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Abstract

Brown rice (BR) and white rice (WR) produce different glycaemic responses and their consumption may affect the dietary management of

obesity. In the present study, the effects of BR and WR on abdominal fat distribution, metabolic parameters and endothelial function were

evaluated in subjects with the metabolic syndrome in a randomised cross-over fashion. In study 1, acute postprandial metabolic parameters

and flow- and nitroglycerine-mediated dilation (FMD and NMD) of the brachial artery were determined in male volunteers with or without

the metabolic syndrome after ingestion of either BR or WR. The increases in glucose and insulin AUC were lower after ingestion of BR than

after ingestion of WR (P¼0·041 and P¼0·045, respectively). FMD values were decreased 60 min after ingestion of WR (P¼0·037 v. base-

line), but the decrease was protected after ingestion of BR. In study 2, a separate cohort of male volunteers (n 27) with the metabolic

syndrome was randomised into two groups with different BR and WR consumption patterns. The values of weight-based parameters

were decreased after consumption of BR for 8 weeks, but returned to baseline values after a WR consumption period. Insulin resistance

and total cholesterol and LDL-cholesterol levels were reduced after consumption of BR. In conclusion, consumption of BR may be

beneficial, partly owing to the lowering of glycaemic response, and may protect postprandial endothelial function in subjects with the

metabolic syndrome. Long-term beneficial effects of BR on metabolic parameters and endothelial function were also observed.
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Rice is generally consumed after it is refined to remove the outer

bran and germ portions of the intact grains (i.e. brown rice, BR)

and produce white rice (WR), consisting primarily of the starchy

endosperm. The postprandial blood glucose responses elicited

on consumption of WR or BR are substantially different(1–3).

Whole grains have been shown to be associated with a low

fasting insulin level and a low glycaemic response after meal

ingestion(4–6). The intake of whole grains, but not of refined

grains, has also been reported to be associated with low body

weight and adiposity(5,6). Thus, the intake of whole-grain BR

might be beneficial for controlling weight and obesity. Recently,

we have reported that BR and g-oryzanol, one of its major

components, improve high-fat diet-induced metabolic derange-

ment and attenuate the preference for dietary fat, by decreasing

hypothalamic endoplasmic reticulum stress(7). Therefore, we

hypothesised that BR may be useful for ameliorating obesity

and the metabolic syndrome, a constellation of obesity-based

metabolic abnormalities (glucose intolerance, insulin resist-

ance, dyslipidaemia and hypertension, all well-documented

risk factors of CVD), by regulating eating behaviour. Until

now, clinical trials havenot been conducted toprovide evidence

of a direct effect of BR on body weight and eating behaviour.
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Furthermore, an inverse relationship between the intake of

whole grains and the risk of IHD has been reported by two

cohort studies(8,9). Although such protective effects are usually

explained by the presence of various constituents, such as

dietary fibre, phytic acid and vitamins, there is a lack of concrete

evidence supporting these assumptions(10). A clinical meta-

analysis has shown an association between postprandial

glucose levels and macrovascular complications in non-diabetic

and diabetic individuals(11). Our group(12) and others(13) have

reported that postprandial glucose elevation causes endothelial

dysfunction, an early marker of atherosclerotic changes and a

surrogate marker of future cardiovascular events. Such post-

prandial endothelial dysfunction has been suggested to be

involved in vascular complications in diabetic(14) and obese

patients(15). The inhibition of postprandial glucose elevation

by whole grains might be beneficial for postprandial endothelial

function, but a study examining such a relationship has not

been reported.

The present investigative study was conducted to determine

the acute effects of BR, when compared with those of WR,

on postprandial metabolic parameters and postprandial

endothelial function as well as the chronic effects of BR and

WR consumption on abdominal fat distribution, metabolic

parameters and endothelial functions in subjects with the

metabolic syndrome.

Study design and methods

Study design

Healthy male volunteers were recruited by public advertisement

from 1 December 2008 to 31 January 2009, and they underwent

a 75g oral glucose tolerance test(16). In study 1, eleven subjects

participated, and in study 2, twenty-seven subjects participated,

as described below. A subject was defined as having the meta-

bolic syndrome(17) if he was obese (according to the modified

Japanese criteria, having a waist circumference $85 cm) and

any two of the following four factors: (1) hypertriacylglycerolae-

mia (serum TAG concentration $1500mg/l (1·69mmol/l)); (2)

low level of HDL-cholesterol (serum HDL-cholesterol concen-

tration ,400mg/l (1·04mmol/l)); (3) elevated blood pressure

(systolic blood pressure $130mmHg and/or diastolic blood

pressure $85mmHg); (4) high level of fasting glucose (serum

glucose concentration $1000mg/l (5·6mmol/l)). Anthropo-

metric measurements were taken while the subject was standing

erect, including those of subcutaneous fat area (SFA) and intra-

abdominal visceral fat area (VFA). These measurements were

taken at the level of the umbilicus using a standardised method

involving computed tomography, as described previously(18).

The study protocol was approved by the Ethical Committee of

Tomishiro Central Hospital, and the study was carried out in

accordance with the principles of the Declaration of Helsinki as

revised in 2000. The subjects gave written informed consent

before the start of the study. The subjects were obligated to

report any serious or unexpected adverse events, whether or

not they appeared related to the intervention, immediately to

the principal investigator and/or the research ethics committee

in order to ensure appropriate management. For study 2,

in a priori analysis made by a power analysis application

(G*Power version 3.1.7(19)), the required sample sizes to detect

differences in body weight per kg were as follows: fourteen in

each group at 0·8 of the power (1–b error probability) and the

5% level of significance (a error probability) by the Wilcoxon–

Mann–Whitney test and twenty-eight matched pairs at 0·8 of

the power (1–b error probability) and the 5% level of signifi-

cance (a error probability). Thus,weemployed fourteen samples

in each group, a total of twenty-eight samples, in the present

study. The Consolidated Standards of Reporting Trials Statement

2010 checklist and a flow diagram of the progress through the

phases of a parallel randomised trial of two groups are provided

in Supplementary materials 1 and 2 (available online). The

study protocol was registered at the University Hospital Medical

Information Network Clinical Trials Registry (UMIN-CTR regis-

tration no. UMIN000009989).

Study 1: acute effects

On twomornings, at least 14d apart, fiveparticipantswithout and

six with the metabolic syndrome ingested a 1883kJ (450kcal)

meal(13), including an 837kJ (200kcal) meal of either BR or WR

of Japonica variety. Blood samples were collected before and

1, 2 and 4h after meal ingestion. At the same time points, flow-

mediated dilation (FMD) and nitroglycerine-mediated dilation

(NMD) were determined using automated measurements of

the brachial arterial lumen, as described below(20,21).

Study 2: chronic effects

Participants with the metabolic syndrome (n 27) were

instructed to ingest BR or WR of Japonica variety for 8 weeks

as described below. The participants were randomised by a

computer-generated random number table into either the BR

group followed by the WR group (BR-WR, n 14) or the WR

group followed by the BR group (WR-BR, n 13). The BR-WR

group consumed BR for the first 8 weeks and WR for the

next 8 weeks. The WR-BR group followed the reverse con-

sumption protocol. We instructed the participants to follow

regular dietary intake/exercise habits during the intervention

period, except for consumption of delivered rice. On each

day, after ingestion of BR or WR, the participants recorded

their compliance to the study requirement and their level of

satiety (scale 1–10: not satisfied to satisfied). Before and

after completion of both 8-week terms, blood and urine

samples were collected, and FMD and NMD were determined;

oral glucose tolerance test and abdominal computed tomogra-

phy were also performed. Because primary outcomes were

the effects of BR/WR on metabolic parameters and endothelial

function and the carry-over effect between BR-WR and WR-BR

groups could be minimised to these parameters after 2 months

of treatment, we had not included a washout period.

Assessment of vascular function

FMD and NMD were measured using a vascular ultrasound

system equipped with an automatic edge-tracking system for

two-dimensional lumen imaging (UNEXEF; UNEX), according

to the established guidelines(20,21). The measurements of FMD
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and NMD were taken by a single laboratory technician using a

skilful and stable technique to avoid inter-technician variation.

The correlation coefficient between two FMD measurements

was 0·86, with a CV of 11·2 %(21). The diameter of the brachial

artery was measured, at rest, in the cubital region. Sub-

sequently, the cuff was inflated to 50mmHg above the systolic

blood pressure, held there for 5min and deflated. The diameter

at the same point of the artery was monitored continuously,

and the maximum dilation, occurring 45–60 s after deflation,

was recorded. The measurement of NMD was taken after a

15 min interval to allow for vessel recovery. Sublingual gly-

ceryl trinitrate (75mg) was administered, and the maximum

dilation of the brachial artery, at the same point as for the

measurement of FMD, was confirmed and measured by a pla-

teau in the diameter of the artery, using real-time monitoring

of the diameter of the artery, over a period of at least 1 min

after the point of maximum dilation. FMD and NMD values

were calculated as follows:

FMD or NMD value ð%Þ ¼ ðmaximum diameter

2 diameter at restÞ

£ 100=diameter at rest:

Biochemical measurements

Venous blood samples were collected in tubes without

an anticoagulant or in tubes with EDTA sodium (1 mg/ml) or

spray-dried K2EDTA and DPP-4 protease inhibitors (Becton

Dickinson) for the determination of the concentrations of

active glucagon-like peptide (GLP)-1 as well as plasma

glucose and serum total cholesterol, HDL-cholesterol, TAG,

creatinine and glucose. The concentration of LDL-cholesterol

was estimated using Friedewald’s method(22). The con-

centration of glycosylated Hb was measured using HPLC and

that of insulin using chemiluminescent enzyme immunoassay.

The value for the concentration of glycosylated Hb (%) was

converted to the National Glycohemoglobin Standardization

Program levels(23). The concentration of high-sensitivity

C-reactive protein (hs-CRP) (N Latex CRP II) was determined

using immunonephelometric methods. The concentration of

GLP-1 was measured using an ELISA kit (Millipore)(24). The

plasma concentrations of amidated GLP-1(7–36) and GLP-1

(7–37) were measured using an antibody that was highly specific

for the N-terminus of GLP-1 and did not react with GLP-1(9–36),

GLP-2 or glucagon. Other blood component assays were

conducted using standard methods. Plasma was immediately

separated by centrifugation at 3000 rpm at 48C for 10min and

serum by centrifugation at 1000 rpm at room temperature for

10min. Urine samples were collected in light-resistant tubes and

used to measure the concentration of urinary 8-isoprostane,

using an enzyme immunoassay kit (Assay Designs).

Statistical analysis

Values are expressed as means and standard deviations, unless

otherwise indicated. Two-tailed paired/unpaired Student’s

t test or one-way factorial ANOVA, followed by Bonferroni’s

post hoc comparisons, was used to compare inter-group

or intra-group means for parametric data. For small-group

comparison, a non-parametric Wilcoxon–Mann–Whitney test

was employed. All analyses were performed using Jump

version 10.0.1.1 software (SAS Institute). Differences were

considered to be significant if the P value was ,0·05.

Results

Study 1: acute effects

The ages of the subjects with or without the metabolic syn-

drome were similar. Body weight, BMI, waist circumference

and blood pressure were higher in subjects with the metabolic

syndrome (Table 1). In subjects with the metabolic syndrome,

the concentrations of glucose and insulin at 120 min after

ingestion of the 1883 kJ (450 kcal) meal were lower when

the meal consisted of BR than when it consisted of WR

(Fig. 1). The increase in glucose AUC (DAUCglucose) after

meal ingestion was lower when BR was consumed than

when WR was consumed (253 (SD 140) v. 346 (SD 116) min £

mmol/l, P¼0·006), and the increase in insulin AUC

(DAUCinsulin) was also lower in participants consuming BR

than in those consuming WR (62 886 (SD 32 251) v. 95 580

(SD 55 310) min £ pmol/l, P¼0·044). The concentrations of

LDL, HDL and TAG were not different between the subjects con-

suming the different types of rice (Supplementary material 3,

available online), but that of NEFA, 240 min after meal ingestion,

was significantly lower in subjects ingesting BR. In subjects

without the metabolic syndrome, the concentrations of glucose,

insulin, NEFA, LDL-cholesterol or HDL-cholesterol and TAG,

DAUCglucose and DAUCinsulin were all comparable between

those consuming BR and those consuming WR.

Among subjects without the metabolic syndrome, the

degree of FMD of the brachial arterial diameter during reactive

hyperaemia was not different at 60, 120 and 240 min after

ingestion of BR or WR, when compared with baseline values

(Fig. 2). However, in subjects with the metabolic syndrome,

FMD values were decreased at 60 min after consuming WR

(P¼0·037 v. baseline) and returned to baseline values by

120 min. FMD values were not decreased after ingestion of

BR. In both the groups, NMD values did not change after

ingestion of either BR or WR.

Study 2: chronic effects

There were no statistical differences in the baseline character-

istics between the subjects in the two groups (Table 2). Subject

adherence to the diets and post-meal satiety scores were com-

parable between the different diets (Supplementary material 4,

available online). In the BR-WR group, body weight, BMI and

waist circumference were decreased by the end of the 8-week

BR diet period and returned to baseline values by the end of

the WR diet period. In the WR-BR group, body weight, BMI,

waist circumference and systolic blood pressure were com-

parable with the baseline values by the end of the 8-week

WR diet period, but waist circumference and systolic blood

pressure were lower at the end of the 8-week BR diet period.

As shown in Table 3, the homeostasis model assessment
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of insulin resistance (HOMA-IR) and total cholesterol and

LDL-cholesterol concentrations of the BR-WR group were

decreased at the end of the 8-week BR diet period and

returned to baseline values over the course of the WR diet

period. In the WR-BR group, values of all the variables were

comparable with those at baseline at the end of the WR diet

period, but the HOMA-IR and LDL-cholesterol levels

decreased over the course of the BR diet period. The concen-

trations of markers of radical oxygen species (isoprostane),

inflammation (hs-CRP) and incretin (active GLP-1) were all

comparable between the periods of BR or WR consumption

(Table 2). As shown in Fig. 3(a) and (b), body weight and

waist circumference were significantly lower than those at

baseline, after consumption of the BR diet in both the

groups. VFA was also significantly smaller following the BR

diet phase of the study than following the WR phase of the

study in both the groups; SFA remained comparable between

the phases of the study. We did not observe significant differ-

ences in FMD values in the BR-WR and WR-BR groups, but

could find a difference in the combined group, indicating a

sample size effect. As shown in Fig. 4, FMD values increased

significantly from baseline by the end of the BR diet phase

of the study, but returned to baseline values during the WR

diet phase. We determined Pearson’s correlation coefficient, r,

a measure of the strength and direction of the linear relation-

ship between metabolic variables and FMD at baseline, after

the 8-week BR diet period and after the 8-week WR diet

period. After the 8-week BR diet period, there was a signifi-

cant negative correlation with HOMA-IR (r 0·652, P¼0·016)

and a borderline correlation with VFA (r 0·387, P¼0·062),

but not with other metabolic parameters including waist cir-

cumference, BMI, insulin levels at 0–120 min, glucose levels

at 0–120 min and lipid parameters. NMD values remained

comparable with the baseline values throughout the study.

Discussion

The present study revealed that a single daily meal that

included BR, when compared with that consisting of WR,

resulted in decreased postprandial concentrations of insulin

and glucose and prevented postprandial endothelial dys-

function in subjects with the metabolic syndrome. It also

revealed that switching the staple food of subjects with the

metabolic syndrome from WR to BR led to a decrease in

body weight, systolic blood pressure, HOMA-IR, and total

cholesterol and LDL-cholesterol levels and improved the

endothelial function.

Acute effects

In the present study, the DAUCglucose and DAUCinsulin after

ingestion of the 1883 kJ (450 kcal) meal were lower in subjects

with the metabolic syndrome who consumed BR than in those

who consumed WR (Fig. 1). Glycaemic index (GI) is defined

as the response to 50 g available carbohydrates from a food

in relation to 50 g available carbohydrates from a control

food, i.e. it is a relative measure of the glycaemic response

to available carbohydrates in a food(2). The high content of

viscous fibre and various enzymatic inhibitors are believed

to slow the digestion and absorption of whole grains such

as BR, compared with refined grains such as WR, and, there-

fore, elicit smaller postprandial glucose responses and a

reduced insulin demand(25). Although GI vary in types of

rice(3), there is a difference between BR and WR belonging

Table 1. General characteristics of study 1 subjects

(Mean values and standard deviations)

Metabolic syndrome– Metabolic syndromeþ

Parameters Mean SD Mean SD

n 5 6
Age (years) 45 4 41 5
Body weight (kg) 67·4 6·1 79·2* 17·6
BMI (kg/m2) 23·1 1·7 28·1* 4·3
Waist circumference (cm) 81·3 7·5 93·8* 9·6
Systolic blood pressure (mmHg) 124 14 141* 10
Diastolic blood pressure (mmHg) 82 6 89* 6
Pulse (beats/min) 60 4 75 14
Glucose (mmol/l) 5·9 1·4 6·1 1·4
Insulin (pmol/l) 39 14 87* 37
HOMA-IR 1·43 0·51 3·48* 1·29
HbA1c (NGSP %) 5·58 0·68 6·15 1·76
Total cholesterol (mmol/l) 5·34 0·64 5·42 0·86
LDL-cholesterol (mmol/l) 3·55 0·24 3·27 0·62
HDL-cholesterol (mmol/l) 1·37 0·13 1·26 0·27
TAG (mmol/l) 1·41 0·62 2·48* 0·70
NEFA (mmol/l) 0·196 0·136 0·248 0·133
AST (IU/l) 23 6 31 12
ALT (IU/l) 30 12 49 30
g-GTP (IU/l) 34 25 80* 46

HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, glycosylated Hb; NGSP, National Glycohemoglobin
Standardization Program; AST, aspartate aminotransferase; ALT, alanine aminotransferase; g-GTP, g-glutamyl transpeptidase.

* Mean value was significantly different from that of the subjects without the metabolic syndrome (P,0·05).
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to the same type of rice. It has been reported that in the

Japonica rice variety that we used, GI was significantly

lower in BR than in WR (61·5 (SD 4·7) v. 75·9 (SD 6·6),

P,0·05) when compared with a control 25 % weight/volume

glucose solution(26). Notably, the effects of BR on postprandial

glucose and insulin levels were observed only in subjects

with the metabolic syndrome. A cross-over study involving

overweight subjects has reported that their insulin sensitivity

improved after being on a whole-grain diet for 6 weeks,

as opposed to a refined-grain diet, independent of body

weight(27). Although BR has not been conclusively demon-

strated to improve postprandial insulin action after consump-

tion of a single meal, the observed decrease in postprandial

NEFA levels in subjects with the metabolic syndrome may

support this notion.

FMD, as assessed in the present study, mimics the NO-

mediated vasodilation produced by increased blood flow

after a period of ischaemia. Non-endothelium-dependent

dilation is useful in the measurement of the arterial changes

induced by the administration of a sublingual dose of

nitroglycerine, which predominantly reflects the smooth

muscle response(20). In subjects with the metabolic syndrome,

FMD values of the brachial arterial diameter were decreased at

60 min after consumption of WR (P¼0·037 v. baseline). Since

NMD values did not change after WR ingestion, this change is

largely due to postprandial endothelial dysfunction and not

due to smooth muscle cell dysfunction. We(13) and others(12)

have reported that patients with type 2 diabetes mellitus or

impaired glucose tolerance and endothelial function, but not

with impaired smooth muscle cell function, have worse endo-

thelial function after meal consumption. The endothelial

function in subjects with the metabolic syndrome may be

impaired, to some degree, by hyperglycaemia and a conse-

quent increase in reactive oxygen species levels(14). We had

previously reported that a reduction in postprandial blood

glucose levels by a-glycosidase inhibitor, which delays

glucose release from complex carbohydrates, improves post-

prandial endothelial function in type 2 diabetes mellitus

patients(28). Although the exact mechanisms of the beneficial

effects of BR on postprandial endothelial function are

unknown, part of the BR protective function may result from

the inhibition of postprandial glucose increase after consump-

tion of a single meal.
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Fig. 1. Changes in biochemical parameters before and after ingestion of a

meal with either brown rice (BR, ) or white rice (WR, ). On two mornings,

participants with (BMI $25 kg/m2) or without obesity (BMI ,25 kg/m2)

ingested either a 1883 kJ (450 kcal) meal, including an 837 kJ (200 kcal) meal

of either BR or WR. Before and 60, 120 and 240 min after ingestion, blood

samples were collected. The concentrations of glucose, insulin and NEFA

are shown. For the concentrations of LDL-cholesterol, HDL-cholesterol and

TAG, see Supplementary material 3 (available online). Values are means,

with standard deviations represented by vertical bars. * Mean value was

significantly different from that at baseline (P,0·05).
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Fig. 2. Changes in forearm flow-mediated dilation (FMD) and nitroglycerine-

mediated dilation (NMD) values before and after ingestion of a meal with

either brown rice (BR, ) or white rice (WR, ). On two separate mornings,

participants with (BMI $25 kg/m2) or without obesity (BMI ,25 kg/m2)

ingested a 1882·8 kJ (450 kcal) meal, including an 836·8 kJ (200 kcal) meal

of either BR or WR. Before and 60, 120 and 240 min after ingestion, FMD

and NMD were measured using a novel vascular ultrasound system

equipped with an edge-tracking system for two-dimensional imaging and

automatic measurement. FMD and NMD values were calculated as follows:

FMD or NMD value (%) ¼ (maximum diameter 2 diameter at rest) £ 100/

diameter at rest. Values are means, with standard deviations represented by

vertical bars. * Mean value was significantly different from that at baseline

(P,0·05).
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Chronic effects

Metabolic parameters. A few trials have examined the differ-

ential effects of whole and refined grains on body weight and

weight changes. A 16-week clinical trial in Korean men with

CHD has shown that the isoenergetic replacement of WR

with whole grains and legume powder leads to significant

reductions in serum glucose and insulin concentrations,

whereas the body weight remains unchanged(29). A study on

Chinese type 2 diabetes mellitus patients has found that sub-

stituting BR with WR for 16 weeks did not substantially

affect the concentrations of metabolic markers, although

HDL-cholesterol levels and diastolic blood pressure were

improved(30). In the present study, switching the staple food

of the subjects to BR resulted in a significant decrease in

body weight, BMI and waist circumference in those with the

metabolic syndrome. There is a discrepancy between previous

reports(29,30) and the present one with regard to the effects of

whole and refined grains on body weights, which may have

been the result of differences in the study subjects. The ben-

eficial effect of BR on body weight has been confirmed by a

reduction in VFA, measured by abdominal computed tomogra-

phy. Thus, changes in VFA (DVFA%) were significantly lower

after 8 weeks of BR consumption than after a comparable

period of WR consumption among subjects in both the BR-

WR and WR-BR groups; however, changes in SFA (DSFA%)

were comparable among the subjects, regardless of the

staple food included in their diets. Previously, an analysis of

fat distribution by computed tomography has demonstrated

that visceral fat is decreased to a greater extent as a result

of a low-energy diet than abdominal subcutaneous fat,

particularly in subjects with visceral fat obesity(31). These

observations suggest that subjects with visceral fat obesity

might be more susceptible to body weight reductions resulting

from a diet including whole grains, including BR.

There are three potential mechanisms by which BR

decreases body weight and visceral fat in subjects with the

metabolic syndrome. First, the lowered postprandial glucose

and insulin levels associated with BR intake may lead to

weight loss. Indirect evidence from both epidemiological

and short-term experimental studies suggests the potential

role of a high-GI diet, containing refined grains, in the

development of obesity(32,33). Alternatively, the low postpran-

dial glucose and insulin levels associated with high whole

grain intake may lead to weight loss, especially among over-

weight or obese individuals(34). Reductions in postprandial

glucose and insulin levels by an a-glycosidase inhibitor, migli-

tol, have been shown to be associated with reductions in body

weight, waist circumference and VFA in subjects with the

metabolic syndrome(35). Together, the lower postprandial glu-

cose and insulin levels associated with BR intake may lead to

weight loss in subjects with the metabolic syndrome. Second,

alterations in hunger and/or increased satiety after BR con-

sumption may lead to voluntary energy intake reductions.

The consumption of low-GI foods has been reported to be

directly associated with reductions in subsequent hunger

and/or increased satiety, leading to low energy intake(36).

Although most of these trials were conducted over only a

single meal or a single day, they collectively suggest that

long-term consumption of whole-grain products may increase

satiety and reduce energy consumption. Thus, a whole grain-

containing diet may contribute to weight loss, especially in

sedentary and overweight subjects. Epidemiological studies

on dietary fibre consumption have also suggested that intake

of whole grains is inversely associated with body weight

and fat distribution(32,37). The inherent high fibre content of

whole-grain foods may help prevent weight gain by increasing

appetite control through delayed carbohydrate absorption(38).

The correlation between dietary fibre and GI is modest,

suggesting that other factors are important in determining

the glycaemic effects of foods(38). In the present study, the

satiety scores recorded after consumption of meals with

either BR or WR were comparable (Supplementary material 4,

available online). The effects of BR on eating behaviour

cannot be ruled out because the assessment of appetite and

eating behaviour in humans is complicated and difficult(36).

The association between hunger and/or satiety and alteration

of metabolic parameters should be evaluated in future studies.

Third, microgradients, which are removed along with the

outer bran by refining, may affect eating behaviour and insulin

sensitisation independently by lowering the GI. Whole grains,

including BR, are generally low in saturated fat and high

in microgradients that might be associated with improved

insulin sensitivity in metabolic derangement(4–6). Since the

Table 2. General characteristics of study 2 subjects

(Mean values and standard deviations)

BR-WR group (n 14) WR-BR group (n 13)

Baseline
8-week BR

phase
8-week WR

phase Baseline
8-week WR

phase
8-week BR

phase

Parameters Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Body weight (kg) 76·4 11·2 74·7* 10·6 76·6 10·8 76·8 15·4 77·2 15·6 76·4 16·1
BMI (kg/m2) 26·7 2·8 26·1* 2·7 26·1 2·7 26·7 4·2 26·9 4·3 26·6 4·5
Waist circumference (cm) 93·2 9·2 91·7* 8·8 91·5 8·8 92·1 9·3 92·3 11·0 90·3* 10·3
Systolic blood pressure (mmHg) 140 14 132* 11 139 21 141 13 140 16 134* 13
Diastolic blood pressure (mmHg) 84 11 86 9 88 12 85 8 89 9 88 8
Heart rate (beats/min) 66 8 70 8 70 7 72 10 73 9 75 12

BR, brown rice; WR, white rice.
* Mean value was significantly different from that at baseline (P,0·05).
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Table 3. Changes in blood biochemical parameters (study 2)

(Mean values and standard deviations)

BR-WR group (n 14) WR-BR group (n 13)

Baseline 8-week BR phase 8-week WR phase Baseline 8-week WR phase 8-week BR phase

Parameters Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Glucose (mmol/l)
0 6·2 1·1 6 1 6 0·9 6 1·1 6·7 2·6 6·2 2·3
30 9·5 2 9·3 1·8 9·1 1·9 9·0 1·9 10·4 3·5 10·0 3·4
60 9·9 2·9 10·6 2·9 9·6 3·2 10·6 3·7 11·6 4·9 11·1 5·6
120 8·3 3·5 8·5 2·7 8·4 2·7 9·0 3·6 9·9 5·4 9·3 5·6

Insulin (pmol/l)
0 62 35 59 25 62 26 58 22 82 53 77 47
30 554 475 443 361 562 527 449 298 491 369 506 322
60 547 437 547 295 495 282 583 375 665 460 567 238
120 352 217 487 352 520 324 463 225 476 271 360 152

HOMA-IR 2·89 1·40 2·23* 0·95 2·51 1·33 2·79 1·24 3·83 8·10 2·34† 1·75
HOMA-b 75 43 77 50 77 46 83 41 96 63 106 83
HbA1c (NGSP %) 5·74 0·55 5·72 0·45 5·9 1·55 5·78 0·81 5·83 1·43 6·19 1·55
Total cholesterol (mmol/l) 5·85 0·54 5·31* 0·40 5·66 0·72 5·67 0·68 5·27 0·61 5·56 0·54
LDL-cholesterol (mmol/l) 3·45 0·40 3·15* 0·35 3·37 0·56 3·48 0·52 3·28 0·48 3·41 0·59
HDL-cholesterol (mmol/l) 1·44 0·30 1·37 0·23 1·47 0·24 1·26 0·24 1·21 0·19 1·20 0·14
TAG (mmol/l) 2·05 1·07 1·69 0·65 1·74 0·65 1·95 0·90 1·65 0·58 1·42 0·50
NEFA (mmol/l) 0·13 0·08 0·11 0·05 0·15 0·14 0·09 0·04 0·13 0·19 0·12 0·12
AST (IU/l) 25 8 27 21 24 8 23 6 24 9 25 9
ALT (IU/l) 32 19 40 38 31 16 36 16 42 21 43 21
g-GTP (IU/l) 53 24 64 31 54 29 67 36 68 35 70 45
Uric acid (mg/l) 66·3 9·7 70·1 10·8 68·2 9·5 68 15·7 65·8 16·4 64·6 13·0
High-sensitivity CRP (mg/l) 0·9 0·4 1·1 0·9 0·8 0·5 1·1 0·4 2·3 1·6 1·3 0·9
GLP-1 (pmol/l) 2·17 0·41 2·41 0·79 2·29 0·49 2·80 0·14 3·26 1·55 3·81 2·12
Urinary 8-isoprostane (ng/ml) 112 25 132 90 109 47 148 84 164 93 112 42
Urinary albumin excretion (mg/g creatinine) 4·04 2·39 4·59 4·66 5·16 8·24 3·73 1·72 5·42 4·05 6·30 8·13

BR, brown rice; WR, white rice; HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, glycosylated Hb; NGSP, National Glycohemoglobin Standardization Program; AST, aspartate aminotransferase; ALT, alanine
transaminase; g-GTP, g-glutamyl transpeptidase; CRP, C-reactive protein; GLP-1, glucagon-like peptide-1.

* Mean value was significantly different from that at baseline (P,0·05).
† Mean value was significantly different from that of the 8-week WR phase.
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concentrations of markers of radical oxygen species (isopros-

tane), inflammation (hs-CRP) and incretin (active GLP-1) were

all comparable between the BR and WR diet groups in the

present study, other mechanisms must be involved in the

observed improvements in obesity and insulin sensitivity.

Recently, we have reported that BR and its component,

g-oryzanol, alter eating behaviour and fuel homeostasis in

mice(7). When mice were allowed free access to both a BR-

containing chow diet and a high-fat diet, they preferred the

chow diet to the high-fat diet. BR and g-oryzanol improve

high-fat diet-induced metabolic derangement and attenuate

the preference for dietary fat by decreasing hypothalamic

endoplasmic reticulum stress. The relevance of microgradi-

ents, such as g-oryzanol, to eating behaviour needs to be

validated in future human studies.

Endothelial function. As shown in Fig. 4, FMD values (%)

were increased from baseline after consumption of the BR diet

for 8 weeks, but returned to baseline values after consumption

of WR for a similar period of time. NMD values (%) were com-

parable with those at baseline after consumption of diets

containing either type of rice. Decreased FMD has been

reported to be associated with cardiovascular risk factors,

including obesity and the metabolic syndrome, and with the

estimated 10-year risk of CHD(20,21). Interventions to reduce

cardiovascular risk in adults have demonstrated a parallel

improvement in FMD(20,21). These observations led to the

postulation of three mechanisms by which BR may improve

FMD. First, the effects of BR on postprandial glucose and

insulin levels may be associated with improved endothelial

function(39), as suggested by the association of postprandial
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Fig. 3. Percentage changes in (a) body weight (DBW), (b) waist circumference (DWC), (c) visceral fat area (DVFA) and (d) subcutaneous fat area (DSFA) after

ingestion of a brown rice (BR) or a white rice (WR) diet in obese subjects. Obese participants (BMI $25 kg/m2) were randomised to either a diet including BR fol-

lowed by a diet including WR group (BR-WR, n 14) or a WR-containing diet followed by the one containing BR group (WR-BR, n 13). Before and after completion

of the first and second 8-week terms, blood and urine samples were collected, and abdominal fat computed tomography scans were taken. Values represent

percentage change from baseline values of each 8-week term. Values are means, with standard deviations represented by vertical bars. (a) Mean value was

significantly different from that at baseline following the consumption of the BR diet: P¼0·009, P¼0·045 (paired t test). (b) Mean value was significantly different

from that at baseline following the consumption of the BR diet: P¼0·032, P¼0·047 (paired t test). (c) Mean value was significantly different from that following the

consumption of the BR diet: P¼0·018, P¼0·003 (unpaired t test). Mean value was significantly different from that at baseline: *P,0·05, **P,0·01.
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Fig. 4. Changes in forearm flow-mediated dilation (FMD) and nitroglycerine-

mediated dilation (NMD) values after brown rice (BR) or white rice (WR) diet

consumption in obese subjects. Obese participants (BMI $25 kg/m2) were

randomised into either a group consuming a diet that included BR for an

8-week period, followed by consumption of a diet containing WR for a similar

period (BR-WR, n 14), or a group consuming the diet in the reverse order

(WR-BR, n 13). Before and after completion of each 8-week term, FMD and

NMD were measured using a novel vascular ultrasound system equipped

with an edge-tracking system for two-dimensional imaging and automatic

measurement. FMD and NMD values were calculated as follows: FMD or

NMD value (%) ¼ (maximum diameter 2 diameter at rest) £ 100/diameter at

rest. Values are means with minimum and maximum values, with standard

deviations represented by vertical bars. * Mean value was significantly

different from that at baseline (P,0·05; one-way ANOVA or paired t test).
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glucose levels with macrovascular complications(11,14).

Postprandial glucose elevation has also been suggested to

elicit endothelial dysfunction(12,13), a surrogate marker of

future cardiovascular events(12–15). Second, a reduction in

body weight and/or improved insulin sensitivity may be associ-

ated with improved endothelial function. After 8 weeks of

BR consumption, there was a significant negative correlation

with HOMA-IR and a borderline correlation with VFA. How-

ever, the effects of body weight reduction on endothelial

function have been inconclusive. FMD was not improved

with drug-induced weight loss in overweight adults(40),

whereas another study has shown increased FMD with the

use of a lipase inhibitor (orlistat) that prevents fat

absorption(41). In a double-blind, placebo-controlled study

investigating the effect of orlistat, Bergholm et al.(42) demon-

strated that the lowering of LDL-cholesterol levels, rather

than moderate weight loss, improved endothelial function

in obese subjects. The weight loss associated with a very

low-energy, 2-week diet has been reported to improve

endothelium-dependent vasodilation in obese, hypertensive

subjects(43). Moreover, dietary changes, combined with exer-

cise, have been found to elicit a multiplicative response,

and improvements in FMD appeared to be independent of

improvements in glucose tolerance(44). The attenuation of

insulin resistance, rather than changes in carbohydrate toler-

ance, might be more important in affecting improvement in

endothelial function(45). Third, a reduction in LDL-cholesterol

levels and blood pressure may directly affect endothelial

function. The concentrations of markers of radical oxygen

species (isoprostane), inflammation (hs-CRP) and incretin

(active GLP-1) were unchanged, but LDL-cholesterol levels

and systolic blood pressure were improved by BR ingestion.

As has been discussed above, the underlying mecha-

nism(s) by which BR improves endothelial function may

be multiactorial. Further studies are required to confirm our

observations and clarify the mechanism(s) underlying endo-

thelial function improvement. An inverse relationship between

the intake of whole grains and the risk of IHD has been

reported by large cohort studies(9,10). If the above-mentioned

beneficial effects of BR on endothelium are elicited in a

clinical setting, then BR may provide protection against

atherosclerotic cardiovascular events, in part, by improving

endothelial function.

Limitations

The present study has several limitations. First, the number of

patients was too small for any definite conclusions to be

drawn, especially in study 1. Second, the study could not

determine a causal relationship between BR consumption

and endothelial function or weight loss. Third, the present

study includes potential confounding factors that may have

affected the observed effects of daily BR or WR consumption.

This was because it was not possible to closely and individu-

ally match side foods, based on macronutrient composition

and palatability, among the study subjects. Lastly, the assess-

ments of hunger and satiety were not precise. Although the

duration of satiety might be prolonged by BR, changes in

eating behaviour, manifest by hunger and satiety, could not

be quantified or characterised.

Conclusion

The results of the present study suggest that BR could be

beneficial, partly through lowering of the postprandial glycae-

mic response, and may provide a measure of protection to

postprandial endothelial function in subjects with the

metabolic syndrome. Long-term benefits of BR on metabolic

parameters and endothelial function were also observed.

Future studies with larger cohort sizes and longer durations

of follow-up are warranted to examine the effects of substitut-

ing BR with WR on metabolic risk for future cardiovascular

events.
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