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Boundary Structure of Hyperbolic
3-Manifolds Admitting Annular and
Toroidal Fillings at Large Distance

Sangyop Lee and Masakazu Teragaito

Abstract. For a hyperbolic 3-manifold M with a torus boundary component, all but finitely many

Dehn fillings yield hyperbolic 3-manifolds. In this paper, we will focus on the situation where M has

two exceptional Dehn fillings: an annular filling and a toroidal filling. For such a situation, Gordon

gave an upper bound of 5 for the distance between such slopes. Furthermore, the distance 4 is realized

only by two specific manifolds, and 5 is realized by a single manifold. These manifolds all have a union

of two tori as their boundaries. Also, there is a manifold with three tori as its boundary which realizes

the distance 3. We show that if the distance is 3 then the boundary of the manifold consists of at most

three tori.

1 Introduction

Let M be a hyperbolic 3-manifold with a torus boundary component T0 in the sense

that M with its boundary tori removed has a complete hyperbolic structure with

totally geodesic boundary. For a slope γ on T0, M(γ) denotes the manifold obtained

by γ-Dehn filling on M. That is, M(γ) = M∪Vγ , where Vγ is a solid torus glued to M

along T0 in such a way that γ bounds a disk in Vγ . A 3-manifold is said to be annular

(resp. toroidal) if it contains an essential annulus (resp. torus). Suppose that M(α)

is annular and M(β) is toroidal for slopes α and β on T0. Gordon [2] showed that

∆(α, β) ≤ 5, where ∆(α, β) denotes the distance between two slopes, which is their

minimal geometric intersection number. Furthermore, Gordon and Wu [6] showed

that the distance 5 is realized by a single manifold and the distance 4 is realized by

two specific manifolds. These manifolds are the exteriors of the Whitehead sister

(or (−2, 3, 8)-pretzel) link, the Whitehead link and the 2-bridge link corresponding

to 3/10, using Conway’s notation, in the 3-sphere S3. Following Gordon [3], let us

define

∆
k(A, T) = max{∆(α, β) : there is a hyperbolic 3-manifold M such that ∂M is a

disjoint union of k tori, and α, β are slopes on some component

of ∂M such that M(α) is annular and M(β) is toroidal}

for k ≥ 2. (For other types X,Y ∈ {S, D, A, T}, ∆k(X,Y ) is defined similarly, but we

do not need it.) Thus ∆
2(A, T) = 5. Also, there are infinitely many hyperbolic man-

ifolds realizing the distance three [6]. Among them, there is a hyperbolic 3-manifold,
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Boundary Structure of 3-Manifolds 165

called the magic manifold, which is the exterior of a certain 3-component link in S3.

Hence ∆
3(A, T) = 3. Gordon [3] gave an example showing ∆

k(A, T) ≥ 2 for any

k ≥ 4. Thus ∆
k(A, T) = 2 or 3 for k ≥ 4. The purpose of this paper is to determine

this value.

Theorem 1.1 Let M be a hyperbolic 3-manifold with a torus boundary component T0

and suppose that there are two slopes α, β on T0 such that M(α) is annular and M(β)

is toroidal. If ∆(α, β) = 3, then ∂M is a union of at most three tori. In particular,

∆
k(A, T) = 2 for any k ≥ 4.

This gives a partial answer to [3, Question 5.3].

In Section 2, we prepare the basic facts about labelled graphs. In particular, the

key is Lemma 2.4 which claims that neither graph contains both a black Scharlemann

cycle and a white Scharlemann cycle. Section 3 is devoted to a special case where one

graph has a single vertex, and Section 4 deals with the case where the graph on the

annulus has two vertices. Section 5 deals with the generic case. To prove Theorem 1.1,

we need to consider the situation that M(β) contains a Klein bottle. This case is

treated in Sections 6 and 7.

2 Preliminaries

An annulus or torus is essential if it is incompressible, boundary-incompressible and

is not boundary-parallel. For two slopes α and β on T0, we suppose that M(α) is an-

nular and M(β) is toroidal. That is, M(α) (resp. M(β)) contains an essential annulus

(resp. torus).

To prove Theorem 1.1, we assume, by way of contradiction, from now on, that

∆(α, β) = 3 and ∂M is not a union of at most three tori.

Lemma 2.1 M(α) and M(β) are irreducible and boundary-irreducible.

Proof Since M is large in the sense of [14], M(α) and M(β) are irreducible by [14,

Theorems 4.1 and 5.1]. Boundary-irreducibility follows from [5, 7].

Let Ŝ be an essential annulus in M(α). For a core Kα of the attached solid torus

Vα, we can assume that Ŝ meets Kα transversely. Then Ŝ ∩ Vα is a disjoint union of

meridian disks of Vα, u1, u2, . . . , us, numbered successively along Vα, and s can be

chosen to be minimal among all essential annuli. Similarly, we consider an essential

torus T̂ in M(β), meeting a core Kβ of Vβ transversely. Then T̂ ∩ Vβ is a union of

meridian disks v1, v2, . . . , vt , and t is chosen to be minimal. Let S = Ŝ ∩ M and

T = T̂ ∩ M. We can assume that no circle component in S ∩ T bounds a disk in S or

T, since both surfaces are incompressible.

In the usual way [1,2,6], the arc components of S∩T define labelled graphs GS on

Ŝ and GT on T̂. The vertices of GS (resp. GT) are u1, u2, . . . , us (resp. v1, v2, . . . , vt ).

For an edge of GS, if its endpoint lies in ∂ui ∩ ∂v j , then the point is labelled j at ui .

Thus the sequence of labels 1, 2, . . . , t is repeated three times around each ui , and

so ui has degree 3t . Similarly, the edges of GT are labeled, and the sequence 1, 2, . . . , s
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appears three times around v j . An edge with label i at one of its endpoints is called

an i-edge. Also, an edge with labels i and j is called a {i, j}-edge. An edge is said

to be level if its endpoints have the same label. Notice that there is a one-to-one

correspondence between the edges of GS and GT , and that neither graph contains a

trivial loop, which bounds a 1-sided disk face. Throughout the paper, two graphs on

a surface are considered to be equivalent if there is a homeomorphism of the surface

sending one graph to the other.

Each vertex of GS is given a sign, according to the sign of the intersection point

of Kα with Ŝ with respect to some chosen orientations of M, Ŝ and Kα. Similarly,

we give a sign to each vertex of GT . Two vertices are parallel if they have the same

sign, otherwise they are antiparallel. An edge is positive if it connects parallel vertices.

Otherwise, it is negative. In particular, a loop is positive. A point at a vertex is called

a positive edge endpoint if there is a positive edge incident to it. Otherwise, it is a

negative edge endpoint.

For a graph G = GS or GT , let G+ denote the subgraph consisting of all vertices

and all positive edges of G. Also, let G+
x be the subgraph of G+ consisting of all vertices

and all x-edges of G+ for a label x. A disk face of G+
x is called an x-face. The reduced

graph G of G is obtained from G by amalgamating each family of mutually parallel

edges into a single edge.

A cycle σ consisting of positive edges is a Scharlemann cycle if it bounds a disk face

of the graph, and all the edges in σ have the same pair of labels {i, i + 1} at their

endpoints, called the label pair of σ. The length of σ is the number of edges in σ. In

particular, a Scharlemann cycle of length two is called an S-cycle. If σ is surrounded

by a cycle τ , that is, each edge of τ is immediately parallel to an edge of σ, then τ is

called an extended Scharlemann cycle (see [4]).

Lemma 2.2

(i) There are no two edges which are parallel in both graphs.

(ii) The parity rule: An edge is positive in one graph if and only if it is negative in the

other.

(iii) The edges of a Scharlemann cycle in GS (resp. GT) do not lie in a disk in T̂ (resp. Ŝ).

(iv) If GS (resp. GT) contains a Scharlemann cycle, then T̂ (resp. Ŝ) is separating, and

so t (resp. s) is even.

(v) If t > 2 (resp. s > 2), then GS (resp. GT) cannot contain an extended Scharlemann

cycle.

Proof (i) This is [2, Lemma 2.1]. See also [6, Lemma 2.2]. (ii) can be found in

[1, p. 279]. (iii) and (iv) are [6, Lemma 2.2]. (v) For GS, this is [4, Theorem 3.2]. For

GT , we refer to [11]. We remark that only extended S-cycles are considered in [6,14].

Theorem 2.3 M(β) does not contain a Klein bottle meeting a core Kβ of Vβ in at most

t/2 points.

Theorem 2.3 will be proved in Sections 6 and 7.
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If GS contains a Scharlemann cycle, M(β) is split into two pieces B and W along T̂.

We call them the black side and the white side of T̂, respectively. Also, a disk face of GS

is said to be black or white, according as it lies in B or W. In particular, a Scharlemann

cycle whose disk face is black (white) is called a black (white) Scharlemann cycle. This

is similar for GT .

For the remainder of the section, let Hi,i+1 be that part of Vβ between vi and vi+1.

Lemma 2.4 Neither graph contains a black Scharlemann cycle and a white Scharle-

mann cycle simultaneously.

Proof Assume that GS contains a black Scharlemann cycle σ1 and a white Scharle-

mann cycle σ2. Let Di be the disk face bounded by σi , and {ki , ki + 1} be the label

pair of σi . Let X = N(T̂ ∪ Hk1,k1+1 ∪ Hk2,k2+1 ∪ D1 ∪ D2). Then ∂X consists of two

tori T1 and T2, each of which intersects Kβ fewer than t times. By the minimality of

T̂, each Ti is boundary-parallel or bounds a solid torus in M(β). Thus ∂M consists

of at most three tori, contradicting our assumption.

A similar construction works for GT . By using the disk faces bounded by a black

Scharlemann cycle and a white Scharlemann cycle in GT , we obtain two annuli S1

and S2, each of which intersects Kα fewer than s times. By the minimality of Ŝ, each Si

is boundary parallel. Hence ∂M is a union of two tori, a contradiction.

Lemma 2.5 GS satisfies the following.

(i) There are no two S-cycles with disjoint label pairs.

(ii) Any family of mutually parallel positive edges in GS contains at most t/2 + 1 edges.

If T̂ is non-separating, then it contains at most t/2 edges.

(iii) Either any family of mutually parallel negative edges in GS contains at most t edges,

or all vertices of GT are parallel.

Proof (i) Let σ1 and σ2 be S-cycles with disjoint label pairs. Let {ki , ki + 1} be the

label pair of σi , and let Di be the face bounded by σi , i = 1, 2. Shrinking Hki ,ki +1

to its core in Hki ,ki +1 ∪ Di gives a Möbius band Bi whose boundary is essential on

T̂, by Lemma 2.2(iii). By ∂B1 and ∂B2, T̂ is split into two annuli A1 and A2. If Ai

contains ai vertices in its interior, then the Klein bottle Fi = B1 ∪ Ai ∪ B2 meets Kβ

in ai + 2 points. The torus ∂N(Fi) is incompressible by the irreducibility of M(β).

If it is boundary parallel in M(β), then M(β) = N(Fi) is not toroidal. Hence this

torus is essential, and so 2(ai + 2) ≥ t , giving ai ≥ t/2 − 2. Since a1 + a2 = t − 4,

a1 = a2 = t/2 − 2. But this contradicts Theorem 2.3.

(ii) If t > 2, then such a family contains at most t/2 + 2 edges by [13, Lemma 1.4],

and moreover, if it contains t/2 + 2 edges, then it contains two S-cycles with disjoint

label pairs, which contradicts (i). If t = 2, then three parallel edges contain a black

S-cycle and a white S-cycle, contradicting Lemma 2.4. When t = 1, GT contains only

positive edges, and so GS has no positive edges by the parity rule.

If a family of parallel positive edges contains more than t/2 edges, then the family

contains an S-cycle. The second claim follows immediately from Lemma 2.2(iv).
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(iii) See [6, Lemma 2.3] for t > 2. Assume t = 2 and that the two vertices

of GT are antiparallel. Suppose that GS has three mutually parallel negative edges

e1, e2, e3, numbered successively. Then all are level by the parity rule. Hence we

can assume that e1 and e3 have label 1. Since two loops at each vertex of GT are

parallel (see [2, Lemma 5.2]), e1 and e3 correspond to parallel loops at v1 in GT . This

contradicts Lemma 2.2(i).

Lemma 2.6 GT satisfies the following.

(i) If s > 2, then any family of mutually parallel positive edges in GT contains at most

s/2 + 1 edges. If Ŝ is non-separating, then it contains at most s/2 edges.

(ii) Any family of mutually parallel negative edges in GT contains at most s edges.

(iii) All Scharlemann cycles in GT have the same label pair.

Proof These are [6, Lemma 2.5].

Lemma 2.7 GS satisfies the following.

(i) At most two labels can be labels of S-cycles.

(ii) At most four labels can be labels of Scharlemann cycles.

Proof (i) If there are three labels of S-cycles, then there are two S-cycles with dis-

joint label pairs and with the same color by Lemma 2.4. This is impossible, by

Lemma 2.5(i).

(ii) If not, GS has three Scharlemann cycles σ1, σ2, σ3 with mutually disjoint label

pairs and with the same color Lemma 2.4. Let Di be the face bounded by σi , and

let {ki , ki + 1} be the label pair of σi . We can assume that Di ⊂ B. On T̂, there

are mutually disjoint annuli Ai which contain the edges of σi , respectively. Define

Mi = N(Ai ∪ Hki ,ki +1 ∪ Di) ⊂ B. Let Bi = cl (∂Mi − Ai). Then a new torus

Ti = (T̂−Ai)∪Bi meets Kβ fewer than t times. Hence Ti is compressible or boundary

parallel. If one of Ti is compressible, the argument in the proof of [4, Theorem 3.5]

without any change gives a contradiction. Thus any Ti is boundary parallel. Let

Z1 = cl (B − M1). Then Z1 = T2 × I. Since M2 ⊂ Z1, M2 is a solid torus, and

moreover, B2 is parallel to A2 through M2. This contradicts [4, Claim 3.6].

If GS contains a Scharlemann cycle with label i, then i is called an S-label. Other-

wise, i is called a non-S-label.

Lemma 2.8 Let t ≥ 3. Any x-face in GS has at least four sides for a non-S-label x.

Proof Assume not. By Lemmas 2.2(v) and 2.5(ii), GS cannot contain a two-sided

x-face. Let D be a 3-sided x-face in GS. By [8, Proposition 5.1], D contains a Scharle-

mann cycle. Since GS cannot contain an extended Scharlemann cycle by Lemma

2.2(v), D contains an S-cycle. By using Lemma 2.7(1), the proof of [4, Lemma 5.1]

shows that D contains an S-cycle with face f , and the bigon g1 and the 3-gon g2 ad-

jacent to f have only two kinds of corners. See [4, Figure 5.4]. For convenience, we

assume that f has two (1, 2)-corners, and gi has (t, 1)- and (2, 3)-corners. Let Ai,i+1
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be the annulus in ∂Vβ between vi and vi+1. Then (T̂−Int(vt∪v1∪v2∪v3))∪(At,1∪A2,3)

is a genus three closed surface, on which ∂g1 and ∂g2 are homologically independent.

(This means that the genus three closed surface will be compressed to a torus along

g1 and g2.) Hence N(T̂∪H∪ f ∪g1∪g2) has two torus boundary components, where

H is the part of Vβ between vt and v3, containing v1. Since each torus meets Kβ fewer

than t times, they are inessential in M(β). Then M is bounded by at most three tori

as in the proof of Lemma 2.4, a contradiction.

3 The Case Where One Graph Has a Single Vertex

In this section, we treat the case where s = 1 or t = 1.

Lemma 3.1 s 6= 1.

Proof Assume s = 1. Since the vertex u1 of GS has degree 3t , t must be even. Also,

all edges of GS are positive and parallel. If t > 2, then 3t/2 ≤ t/2 + 1, giving t ≤ 1, a

contradiction. Hence t = 2. But then GS contains a black S-cycle and a white S-cycle,

which contradicts Lemma 2.4.

Lemma 3.2 If t = 1, then s = 2.

Proof Assume t = 1 and s ≥ 3. There are 3s/2 edges (so s is even) in GT , which are

divided into at most three families of mutually parallel edges (see [2, Lemma 5.1]).

Since each family contains at most s/2 + 1 edges by Lemma 2.6(1), GT has at least two

families. If there are only two families, then 4(s/2 + 1) ≥ 3s gives s ≤ 4. Hence s = 4.

Then GT consists of two families of three mutually parallel edges. By examining the

labels, this contradicts the parity rule. Therefore, GT contains three families.

We write GT = H(q1, q2, q3) when each family contains q1, q2, q3 edges, respec-

tively. Note that H(q1, q2, q3) is invariant under any permutation of the qi ’s. If

qi ≤ s/2 for each i, then 6 · s/2 ≥ 2(q1 + q2 + q3) = 3s gives q1 = q2 = q3 = s/2, and

so GT = H(s/2, s/2, s/2). It is easy to see that GT contains an extended Scharlemann

cycle of length three, which is impossible by Lemma 2.2(v). Hence we may assume

q1 = s/2 + 1. Let Qi denote the family of parallel edges containing qi edges. Then

Q1 contains an S-cycle at one end (see [13, Lemma 1.4]). By examining the labels,

q2 +q3 ≡ 0 (mod s) and q2 +q3 ≡ s−2 (mod s). This implies s = 2, a contradiction.

Lemma 3.3 t 6= 1.

Proof Assume t = 1. By Lemma 3.2, s = 2. Then GT is H(3, 0, 0), H(2, 1, 0), or

H(1, 1, 1). If GT is H(3, 0, 0) or H(1, 1, 1), then GT contains a black Scharlemann

cycle and a white Scharlemann cycle, contradicting Lemma 2.4. Clearly, H(2, 1, 0)

contradicts the parity rule.
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4 The Case s = 2

In this section, we consider the case where s = 2 and t ≥ 2. Then the reduced graph

GS of GS is a subgraph of the graph shown in Figure 1. Notice that u1 and u2 are

incident to the same number of loops in GS. We write GS = G(p0, p1, p2) when ui

is incident to p0 loops, and the other two families of parallel edges contain p1 and

p2 edges, respectively. Clearly, G(p0, p1, p2) is equivalent to G(p0, p2, p1). We divide

the argument into two cases.

4.1 When the Two Vertices of GS Are Parallel

Lemma 4.1 t > 2.

Proof Assume t = 2. Then pi ≤ 2 for any i by Lemma 2.5(ii), and so GS is

G(2, 2, 0), G(2, 1, 1), or G(1, 2, 2). In any case, GS contains a black Scharlemann

cycle and a white Scharlemann cycle, since any disk face is a Scharlemann cycle. This

contradicts Lemma 2.4.

Lemma 4.2 T̂ is separating and t = 4.

Proof Since 3t = 2p0 + p1 + p2, pi > t/2 for some i. Thus GS contains an S-cycle,

and so T̂ is separating and t is even by Lemma 2.2(iv). Hence we have t ≥ 4. Notice

that pi ≤ t/2 + 1 for any i by Lemma 2.5(ii). Hence 3t ≤ 4(t/2 + 1) = 2t + 4, giving

t ≤ 4.

Proposition 4.3 The two vertices of GS cannot be parallel.

Proof Since pi ≤ 3 for any i by Lemma 2.5(ii), GS = G(3, 3, 3). Once we fix the

labeling around u1, by the parity rule there are only two possibilities for the labeling

around u2. In any case, GS contains a black Scharlemann cycle and a white Scharle-

mann cycle, a contradiction.
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4.2 When the Two Vertices of GS Are Antiparallel

Lemma 4.4 p0 6= 0.

Proof If p0 = 0, then all edges of GS connect u1 with u2. Hence all edges of GT are

positive by the parity rule. Notice that any disk face of GT is a Scharlemann cycle.

Since GT has 3t edges, it contains at least 2t disk faces. If these disk faces have the

same color, then GT has at least 4t edges, a contradiction. Thus GT contains a black

Scharlemann cycle and a white Scharlemann cycle, contradicting Lemma 2.4.

Lemma 4.5 GS equals G(t/2, t, t), G(t/2 + 1, t, t − 2), or G(t/2 + 1, t − 1, t − 1).

Proof Since p0 6= 0, GS contains a positive edge, and not all the vertices of GT are

parallel. This implies pi ≤ t for i = 1, 2 by Lemma 2.5(iii). By 3t = 2p0 + p1 + p2 ≤
2p0 + 2t , p0 ≥ t/2. If p0 = t/2, then GS = G(t/2, t, t). If p0 > t/2, then GS contains

an S-cycle, and hence T̂ is separating and t is even. Thus p0 = t/2 + 1, and then the

conclusion follows immediately.

Lemma 4.6 GT cannot contain an S-cycle.

Proof Let σ be an S-cycle in GT whose disk face is f . The edges of σ form an

essential cycle in Ŝ by Lemma 2.2(iii). Let H be the part of Vα between u1 and u2

meeting ∂ f . Then shrinking H into its core in H ∪ f gives a Möbius band B ′ whose

boundary is an essential loop on Ŝ. The union of B ′ and an annulus in Ŝ between

∂B ′ and ∂S gives a Möbius band B̂ properly embedded in M(α) which meets Kα

in one point. Let X = N(B̂) and let W = M(α) − Int X. Then the frontier Q̂ of

X is an incompressible annulus. If Q̂ is boundary parallel, then M(α) has a single

torus as boundary, a contradiction. Hence Q̂ is essential. Let Q = Q̂ ∩ M, and let

A = ∂Vα ∩W . Then F = Q ∪ A is a twice-punctured torus.

Let B = B̂ ∩ M. If B is compressible in M, then let δ be a compressing disk for B.

Since ∂δ is orientation-preserving on B, it bounds a disk in B̂ or is parallel to ∂B̂. The

former implies that M contains a properly embedded Möbius band, contradicting

the hyperbolicity of M. The latter means that M(α) contains a projective plane, and

so M(α) is reducible, contradicting Lemma 2.1. Hence B is incompressible. Also,

if B is boundary compressible, then Kα can be isotoped to the core of B̂ by using

a boundary compressing disk. Then M contains an essential annulus. Hence B is

boundary incompressible.

We construct another graph pair {GB, GB
T} from B and T in the usual way. There

is no trivial loop in each graph. Note that GB has a single vertex, and GB
T consists of t

vertices of degree three and 3t/2 edges. In fact, the double cover of GB is a subgraph

of the graph shown in Figure 1. By an Euler characteristic calculation, GB
T contains a

disk face D ′. Let D = D ′∩W . Notice that ∂D is essential on F. For ∂D runs on Q and

A alternately, and ∂D ∩ Q consists of arcs as shown in Figure 1. Surgering F along D

gives either an annulus or a disjoint union of an annulus and a torus, according as ∂D

is non-separating or separating on F. In any case, the resulting surface is disjoint from

Kα. Hence the annulus component is boundary parallel, and the torus component,

https://doi.org/10.4153/CJM-2008-007-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-007-6


172 S. Lee and M. Teragaito

1

1

3

2

4

2

G GS T

1 3

D

D

Figure 2

if it exists, is inessential. Thus M(α) is bounded by at most two tori, a contradiction.

Lemma 4.7 t = 2.

Proof Assume t > 2. By Lemma 4.5, there are three possibilities for GS by Lemma

4.5.

If GS = G(t/2, t, t), then GT has 2t positive edges by the parity rule. Hence G+
T

has at least t disk faces. Notice that such a disk face is also a face of GT , and so it

is bounded by a Scharlemann cycle. Hence we may assume that such disk faces are

all black by Lemma 2.4. Also, such a disk face has at least three sides by Lemma 4.6.

Thus there are at least 3t positive edges, a contradiction.

If GS = G(t/2 + 1, t, t − 2), then the same argument yields a contradiction, unless

t = 4. (Notice that p0 = t/2 + 1 implies that T̂ is separating and t is even, by

Lemma 2.2(iv).) Suppose t = 4 and GS = G(3, 4, 2). Let Q be the family of 4

negative edges in GS, and let σ be the associated permutation to Q. That is, each

edge of Q has label i at u1 and σ(i) at u2. If σ is the identity, then GS contains two

S-cycles with disjoint label pairs, which contradicts Lemma 2.5. Hence σ = (13)(24).

In this case, GT is uniquely determined. First, the edges of the two S-cycles with label

pair {3, 4} form essential cycles. The edges of Q form two essential cycles by Lemma

2.2(i). By examining labels, the two edges between v1 and v2 turn out to be parallel.

See Figure 2. Then GT has a Scharlemann cycle of length three with face D. Thus

M(α) is split into two pieces B and W along Ŝ. We may assume that D ⊂ B. Let

H = Vα ∩ B. Let X = N(Ŝ ∪ H ∪ D) ⊂ B. By the minimality of Ŝ, the annulus

cl(∂X − Ŝ) is boundary parallel. Thus ∂B is a torus. Let D ′ be the white face as

shown in Figure 2. Similarly, we can see that ∂W is a torus by using D ′. Thus M(α)

is bounded by a single torus, a contradiction.

If GS = G(t/2 + 1, t − 1, t − 1), then the two families of loops at u1 and u2 contain

S-cycles. Hence t is even. By examining labels, such an S-cycle is located at one
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end of each family. Then it is obvious that these two S-cycles have distinct colors,

contradicting Lemma 2.4.

By Lemma 4.7, GT has only two vertices. The reduced graph GT is a subgraph of

the graph shown in Figure 3 (see [2, Lemma 5.2]). We say GT = H ′(q0, q1, q2, q3, q4),

where qi denotes the number of edges in the corresponding family of parallel edges.

Note that

H ′(q0, q1, q2, q3, q4) ∼= H ′(q0, q3, q4, q1, q2) ∼= H ′(q0, q4, q3, q2, q1)

∼= H ′(q0, q2, q1, q4, q3).

Proposition 4.8 The two vertices of GS cannot be antiparallel.

Proof By Lemma 4.5, GS is G(1, 2, 2), G(2, 1, 1), or G(2, 2, 0).

If GS = G(1, 2, 2), then GT is H ′(2, 1, 1, 0, 0) or H ′(2, 2, 0, 0, 0). Then GT con-

tains an S-cycle, contradicting Lemma 4.6. If GS = G(2, 1, 1), then GS contains a

black Scharlemann cycle and a white Scharlemann cycle, contradicting Lemma 2.4.

Suppose GS = G(2, 2, 0). Then GS contains two S-cycles ρ1 and ρ2 of the same

color. Let fi be its face for i = 1, 2, and let A be the annulus part of ∂Vβ between v1

and v2, meeting fi . Notice that q0 = 1 and (q1 + q2, q3 + q4) is (3, 1), (2, 2), or (4, 0),

up to equivalence. By the parity rule, (3, 1) is impossible. Thus GT is H ′(1, 1, 1, 2, 0),

H ′(1, 2, 0, 2, 0), H ′(1, 1, 1, 1, 1), or H ′(1, 2, 2, 0, 0).

First, H ′(1, 1, 1, 2, 0) contradicts the parity rule. If GT = H ′(1, 2, 0, 2, 0), ∂ f1

and ∂ f2 cannot be located on T ∪ A simultaneously. Assume GT = H ′(1, 1, 1, 1, 1).

Then there are two disjoint rectangles R1 and R2 in A split by ∂ f1 ∪ ∂ f2 such that

fi ∪ Ri gives a Möbius band Bi . Thus we have two Möbius bands B1 and B2 whose

boundaries are disjoint on T̂. Hence M(β) contains a Klein bottle as a union of B1,

B2 and an annulus on T̂, meeting Kβ once. This contradicts Theorem 2.3. Finally,

assume GT = H ′(1, 2, 2, 0, 0). Then GT contains two 3-gons and two bigons. Let f

be any one of the 3-gons and g any one of the bigons. Let A ′ (resp. A ′ ′) be the part of

∂Vα between u1 and u2 meeting ∂ f (resp. ∂g). Then ∂ f is a non-separating curve on

the surface S∪A ′, so surgering S∪A ′ along f gives rise to a boundary parallel annulus
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in M(α). Thus Ŝ is separating in M(α). On the other hand, surgering S ∪ A ′ ′ along

g gives rise to a surface disjoint from Kα, which is an annulus or a disjoint union of

an annulus and a torus, according as ∂g is non-separating or separating on S ∪ A ′ ′.

As in the proof of Lemma 4.6, M(α) is bounded by at most two tori, a contradiction.

5 The Generic Case

Finally, we consider the case where s ≥ 3 and t ≥ 2. Since all Scharlemann cycles of

GT have the same label pair by Lemma 2.6(iii), we can assume that {1, 2} is the label

pair, if it exists. Then these labels are S-labels of GT , and the vertices u1 and u2 are

referred to as the S-vertices of GS.

Lemma 5.1 GT does not contain an x-face for a non-S-label x.

Proof This is Theorem 4.5 of [11].

Lemma 5.2 Any vertex of GS that is not an S-vertex has at least 2t positive edge end-

points.

Proof Assume that ui is not an S-vertex. If it has at least t + 1 negative edge end-

points, then GT has at least t + 1 positive i-edges. Let Γi be the subgraph of GT

consisting of all vertices and all positive i-edges of GT . Then an Euler character-

istic calculation shows that Γi has a disk face, which is an i-face. This contradicts

Lemma 5.1.

Lemma 5.3 An S-vertex of GS, if it exists, has at least t positive edge endpoints.

Proof Let u1 be an S-vertex. Suppose that u1 has k negative edge endpoints. Then

GT has k positive 1-edges. Hence GT has at least k − t 1-faces. Recall that each

1-face contains a Scharlemann cycle [8]. Thus there are at least k − t Scharlemann

cycles with label pair {1, 2}. Then there are at least 2(k− t) positive 1-edges, since all

Scharlemann cycles have the same color. We have 2(k− t) ≤ k, and so k ≤ 2t . Hence

u1 has at least t positive edge endpoints.

Let us consider G+
S , which consists of all vertices and all positive edges of GS. Let

Λ be a component of G+
S . If there is a disk D in Ŝ such that Λ ⊂ Int D, then Λ is

said to have a disk support. Otherwise, there is an annulus A in Ŝ, which is called an

annulus support, such that Λ ⊂ Int A. Clearly, the core of A is parallel to the core

of Ŝ. Furthermore, if Λ has a support F, which is a disk or an annulus, such that

F ∩ G+
S = Λ, then Λ is called an extremal component of G+

S . Clearly, if there is no

component of G+
S with a disk support, then any component of G+

S is an extremal one

with an annulus support.

Suppose that Λ is an extremal component with support F. A vertex u is a cut

vertex if Λ− u has at least two components. We remark that Λ may have loops. Also,
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u is called an interior vertex if there is no arc ξ in F connecting u to ∂F such that

ξ ∩ Λ = u. Otherwise, u is called a boundary vertex. Furthermore, an interior edge is

an edge which cannot admit an arc ξ connecting a middle point x of the edge to ∂F

such that ξ ∩ Λ = x. The others are boundary edges. When F is an annulus, a vertex

u is called a pinched vertex if there is a spanning arc ξ of F such that ξ ∩ Λ = u, and

a pinched edge is defined similarly. In particular, both endpoints of a pinched edge

are pinched vertices. Finally, u is said to be good if all positive edge endpoints at u are

successive. Thus, if u is neither a cut vertex nor a pinched vertex, then it is good.

A subgraph B of Λ is called a disk block of G+
S if B contains at most one cut vertex

of Λ and there is a disk D in Ŝ such that D ∩ G+
S = B and ∂D ∩ B is either empty or a

single vertex. We remark that a disk block is connected and that a disk block cannot

contain a loop which is essential in Ŝ, but it may contain a loop which is inessential

in Ŝ. If B has an S-vertex u, then u must appear as a boundary vertex of B, because

the edges of a Scharlemann cycle in GT do not lie in a disk in Ŝ by Lemma 2.2(iii).

5.1 The Case t = 2

To eliminate the case where t = 2, we prove three lemmas. Recall that any non-S-ver-

tex has at least four positive edge endpoints by Lemma 5.2, while any S-vertex has at

least two positive edge endpoints by Lemma 5.3.

Lemma 5.4 Any component of G+
S has an annulus support, and hence is extremal.

Proof If G+
S has a component with a disk support, then there is an extremal compo-

nent Λ with a disk support. By Lemmas 5.2 and 5.3, it contains at least two vertices.

One of the vertices is good and has at least four successive positive edge endpoints by

Lemma 5.2. Hence Λ has a black face and a white face, which contradicts Lemma 2.4,

because any disk face of G+
S is bounded by a Scharlemann cycle.

Therefore we have shown that any component of G+
S has an annulus support. Also,

this implies that any component is extremal.

Lemma 5.5 G+
S has at most two disk blocks, each of which consists of two vertices and

a pair of parallel edges. In particular, a non-cut vertex is an S-vertex.

Proof Let B be a disk block. If B has an interior edge, then there is a black face

and a white face, contradicting Lemma 2.4. Hence B has no interior edge. Thus B is

either a single edge or a cycle. However, the former is impossible by Lemmas 5.2 and

5.3. Hence B is a cycle. If the length of B is more than two, then there is a non-cut

vertex, which is not an S-vertex, contradicting Lemma 5.2. Hence B is length two,

and Lemma 5.2 implies that a non-cut vertex must be an S-vertex.

Since GS has at most two S-vertices, there are at most two disk blocks.

Lemma 5.6 Any component of G+
S containing a non-S-vertex is a cycle of bigons.
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Proof Let Λ be a component containing a non-S-vertex u. Recall that every face of

Λ is a disk bounded by a Scharlemann cycle. Hence Λ has no interior vertex.

First, assume that Λ has no cut vertex. Recall that any non-S-vertex has at least

four positive edge endpoints. Also, Λ has at most one S-vertex. If a non-S-vertex

is not pinched, then Λ has a black face and a white face. Hence any non-S-vertex is

pinched, and has degree 4. Thus Λ is either a cycle of bigons, or a cycle of bigons with

one bivalent vertex added, which is an S-vertex. See Figure 4.

Suppose that Λ contains a bivalent S-vertex u1, say. Then the configuration of

GS near u1 looks like Figure 5. Notice that u1 has four negative edges, so GT has at

least two 1-faces, which must be bigons bounded by S-cycles. Thus GT contains two

S-cycles. Let D be the disk face as shown there.

Since GS has an S-cycle, T̂ is separating in M(β), and so ∂Vβ is divided into two

annuli A1, A2, where A1 meets ∂D. Let T1 = T ∪ A1 and T2 = T ∪ A2. Since ∂D is

non-separating on T1, surgering T1 along D gives a torus disjoint from Kβ . On the

other hand, surgering T2 along the face bounded by an S-cycle whose color is distinct

from that of D, also gives a torus disjoint from Kβ . Thus M(β) is bounded by at

most two tori, a contradiction. Hence we can conclude that any component of G+
S

containing a non-S-vertex is a cycle of bigons, possibly of length one.

Next, assume that Λ has a cut vertex. By Lemma 5.5, there are only two possi-

bilities for Λ as shown in Figure 6. However, we can still choose a disk face D as in

Figure 5. Thus a similar argument leads to a contradiction.

Proposition 5.7 t 6= 2.

Proof By Lemma 5.6, any component of G+
S containing a non-S-vertex is a cycle of

bigons. All bigons have the same color by Lemma 2.4, and hence any non-S-vertex

is incident to exactly two adjacent negative edges. This implies that each non-S-label

appears once at each vertex of GT among positive edge endpoints.
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Suppose that GT has no Scharlemann cycle. Then every label appears once at

each vertex among positive edge endpoints. Also, the two edges of any of the bigons

in GS belong to the same pair of families of mutually parallel negative edges in GT

by [5, Lemma 5.2]. (Otherwise, M(β) would contain a Klein bottle meeting Kβ once.)

Hence GT has only two families of s mutually parallel negative edges. Thus GT is

either H ′(s/2, s, s, 0, 0) or H ′(s/2, s, 0, s, 0).

If GT has a Scharlemann cycle, then each vertex of GT has at least s + 2 positive

edge endpoints, and so just s/2 + 1 loops by Lemma 2.6(i), two of which form an

S-cycle. Then we see that GT is H ′(s/2 + 1, s, s − 2, 0, 0) or H ′(s/2 + 1, s − 2, 0, s, 0).

We consider these four cases.

Case (A): GT = H ′(s/2, s, s, 0, 0). We can assume that the labels in GT are as in

Figure 7(i). Let Q1 and Q2 be the families of mutually parallel negative edges with

q1(= s) and q2(= s) edges, respectively. Let σ be the associated permutation to Q1

such that an edge of Q1 has label x at v1 and label σ(x) at v2. Clearly, Q2 also has the

same associated permutation σ. Since the edges of Q1 and Q2 form cycles of bigons

in GS, σ2 is the identity. Therefore σ(x) = x or σ(x) = x + s/2.
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Assume that σ is the identity. Then GS consists of s/2 copies of a graph isomorphic

to G(2, 2, 0) or G(2, 1, 1). Let D be a 3-gon in GT . Notice that D is one-cornered.

Using D, one can see that Ŝ is separating in M(α) and the side of Ŝ containing D

is bounded by a torus. Also, take a bigon D ′ among the edges of Q1, lying on the

opposite side. Moreover, we can choose D ′ so that its edges bound an annulus in

Ŝ disjoint from the vertices of GS, as an innermost one. Let D ′ be bounded by an

x-edge and an (x + 1)-edge, and let A be the annulus in ∂Vα between ux and ux+1.

Then surgering (Ŝ− Int(ux ∪ux+1))∪A along D ′ gives either an annulus, or a disjoint

union of an annulus and a torus. In any case, the annulus component meets Kα

fewer times than Ŝ, and the torus component is disjoint from Kα. Hence the annulus

component is boundary parallel and the torus component is inessential. Thus M(α)

is bounded by at most two tori.

Next, assume that σ(x) = x + s/2. Then we see that the two {1, s}-loops in GT

bound a bigon face E in GS. But ∂E runs like Figure 8(i), and so M(β) contains a

Klein bottle meeting Kβ once, obtained from E ∪ H ∪ A by shrinking H radially into

its core, where H is the 1-handle part of Vβ meeting E and A is the annular region on

T̂ between the two {1, s}-loops. This contradicts Theorem 2.3.

Case (B): GT = H ′(s/2, s, 0, s, 0). We can assume that the labels in GT are as in

Figure 7(ii). Similarly, we can see that two families Q1 and Q2 of mutually parallel

negative edges induce the same permutation σ, and σ2 is the identity.

If σ is the identity, then take the two {1, s}-loops in GT . They bound a bigon E in

GS, and ∂E runs like Figure 8(ii). But consider any S-cycle in GS. It has one edge in

each of Q1 and Q2, but we cannot connect them on ∂Vβ .

When σ(x) = x + s/2, the same argument as in Case (A) gives a contradiction.

Case (C): GT = H ′(s/2 + 1, s, s − 2, 0, 0). The labels in GT can be assumed to be as

in Figure 9(i). But this implies that the component of G+
S containing u3 is not a cycle

of bigons, contradicting Lemma 5.6.

Case (D): GT = H ′(s/2 + 1, s − 2, 0, s, 0). Then the labels in GT can be assumed to

be as in Figure 9(ii). The two {3, s}-loops in GT bound a bigon in GS. Then the same

argument as in Case (B) leads to a contradiction.

https://doi.org/10.4153/CJM-2008-007-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-007-6


Boundary Structure of 3-Manifolds 179

1

s

s

s

2 2

2

2

2

3

3

3

1

1

1

11

2

(i) (ii)

1
ss

s

s

2 2

22

3 3

1 1

11

2
/2+2

/2+1

Figure 9

5.2 The Cases t ≥ 5 and t = 3

In this subsection, we eliminate the two cases where t ≥ 5 and t = 3. When t = 3,

GS has no Scharlemann cycle by Lemma 2.2(iv), and so no S-label. If t ≥ 5, then GS

has a non-S-label by Lemma 2.7(ii).

Lemma 5.8 G+
S has no disk block.

Proof Let B be a disk block of G+
S . It has at most one cut vertex of G+

S and at most

one S-vertex among boundary vertices. Let Vi , Vb, Vc, Vs be the number of interior,

boundary, cut and S-vertices, respectively. Here a cut vertex means a cut vertex of

G+
S . Then Vc,Vs ≤ 1. Possibly, an S-vertex is a cut vertex. In this case, we set Vs = 0

and Vc = 1.

Let x be a non-S-label. Any interior vertex is incident to three positive x-edges,

any boundary vertex, except a cut vertex and an S-vertex, is incident to at least two

such edges by Lemma 5.2, and an S-vertex is incident to at least one such edge by

Lemma 5.3. Consider the subgraph Bx of B consisting of all vertices and all x-edges

of B. We remark that Bx may be disconnected, and may have many cut vertices. Let

V , E, F be the number of vertices, edges, disk faces of Bx, respectively, as a graph in a

disk. Then V = Vi + Vb and F ≥ 1 −V + E. By counting x-edges, we have

(5.1) E ≥ 3Vi + 2(Vb −Vc −Vs) + Vs = 3V −Vb − 2Vc −Vs.

Since each disk face of Bx has at least four sides by Lemma 2.8,

(5.2) 2E ≥ 4F + V ′

b ≥ 4(1 −V + E) + Vb,

where V ′

b is the number of boundary vertices of Bx. (Notice V ′

b ≥ Vb.) These give

3V −Vb −2Vc −Vs ≤ 2V −2−Vb/2. Equivalently, V −Vb/2 + 2 ≤ 2Vc +Vs. Hence

Vc = Vs = 1 and V = Vb = 2. This implies that B is a family of at least t parallel

positive edges joining two vertices, which contradicts Lemma 2.5(ii).

Lemma 5.9 Any component of G+
S has an annulus support, and is extremal.

https://doi.org/10.4153/CJM-2008-007-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-007-6


180 S. Lee and M. Teragaito

Proof If G+
S has a component with a disk support, then there is an extremal one Λ

with a disk support. Hence Λ contains a disk block, contradicting Lemma 5.8.

Proposition 5.10 t = 4.

Proof Choose an outermost component Λ of G+
S . There is an annulus A in Ŝ such

that Λ ⊂ Int A, A ∩ G+
S = Λ and A contains one component of ∂Ŝ. After capping

off that component of ∂Ŝ with a disk, we regard Λ as lying in a disk. From this view-

point, we consider its interior and boundary vertices. Let Vi , Vb, Vs be the number of

interior, boundary, and S-vertices of Λ, respectively. We remark that Λ has a disk face

f containing the disk capped off in its interior, where f may be a monogon. Also, Λ

may have an S-vertex, and a cut vertex (of Λ) among its boundary vertices. But any

boundary vertex is good by Lemma 5.8.

Let x be a non-S-label. Consider the subgraph Λ
x of Λ consisting of all vertices

and all x-edges of Λ, as a graph in a disk. We remark that Λ
x may be disconnected.

Let V , E, F be the number of vertices, edges, disk faces of Λ
x. Then F ≥ 1 − V + E

and V = Vi + Vb. Each interior vertex of Λ is incident to three positive x-edges, each

boundary vertex is incident to at least two such edges, and an S-vertex is incident to

at least one such edge. Hence we have

(5.3) E ≥ 3Vi + 2(Vb −Vs) + Vs = 3V −Vb −Vs.

Also, since each disk face of Λ
x, possibly except one, has at least four sides,

(5.4) 2E ≥ 4(F − 1) + 1 + V ′

b ≥ 4(E −V ) + 1 + Vb,

where V ′

b is the number of boundary vertices of Λ
x itself. These give 3V −Vb −Vs ≤

E ≤ 2V −Vb/2− 1/2, equivalently Vi + Vb/2 ≤ Vs − 1/2. Then Vs = 1, Vi = 0 and

Vb = 1. This means that Λ is an S-vertex with at least t/2 parallel loops.

Choose another outermost component Λ
′ of G+

S near the other component of ∂Ŝ.

The same argument shows that Λ
′ consists of an S-vertex and at least t/2 parallel

loops. Since the two S-vertices are connected with the edges of Scharlemann cycles,

G+
S cannot have other components than Λ and Λ

′. But this means s = 2, a contra-

diction.

5.3 The Case t = 4

Again, we can show that G+
S has no disk block as in Lemma 5.8, but it needs another

argument.

Lemma 5.11 G+
S has no disk block.

Proof Let B be a disk block. We use the same notation as in the proof of Lemma 5.8.

By Lemma 2.7(i), we can choose a label x which is not a label of an S-cycle. Then

(5.1) holds. Since each disk face of Bx has at least three sides, (5.2) changes to 2E ≥
3F + V ′

b ≥ 3(1 −V + E) + Vb. These give 3V −Vb − 2Vc −Vs ≤ E ≤ 3V − 3 −Vb,
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equivalently, 2Vc + Vs ≥ 3. Hence Vc = Vs = 1, and all inequalities above are

equalities. So, E = 3V − 3 − Vb, F = 2V − Vb − 2 = 2Vi + Vb − 2 ≥ 0 and each

disk face of Bx is 3-sided.

If F = 0, then V = Vb = 2 and hence B is a family of at least t mutually parallel

edges, contradicting Lemma 2.5(ii). Thus F > 0.

We may assume that x = 4 without loss of generality. Figure 10 lists all possible

3-sided faces of Bx, where all edges of GS are indicated.

Extended Scharlemann cycles are impossible. The last four configurations can be

eliminated in the same way. For example, the last configuration contains a white

S-cycle and two two-cornered black faces, a bigon and a 3-gon adjacent to the S-

cycle. These black faces are homologically independent. Hence M(β) is bounded

by at most two tori. Thus only the first and second configurations are possible,

and they cannot occur simultaneously by Lemma 2.4. Hence we may assume that

all faces of Bx are bounded by black Scharlemann cycles with label pair {3, 4}. Of

course, this is impossible if F > 1. But if F = 1, then Vi = Vb = 1 or V =

Vb = 3. In the former, Bx has a vertex of degree one, which contradicts Lemma

2.5(ii). In the latter, Bx is a cycle of length three, and so the vertex other than the

cut vertex and the S-vertex is incident to at least t parallel positive edges in B, again

contradicting Lemma 2.5(ii).

Hence again Lemma 5.9 holds.

Proposition 5.12 t 6= 4.

Proof Assume t = 4. We use the same notation as in the proof of Proposition 5.10.

Let x be a label of GS which is not a label of an S-cycle. Then we have (5.3). Since

each disk face of Λ
x, possibly except one, has at least three sides, (5.4) changes to

2E ≥ 3(F−1)+1+V ′

b ≥ 3(E−V )+1+Vb, where V ′

b denotes the number of boundary

vertices of Λ
x. These give 3V −Vb − Vs ≤ E ≤ 3V − Vb − 1. Hence Vs = 1 and all
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inequalities above are equalities, and then E = 3V −Vb−1, F = 2V −Vb = 2Vi +Vb,

and each disk face of Λ
x is three sided.

If F = 2, then V = Vb = 2 and E = 3. Then Λ has two vertices, one of which

is a pinched vertex and the other is an S-vertex. By examining the labels around

the vertices, we can see that Λ contains two S-cycles with disjoint label pairs. This

contradicts Lemma 2.5(i). If F > 2, then the same argument as in the proof of

Lemma 5.11 is applicable. Thus F = 1. Then V = Vb = 1 and so Λ consists of an

S-vertex and parallel loops.

Similarly, another outermost component of G+
S near the other component of ∂Ŝ

consists of an S-vertex with parallel loops. Then s = 2 as in the proof of Proposition

5.10, a contradiction.

6 Klein Bottle

In the remainder of the paper, we prove Theorem 2.3. Suppose that M(β) contains

a Klein bottle P̂ which meets Kβ in p (≤ t/2) points, and that p is minimal among

all Klein bottles in M(β). Then P̂ meets Vβ in a disjoint union of meridian disks

w1, w2, . . . , wp numbered successively along Vβ . Let P = P̂ ∩ M, and let N be a thin

neighborhood of P̂.

Lemma 6.1 P is incompressible and boundary incompressible.

Proof See [11, Lemma 2.1].

Thus we can assume that no circle component of S ∩ P bounds a disk in S or

P. From the arc components of S ∩ P, we have a graph pair in the usual way. By

abuse of notation, we denote the pair by {GS, GP} in the rest of paper. Since P is

non-orientable, we cannot give a sign to a vertex of GP. However, there is a way to

give a sign to an edge of GP (see [10]). Then the parity rule survives without any

change. We remark that a positive edge of GS can be a level edge. It corresponds to

an orientation-reversing loop on P̂. Also, there are no two edges which are parallel in

both graphs [2, Lemma 2.1].

If p > 2, a triple {e1, e2, e3} of mutually parallel positive edges in GS is called

a generalized S-cycle if e2 is a level edge with label i, and e1 and e3 have label pair

{i − 1, i + 1} at their endpoints.

Lemma 6.2 If p ≥ 2, then GS satisfies the following.

(i) There is no Scharlemann cycle.

(ii) If p ≥ 3, then there is no generalized S-cycle.

(iii) At most two labels can be labels of positive level edges.

(iv) Any family of parallel positive edges contains at most p/2 + 1 edges.

(v) Any family of parallel negative edges contains at most p edges.

Proof (i) See [12, Lemma 3.2]. (The argument works for a Scharlemann cycle with

any length.) (ii) is [12, Lemma 3.3]. (iii) follows from the facts that a positive level
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edge in GS corresponds to an orientation-reversing loop in P̂ and that a Klein bottle

contains at most two disjoint Möbius bands.

(iv) Let Q be a family of mutually parallel positive edges in GS. Let |Q| denote the

number of edges in Q. Suppose |Q| > p/2 + 1.

Assume p = 2. If an edge in Q is level, then all edges are level. Since any two

level edges with the same label are parallel in GP, there would be two edges which are

parallel in both graphs, a contradiction. If no edge in Q is level, then Q contains an

S-cycle, contradicting (i).

Assume p > 2. Then Q would contain an S-cycle or a generalized S-cycle, a

contradiction.

(v) Let e1, e2, . . . , ep, e ′1 be mutually parallel negative edges in GS, numbered suc-

cessively. We may assume that ei has label i at one vertex for i = 1, 2, . . . , p, so e ′1 has

label 1 at the same vertex. If ei has label σ(i) at the other end, we have the associated

permutation σ. According to the orbits of σ, the edges ei form essential orientation-

preserving cycles on P̂ by [2, Lemma 2.3]. Let L be the cycle through vertex w1. Then

e ′1 is not parallel to e1. However, then a new cycle (L − e1) ∪ e ′1 is inessential on P̂, a

contradiction. (This is essentially the same as the proof of [2, Lemma 4.2].)

Lemma 6.3 Let p ≥ 3. If x is not a label of a positive level edge in GS, then any x-face

in GS has at least four sides.

Proof First, there is no two-sided x-face, since such a face contains an S-cycle or

a generalized S-cycle. Let D be a three-sidedd x-face, and let Γ = GS ∩ D. If Γ

does not contain a level edge, then there is a Scharlemann cycle by [8], contradicting

Lemma 6.2(i). Hence Γ contains a level edge. Notice that the faces of Γ consist of

a single 3-gon f and bigons. Since Γ cannot contain a generalized S-cycle, any level

edge appears in the 3-gon f . There are two cases.

Case (1): Only one label is a label of positive level edges in Γ.

Then, in fact, Γ contains only one level edge e. We may assume that it has label 1.

Clearly, the bigon g adjacent to e has two corners (1, 2) and (p, 1). Moreover, the

3-gon f is also two-corned. That is, it has only (1, 2)-corners and (p, 1)-corners [9,

Claim 3.7] (or see [11]).

Let H be the part of Vβ between wp and w1, containing w2. Let

X = N(P̂ ∪ H ∪ f ∪ g).

Then ∂X is a torus intersecting Kβ fewer than t times. Hence it is boundary parallel in

M(β) or compressible. Thus M(β) is bounded by at most one torus, a contradiction.

Case (2): Two labels are labels of positive level edges in Γ.

We may assume that the 3-gon f contains a level edge e1 with label 1 and a level

edge e2 with label 2. Let gi be the bigon adjacent to f , sharing ei for i = 1, 2. Let H be

the part of Vβ between wp and w3, containing w1. Construct N(P̂ ∪ H ∪ f ∪ g1 ∪ g2)

as above. Then a similar argument to Case (1) implies a contradiction.
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Lemma 6.4 s 6= 1.

Proof Assume s = 1. Notice that p is even, since the vertex of GS has degree 3p.

There are 3p/2 parallel loops in GS, but this contradicts Lemma 6.2(iv), because

3p/2 > p/2 + 1.

Lemma 6.5 p 6= 1.

Proof Assume p = 1. By an Euler characteristic calculation, GS has a disk face D.

Let X = N ∪ Vβ . Then ∂X is a genus 2 closed surface disjoint from Kβ . Let D ′
=

D − Int X. Surger ∂X along D ′. The resulting surface is either a torus or a disjoint

union of two tori, according as ∂D ′ is non-separating or separating on ∂X. Thus

M(β) is bounded by at most two tori, a contradiction.

Lemma 6.6 s ≥ 3.

Proof By Lemmas 6.4 and 6.5, s ≥ 2 and p ≥ 2. Suppose s = 2. Then we can use

the same notation GS = G(p0, p1, p2) as in Section 4.

First assume p = 2. Since GS cannot contain an S-cycle, p0 ≤ 1. By Lemma

6.2(iv) and (v), pi ≤ 2 for i = 1, 2. Thus GS = G(1, 2, 2), and there are two bigons

and two 3-gons. Take a bigon D1 and a 3-gon D2. Let X = N ∪ Vβ , and D ′

i = Di −
Int X. Then ∂X is a genus 3 closed surface, on which ∂D ′

1 and ∂D ′

2 are homologically

independent. Thus M(β) is bounded by at most one torus, a contradiction.

Next, assume p ≥ 3. By Lemma 6.2(iv), p0 ≤ p/2 + 1, but if the equality holds,

there is an S-cycle. Hence p0 ≤ (p + 1)/2.

If the two vertices of GS are parallel, then pi ≤ p/2 + 1 for i = 1, 2. So

3p ≤ 2 · (p + 1)/2 + 2(p/2 + 1) = 2p + 3,

giving p ≤ 3. When p = 3, we have pi ≤ 2, giving

3p ≤ 2 · (p + 1)/2 + 2 · (p + 1)/2 = 2p + 2.

This is a contradiction.

Therefore the two vertices of GS are antiparallel. By Lemma 6.2(v), pi ≤ p for

i = 1, 2. So 3p = 2p0 + p1 + p2 ≤ 2p0 + 2p, giving p0 ≥ p/2. Hence p0 = p/2 if

p is even, and p0 = (p + 1)/2 if p is odd. This implies that GS = G(p/2, p, p) if p is

even, and GS = G((p + 1)/2, p, p− 1) if p is odd. For both cases, the same argument

as the case GS = G(t/2, t, t) in the proof of Lemma 4.7 works.

Lemma 6.7 Any vertex of GS, except S-vertices, has at least 2p positive edge endpoints.

An S-vertex, if it exists, has at least p positive edge endpoints.

Proof Lemma 5.1 holds again. Hence the proofs of Lemmas 5.2 and 5.3 work.
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Proposition 6.8 p ≥ 3 is impossible.

Proof Using Lemma 6.3, instead of Lemma 2.8, the proof of Lemma 5.8 works.

Hence G+
S does not contain a disk block. Then the proofs of Lemma 5.9 and Propo-

sition 5.10 are applicable.

7 A Special Case: p = 2

Finally, we eliminate the situation where s ≥ 3 and p = 2. Recall that any vertex of

GS, except S-vertices, has at least four positive edge endpoints, and that any S-vertex,

if it exists, has at least two positive edge endpoints by Lemma 6.7.

Let W = cl(M(β) − N). We say that N is the black region, and W is the white

region. Let T = ∂N − Int Vβ . As usual, S and T give a labeled graph pair {G ′

S, GT}.

In fact, GT is a double cover of GP. The disk faces of G ′

S are divided into black and

white faces as usual. Thus any black bigon of G ′

S corresponds to an edge of GS.

Consider the genus three surface R = ∂(N ∪Vβ), which is disjoint from Kβ .

Lemma 7.1 For any two white disk faces of G ′+
S , their boundaries are parallel in R.

In particular, all white disk faces of G+
S have the same number of sides, and G+

S cannot

contain two adjacent 3-gons.

Proof Suppose that G ′+
S contains two white disk faces whose boundaries are not

parallel in R. Surgering R along them gives a torus or a disjoint union of two tori.

Since the surface is disjoint from Kβ , M(β) is bounded by at most two tori, a contra-

diction.

Let f and g be adjacent 3-gons in G+
S . Consider the two white faces f ′ and g ′ of

G ′+
S corresponding to f and g, respectively. Then ∂ f ′ and ∂g ′ are not parallel on R.

Lemma 7.2 At any vertex of GS, there are no consecutive pairs of parallel positive

edges.

Proof Otherwise, there are two consecutive bigons. However, it is easy to see that

the corresponding white bigons have non-parallel boundaries on R. This contradicts

Lemma 7.1. (See also [10, Lemma 6.3].)

We divide the argument into two cases.

Case (A): G+
S contains a bigon. Then all disk faces of G+

S are bigons by Lemma 7.1.

Lemma 7.3 G+
S has at most two disk blocks. Any disk block consists of two vertices,

one of which is an S-vertex, and a pair of parallel edges.
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Proof Let B be a disk block. Since all faces of B are disks, they are bigons. Thus B

has only two vertices. By Lemma 7.2, one vertex is an S-vertex. Also, the other is a

cut vertex of G+
S .

Since GS has at most two S-vertices, there are at most two disk blocks in G+
S .

Lemma 7.4 Any component of G+
S has an annulus support, and is extremal.

Proof If there is a component with a disk support, then there is an extremal one,

say Λ, with a disk support. Notice that all faces of Λ are disks, and hence bigons.

Thus there are two consecutive bigons at a non-S-vertex, which is not a cut vertex of

Λ. This contradicts Lemma 7.2.

Lemma 7.5 Let Λ be an outermost component of G+
S . Then Λ consists of two vertices

together with a loop at one vertex and a pair of parallel level edges connecting the two

vertices. Moreover, one vertex is an S-vertex.

Proof By Lemma 7.2, Λ has no interior vertex. If Λ has no disk block, then it is a

cycle of bigons, contradicting Lemma 7.2. (If the cycle is length one, then there is an

S-cycle.) Also, any boundary vertex is incident to a disk block. Since there is only one

disk block incident to Λ, we have the conclusion.

Lemma 7.6 Case (A) is impossible.

Proof By Lemmas 7.4 and 7.5, G+
S has two components Λ1 and Λ2, each of which

satisfies the conclusion of Lemma 7.5. We may assume that Λi contains an S-vertex

ui for i = 1, 2. Notice that u1 and u2 are joined by the edges of a Scharlemann cycle

in GT , which do not lie on a disk in Ŝ by Lemma 2.2(iii). Hence G+
S consists of Λ1

and Λ2, so s = 4. Since u1 is incident to four negative edges, GP contains at least two

1-faces by an Euler characteristic calculation. Each 1-face contains a Scharlemann

cycle. Thus GP has at least two Scharlemann cycles, so the four negative edges at u1

are the edges of Scharlemann cycles in GP. This is similar for u2. Then the non-S-ver-

tex of Λ1 cannot be incident to a negative edge, a contradiction.

Case (B): Any disk face of G+
S has at least three sides.

Lemma 7.7 G+
S has no disk block.

Proof Let B be a disk block. It has at most one cut vertex and at most one S-vertex

among boundary vertices. Let V , E, F be the number of vertices, edges, faces of

B, respectively. Let Vi , Vb, Vc, Vs be the number of interior, boundary, cut, and

S-vertices of B, respectively. Then V = Vi + Vb and Vc,Vs ≤ 1. (If an S-vertex is a

cut vertex, then set Vc = 1 and Vs = 0.)
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Any interior vertex has degree six, any boundary vertex, except a cut vertex and an

S-vertex, has degree at least four, and a cut vertex or an S-vertex has degree at least

two. By counting degrees,

2E ≥ 6Vi + 4(Vb −Vc −Vs) + 2Vc + 2Vs = 6V − 2Vb − 2Vc − 2Vs.

Since each face of B has at least three sides, 2E ≥ 3F + Vb = 3(1−V + E) + Vb. Then

3V −Vb −Vc −Vs ≤ 3V − 3 −Vb, and hence Vc + Vs ≥ 3, a contradiction.

Lemma 7.8 Case (B) is impossible.

Proof By Lemma 7.7, any component of G+
S has an annulus support, and is ex-

tremal. Let Λ be an outermost component. After capping off the component of ∂Ŝ

near Λ, we regard Λ as lying in a disk. From this view point, we consider its interior

vertices and boundary vertices. Let V , E, F be the number of vertices, edges, and

disk faces of Λ, respectively. Let Vi , Vb, Vs be the number of interior, boundary, and

S-vertices of Λ. Here Λ may have a monogon, which includes the disk capped off. As

before, 2E ≥ 6Vi + 4(Vb −Vs) + 2Vs = 6V −2Vb −2Vs. Since each disk face of Λ, ex-

cept at most one, has at least three sides, 2E ≥ 3(F − 1) + 1 +Vb = 3E− 3V + 1 +Vb.

Then 3V − Vb − Vs ≤ 3V − Vb − 1, equivalently, Vs ≥ 1. Thus Vs = 1 and all

inequalities above are equalities. So, each disk face of Λ, except one monogon, has

three sides. Since Λ has an S-vertex, Ŝ is separating in M(α) and G+
S has exactly two

components, Λ and Λ
′, where Λ

′ is another outermost component.

If F = 1 − V + E = 2V − Vb > 2, then Λ contains two adjacent 3-gons, con-

tradicting Lemma 7.1. If F = 1, then V = Vb = Vs = 1 and E = 1. Hence Λ

is an S-vertex with a loop. Similarly, Λ
′ has the same form. But this means s = 2,

a contradiction. If F = 2, then V = Vb = 2 and E = 3. Then Λ consists of one

pinched vertex and one bivalent S-vertex. Again, Λ
′ has the same form. Since u1 is

incident to four negative edges, GP contains at least two Scharlemann cycles as in the

proof of Lemma 7.6. Then any pinched vertex cannot be incident to a negative edge,

a contradiction.
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