2 of Theorem 5.2 of [8] and Theorem 2.5 of [7], because the first
one says that the set of holomorphic foliations without invariant lines is open and the
second one says the same for the set of non-degenerate holomorphic foliations. Also,
due to Corollary 1 we have that a foliation in F0

2 is stable by PGL(3, �). �
In [7] we have the following:

THEOREM 9. Let X ∈ Fd , d > 1 be a non-degenerate holomorphic foliation with
singular set Z, and let X1 ∈ Fd be another holomorphic foliation with singular set Z, then
X1 = X.

Moreover, in the case of degree 2, the corollary 4.10 in [3] says that seven different
points of ��2 are the singular set of a unique non-degenerate holomorphic foliation
of degree 2 if and only if there are not present six points in a conic. On the other hand,
in Remark 2 we prove that a non-degenerate foliation of degree d has an invariant line
if and only if this line has d + 1 singular points.

If U7 is the open subspace of the punctual Hilbert scheme Hilb7(��2) consisting
of points that represent seven points in general position in ��2, then we can conclude
that U7 parametrises the non-degenerate holomorphic foliations of degree 2 without
invariant lines. In U7 we have the natural action by PGL(3, �):

PGL(3, �) × U7 → U7

(g, p1 + · · · + p7) �→ gp1 + · · · + gp7,
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such that the diagram

PGL(3, �) × F0
2 → F0

2
↓ ↓

PGL(3, �) × U7 → U7

is commutative, therefore the geometric quotient of non-degenerate foliations of
degree 2, without invariant lines by PGL(3, �) is the geometric quotient of U7 by
PGL(3, �).

Finally in [9] the author proves that the coarse moduli space of polarised del Pezzo
surfaces of degree 2 is the geometric quotient by PGL(3, �) of U7.

COROLLARY 2. The geometric quotient of stable foliations of degree 2 by PGL(3, �)
contains an open set isomorphic to the coarse moduli space of polarised del Pezzo surfaces
of degree 2.

Proof. The proof of this corollary is a consequence of the following: �
LEMMA 6. (see page 234 of [5]). Let G be an algebraic group acting on an algebraic

variety V. If (Y, φ) is a geometric quotient for this action and U is an open G − stable
subset of V, then (φ(U), φ|) is the geometric quotient for the action of G on U.

LEMMA 7. (see Theorem 4.20 of [5]). Let G be an affine algebraic group, V a regular
G − variety and assume that a geometric quotient (Y, φ) exists. Then, Y is unique up to
isomorphism.

If (Y, φ) is the geometric quotient of F2 by PGL(3, �), then (φ(F0
2), φ|) is the geometric

quotient of F0
2 by PGL(3, �), which is the geometric quotient of U7 by PGL(3, �) and,

by a property of geometric quotients, it is an open subset of Y .

REMARK 4. The foliation of degree 2, (xz + y2) ∂
∂x − x2 ∂

∂y + xy ∂
∂z , given in [4] has

a unique singular point in (0 : 0 : 1), which is not reduced with Milnor number 7 and
does not have any invariant line, therefore X is a stable foliation.

This tells us that it is not possible to construct the good quotient of all the stable
foliations through the singular set, like we do in the case of non-degenerate foliations
without invariant lines. In the second section of [9] we can see the construction of a
compactification of the coarse moduli space of del Pezzo surfaces using a subspace of
Hilb7(��2) allowing points with multiplicity at most 2.
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