On Lie algebra obstructions

J. Knopfmacher

A basic problem in the theory of Lie algebra extensions concerns a given homomorphism X of a Lie algebra L into the Lie algebra of outer derivations of a Lie algebra B. In analogy with the theory of group extensions, Mori and Hochschild developed the concept of an obstruction to X being the homomorphism defined by some Lie algebra extension of B by L. This note considers an alternative approach to this theory, which is particularly simple when applied to the problem of realizing arbitrary three-cohomology classes of L as obstructions. The approach is analogous to one for groups, which was given recently by Gruenberg.

The theory of extensions of linear algebras (see for example [4] - [7]) contains a number of basic theorems all of which are analogous to results in the theory of group extensions (see for example [2]). In particular, one of the basic problems in the case of Lie algebras concerns a given homomorphism $X: L \rightarrow \operatorname{Der} B / \mu B$ of a Lie algebra L into the Lie algebra of outer derivations of a Lie algebra B. In analogy with the theory of groups, Mori [10] and Hochschild [6] developed a theory of obstructions to X being the homomorphisms arising from some Lie algebra extension $0 \rightarrow B \rightarrow E \rightarrow L \rightarrow 0$. This note considers an alternative approach to this theory for Lie algebras, which is particularly simple when applied to the problem of realizing 3-cohomology classes as obstructions.

This approach is the direct analogue of one given recently by Gruenberg [3] in the case of groups. Gruenberg's method is based on his "resolution by relations" [2] for the cohomology of groups. The present note

[^0]uses a similar resolution for Lie algebras, which has been considered in a different connection by this author in [8].

1. The resolution for Lie algebras

Consider Lie algebras over a given commutative ground ring Λ; let $U(L)$ denote the universal enveloping algebra of a Lie algebra L. We' consider throughout a Lie algebra L which is free as a Λ-module, and which has a presentation

$$
0 \rightarrow R \rightarrow F \xrightarrow{\Pi} L \rightarrow 0
$$

in which both F and R are free Lie algebras. (If Λ is a field, the Siršov-Witt theorem implies that every Lie algebra over Λ has such properties for all free presentations.)

The following facts appear as special cases in [8]: Let $\pi_{*}: U(F) \rightarrow U(L)$ be the induced epimorphism of enveloping algebras, and let $\underline{\underline{r}}=\operatorname{Ker} \pi_{*}$. If $\underline{\underline{f}}$ denotes the augmentation ideal of $U(F)$, let

$$
x_{2 n}=\underline{\underline{\underline{r}}}^{n} \underline{\underline{\underline{r}}}^{n+1}, x_{2 n-1}=\underline{\underline{\underline{r}}}^{n-1} \underline{\underline{\underline{f}}} \underline{\underline{\underline{r}}}^{n} \underline{\underline{\underline{f}}}, n>0, \text { where } \underline{\underline{\underline{r}}}^{0}=U(F)
$$

Consider the sequence

$$
\ldots \rightarrow X_{n} \rightarrow X_{n-1} \rightarrow \ldots \rightarrow X_{1} \rightarrow U(L) \rightarrow \Lambda \rightarrow 0
$$

obtained by letting $U(L) \rightarrow \Lambda$ be the augmentation mapping, $X_{1} \rightarrow U(L)$ be the map induced by π_{*}, and $X_{n}+X_{n-1}(n>1)$ be induced by inclusion. Then this sequence is a free resolution of Λ over $U(L)$. Further, if X and Y are sets of free Lie algebra generators for F and R respectively, then Y is a free basis for $\underline{\underline{r}}$ as left $U(F)$-module, and a free $U(L)$-basis y_{n} for X_{n} is obtained by letting

$$
y_{2 n}=\left\{y_{1} \cdots y_{n}+\underline{\underline{r}}^{n+1}: y_{i} \in Y\right\}
$$

and

$$
Y_{2 n-1}=\left\{y_{1} \ldots y_{n-1} x+\underline{\underline{\underline{r}}}^{n} \underline{\underline{\mathbf{f}}}: y_{i} \in Y, \quad x \in X\right\}
$$

Now let A be any L-module. Then, for the purpose of the obstruction theory, we note in particular that $H^{3}(L ; A) \cong \operatorname{Ker} i_{3}^{*} / \operatorname{Im} i_{2}^{*}$ where i_{2}^{*}, i_{3}^{*} are the following maps induced by inclusion:

$$
\operatorname{Hom}_{U(L)}\left(\underline{\underline{\mathrm{r}}} \underline{\underline{\underline{r}}}^{2}, A\right) \xrightarrow{i_{2}^{*}} \operatorname{Hom}_{U(L)}\left(\underline{\underline{\mathrm{r}}} /{\underline{\underline{r^{2}}}}_{\underline{\mathrm{f}}}^{\underline{n}}, A\right) \xrightarrow{i_{3}^{*}} \operatorname{Hom}_{U(L)}\left(\underline{\underline{r}}^{2} / \underline{\underline{r}}^{3}, A\right)
$$

The above notation will be referred to later.

2. Definition of obstruction

Let $X: L \rightarrow \operatorname{Der} B / \mu B$ be a homomorphism of L into the Lie algebra $\operatorname{Der} B$ of derivations of a Lie algebra B, modulo the ideal μB of inner derivations of B, and let the centre K_{B} of B be given the L-module structure induced by X. Since both F and R are free Lie algebras, there exists a commutative diagram of algebra homomorphisms:

in which $\mu_{b}=-\operatorname{ad} b \quad(b \in B)$.
If $r \in R, w \in F$, one checks that the element $r o w=\eta_{[r w]}+\xi_{w}\left(\eta_{r}\right)$
lies in K_{B}. Hence one obtains a $U(L)$-linear map

$$
\phi: \underline{\underline{\mathrm{rf}}} / \underline{\underline{\mathrm{r}}}^{2} \underline{\underline{\mathrm{f}}} \rightarrow K_{B}
$$

by letting $\phi\left(y x+\underline{\underline{r}}^{2} \underline{\underline{\underline{f}}}\right)=y \circ x$ for $y \in Y, x \in X$.
THEOREM 2.1. The mapping ϕ is an element of Ker i_{3}^{*}, whose cohomology class $\Phi=\Phi(X)$ in $H^{3}\left(L ; K_{B}\right)$ is independent of the choice of homomorphisms ξ, η. (ϕ will be called the obstruction determined by ξ, η, and Φ the obstruction class of $X .$,

Proof. Firstly it is easy to check two formulae:
(1)

$$
\left[r_{1} r_{2}\right] o w=0 \quad\left(r_{1}, r_{2} \in R ; w \in F\right),
$$

(2)

$$
\begin{aligned}
& r \circ\left[w_{1} w_{2}\right]=\left[m w_{1}\right] \circ w_{2}-\left[m w_{2}\right] o w_{1}+\xi_{w_{1}}\left(r \circ w_{2}\right)-\xi_{w_{2}}\left(r \circ w_{1}\right) \\
& \left(r \in R ; w_{1}, w_{2} \in E\right) .
\end{aligned}
$$

These formulae will now be used to show that

$$
\begin{equation*}
\phi\left(m w+\underline{\underline{r}}^{2} \underline{\underline{f}}\right)=r o w \quad(r \in R, \quad w \in E) \tag{3}
\end{equation*}
$$

In order to do this, let $r \in R$ and suppose

$$
r=\sum \lambda_{i} y_{i}+\text { higher terms in the } y_{j} \quad\left(\lambda_{i} \in \Lambda ; y_{i}, y_{j} \in Y\right)
$$

Then, by (1), row $=\sum \lambda_{i}\left(y_{i}{ }^{\circ} w\right)(w \in F)$. Also by expanding the higher terms of r as associative polynomials, one sees that $r \equiv \sum \lambda_{i} y_{i}\left(\bmod \underline{\underline{r}}^{2}\right)$. Hence

$$
\begin{equation*}
\phi\left(r x+\underline{\underline{r}}^{2} \underline{f}\right)=r o x \quad(x \in X) \tag{4}
\end{equation*}
$$

The equations (3) will then follow by linearity and induction on the degree of Lie monomials when it has been shown that

$$
\begin{equation*}
\phi\left(r\left[w_{1} w_{2}\right]+\underline{\underline{r}}^{2} \underline{\underline{f}}\right)=r o\left[w_{1} w_{2}\right] \quad\left(w_{1}, w_{2} \in F\right) \tag{5}
\end{equation*}
$$

For this purpose, suppose that $\phi\left(s w_{i}+\underline{\underline{r}}^{2} \underline{f}\right)=s o w_{i}$ for all $s \in R$ and certain elements $w_{1}, w_{2} \in F$. Then

$$
r\left[w_{1} w_{2}\right]=\left[r w_{1}\right] w_{2}-\left[r w_{2}\right] \omega_{1}+w_{1} r w_{2}-w_{2} r w_{1}
$$

and so, by the assumption on w_{1}, w_{2}, equation (5) follows from (2), since ϕ is $U(L)$-linear.

By equation (3), it follows that

$$
\begin{equation*}
\phi\left(r s+\underline{\underline{r}}^{2} f\right)=r o s=0 \quad(r, s \in R) \tag{6}
\end{equation*}
$$

Since the products $r s(r, s \in R)$ span $\underline{\underline{r}}^{2}$ over $U(F)$, it follows that

$$
\phi\left(\underline{\underline{r}}^{2} / \underline{\underline{\underline{r}}}^{2} \underline{\underline{\underline{f}}}\right)=\{0\}, \quad \text { i.e. } \phi \in \operatorname{Ker} i_{3}^{*} .
$$

In order to see that the cohomology class $\Phi=\Phi(X)$ of ϕ in $H^{3}\left(L ; K_{B}\right)$ is independent of the original homomorphisms ξ, η, first consider another homomorphism $\eta^{\prime}: R \rightarrow B$ such that $\mu \eta^{\prime}=\xi \mid R=\mu \eta$. Then $\eta^{\prime}-\eta$ maps into K_{B}, and one may define a $U(L)$-linear map $\psi: \underline{r} \underline{\underline{r}}^{2} \rightarrow K_{B}$ by letting $\psi\left(y+\underline{\underline{r}}^{2}\right)=\eta^{\prime} y^{-\eta} y \quad(y \in Y)$. It will now be shown that

$$
\begin{equation*}
\psi\left(s+\underline{\underline{r}}^{2}\right)=\eta_{s}^{\prime}-\eta_{s} \quad(s \in R) \tag{7}
\end{equation*}
$$

This follows since, as with equation (4), if $s=\sum \lambda_{i} y_{i}+$ higher terms $\left(\lambda_{i} \in \Lambda, y_{i} \in Y\right)$ then

$$
\begin{equation*}
\psi\left(s+\underline{\underline{r}}^{2}\right)=\sum \lambda_{i}\left(\eta^{\prime} y_{i}-\eta_{y_{i}}\right)=\eta_{s}^{\prime}-\eta_{s} \tag{8}
\end{equation*}
$$

because (easily)

$$
\begin{equation*}
\eta_{\left[r_{1} r_{2}\right]}^{\prime}-\eta_{\left[r_{1} r_{2}\right]}=0 \quad\left(r_{1}, r_{2} \in R\right) \tag{9}
\end{equation*}
$$

It follows that
(10) $\psi\left(r w+\underline{\underline{r}}^{2}\right)=\eta^{\prime}[m \omega]-\eta_{[m w]}+\xi_{w}\left(\eta_{r}^{\prime}-\eta_{r}\right) \quad(r \in R, w \in F)$,
since ψ is $U(L)$-linear. If ϕ^{\prime} is the obstruction determined by ξ and η^{\prime}, one then gets

$$
\phi^{\prime}\left(r w+\underline{\underline{r}}^{2} \underline{\underline{\underline{f}}}\right)=\eta_{[r \omega]}^{\prime}+\xi_{\omega}\left(\eta_{r}^{\prime}\right)=\phi\left(r w+\underline{\underline{r}}^{2} \underline{\underline{\underline{f}}}\right)+\psi\left(r \omega+\underline{\underline{r}}^{2}\right),
$$

i.e. $\phi^{\prime}=\phi+i_{2}^{*} \psi$. (Given any $\psi^{\prime} \in \operatorname{Hom}_{U(L)}\left(\underline{\underline{r}} / \underline{\underline{r}}^{2}, K_{B}\right)$, the map $\phi+i_{2}^{*} \psi^{\prime}$ can be realized as the obstruction determined by ξ and $\eta^{\prime \prime}$ where $\eta_{y}^{\prime \prime}=\eta_{y}+\psi^{\prime}\left(y+\underline{\underline{r}}^{2}\right)$ for $\left.y \in Y.\right)$

Now let $\xi^{\prime}: F \rightarrow \operatorname{Der} B$ be any other homomorphism lifting $\chi: L \rightarrow \operatorname{Der} B / \mu B$. Then $\xi^{\prime}-\xi$ maps into μB. Choosing $\delta_{x} \in B$ such that $\xi^{\prime}{ }_{x}-\xi_{x}=\mu\left(\delta_{x}\right) \quad(x \in X)$, observe that the map $x \rightarrow \delta_{x}$ may be extended to an "extended derivation" $\delta: F \rightarrow B$, i.e. a Λ-linear map such that
(11) $\quad \delta_{\left[w_{1} w_{2}\right]}=\xi_{w_{1}}\left(\delta_{w_{2}}\right)-\xi_{w_{2}}\left(\delta_{w_{1}}\right)+\left|\delta_{w_{1}}, \delta_{w_{2}}\right| \quad\left(w_{1}, w_{2} \in F\right)$.
(Maps of this type have been considered in [7] and [9], for example. In order to construct δ, one may, for example, form the split extension S of B by F corresponding to $\xi: F \rightarrow \operatorname{Der} B$. Then let $\theta: F \rightarrow S$ be the homomorphism such that $\theta_{x}=\left(\delta_{x}, x\right)$ for $x \in X$. By [9], Proposition 3.3, or directly, one obtains an extended derivation δ by letting $\left.\delta_{w}=\theta_{w}-(0, w) \quad(\omega \in F).\right)$

Letting $\eta^{*}=\eta+\delta \mid R$, one then obtains an algebra homomorphism $R \rightarrow B$ such that $\mu \eta^{*}=\xi^{\prime} \mid R$. The theorem will follow when it has been shown that ξ^{\prime} and η^{*} determine the same obstruction ϕ as ξ and η.

In order to do this, we first show that

$$
\begin{equation*}
\xi_{\omega}^{\prime}-\xi_{\omega}=\mu\left(\delta_{w}\right) \quad(\omega \in F) . \tag{12}
\end{equation*}
$$

For this purpose, suppose that (12) holds for certain elements $w_{1}, w_{2} \in F$.

Then

$$
\begin{equation*}
\delta_{\left[w_{1} w_{2}\right]}=\xi_{w_{1}}\left(\delta_{w_{2}}\right)-\xi_{w_{2}}^{\prime}\left(\delta_{w_{1}}\right), \tag{13}
\end{equation*}
$$

$$
\text { and so, since } \mu\left(D_{b}\right)=[D, \mu(b)] \text { for } D \in \operatorname{Der} B, b \in B
$$

$$
\begin{aligned}
\mu\left(\delta_{\left[w_{1} w_{2}\right]}\right) & =\left[\xi_{w_{1}}, \mu\left(\delta_{w_{2}}\right)\right]-\left[\xi_{w_{2}}^{\prime}, \mu\left(\delta_{w_{1}}\right)\right] \\
& =\left[\xi_{w_{1}}^{\prime}, \xi_{w_{2}}^{\prime}\right]-\left[\xi_{w_{1}}, \xi_{w_{2}}\right]
\end{aligned}
$$

Thus (12) holds for $\left[w_{1} w_{2}\right]$, and hence it follows for all $w \in F$, by linearity and induction on the degree of Lie monomials. Finally, with the aid of (II) one obtains

$$
\begin{equation*}
\eta_{[m \omega]}^{*}+\xi_{w}^{\prime}\left(\eta_{r}^{*}\right)=\eta_{[m w]}+\xi_{w}\left(\eta_{r}\right)=r o w \quad(r \in R, w \in F) \tag{14}
\end{equation*}
$$

THEOREM 2.2. There exists an extension

$$
0 \rightarrow B \rightarrow E \rightarrow L \rightarrow 0
$$

inducing the homomorphism x if and only if the obstmction alass

$$
\Phi(X)=0 \quad \text { in } \quad H^{3}\left(L ; K_{B}\right)
$$

Proof. If such an extension exists, then there exists a commutative diagram of algebra homomorphisms:

Define $\xi=\bar{\mu} \theta: F \rightarrow \operatorname{Der} B$ where $\bar{\mu}: E \rightarrow \operatorname{Der} B$ is the algebra homomorphism $e \rightarrow \mu_{e} \mid B \quad(e \in E)$. Then ξ lifts X and $\mu \eta=\xi \mid R$, and

$$
\begin{equation*}
\eta_{[w]}+\xi_{w}\left(\eta_{r}\right)=0 \quad(r \in R, w \in F) \tag{15}
\end{equation*}
$$

Thus ξ and η determine the zero obstruction map.
Conversely, suppose that $\Phi(X)=0$ in $H^{3}\left(L ; K_{B}\right)$. Then, for any choice of homomorphisms ξ, η, the corresponding obstruction map $\phi \in \operatorname{Im} i_{2}^{*}$. By a remark following equation (10) above, there exists a homomorphism $\eta^{\prime}: R \rightarrow B$ such that ξ and η^{\prime} determine the zero obstruction map. This implies that

$$
\begin{equation*}
\eta_{[m v]}^{\prime}+\xi_{w}\left(\eta_{r}^{\prime}\right)=0 \quad(r \in R, w \in F) \tag{16}
\end{equation*}
$$

Now form the split extension S of B by F via ξ, and let M be the ideal of S consisting of all elements of the form $\left(\eta^{\prime} r^{\prime}-r\right)(r \in R)$. Then the monomorphism $B \rightarrow S$ and the epimorphism $\pi: F \rightarrow L$ induce an extension $0 \rightarrow B \rightarrow S / M \rightarrow L \rightarrow 0$. Further, this extension gives back the original homomorphism $X: L \rightarrow \operatorname{Der} B / \mu B$.

3. Realization of cohomology classes

THEOREM 3.1. Let Λ be a fiezd, and A be any L-module. Then every element of $H^{3}(L ; A)$ can be represented as the obstruction class of some homomorphism $X: L \rightarrow \operatorname{Der} B / \mu B$ such that the centre K_{B} of B is L-isomorphic to A.

Proof. If Λ is a field, it is always possible to choose a free presentation $0 \rightarrow R \rightarrow F \xrightarrow{\pi} L \rightarrow 0$ in which R is a free Lie algebra of rank >1. Hence R has centre \{0\}, and so the direct sum $B=R \oplus A$ has centre A, if A is regarded as a zero algebra.

Now represent $H^{3}(L ; A)$ as $\operatorname{Ker} i_{3}^{*} / \operatorname{Im} i_{2}^{*}$, as before, and consider an arbitrary map $\phi \in \operatorname{Ker} i_{3}^{*}$. Define an algebra homomorphism $\xi: F \rightarrow \operatorname{Der} B$ by letting

$$
\begin{equation*}
\xi_{w}(r, a)=\left([w r],[\pi w a]+\phi\left(m w+\underline{\underline{r}}^{2} \underline{\underline{f}}\right)\right) \quad(w \in F, r \in R, a \in A), \tag{17}
\end{equation*}
$$ where $\left[\pi_{\omega} a\right]$ denotes a operated on by π_{w} under the L-module structure for A. Then $\xi_{\omega}-\xi_{w+r} \in \mu B$ for $w \in F, r \in R$, and so ξ determines a homomorphism $\chi: L \rightarrow \operatorname{Der} B / \mu B$. If $\eta: R \rightarrow B$ is the inclusion map, then $\mu \eta=\xi \mid R$ and

$$
\begin{equation*}
\eta_{[r w]}+\xi_{w}\left(\eta_{r}\right)=\left(0, \phi\left(r w+\underline{\underline{r}}^{2} \underline{\underline{f}}\right) \quad(r \in R, w \in F)\right. \tag{18}
\end{equation*}
$$

Therefore ϕ is the obstruction determined by ξ and η.
REMARKS. Theorem 3.1 completes possibly the most interesting part of the obstruction theory. The results can, of course, be refined so as to yield an isomorphism of $H^{3}(L ; A)$ with a vector space of similarity classes of "kernels" $\chi: L \rightarrow \operatorname{Der} B / \mu B$ such that $K_{B} \cong A$ (cf. [10], [6]). One can also examine the 'naturality' of the definition of obstruction, relative to any presentation morphism:

References

[1] Samuel Eilenberg and Saunders MacLane, "Cohomology theory in abstract groups", Parts I and II, Ann. of Math. 48 (1947), 51-78 and 326-341.
[2] K.W. Gruenberg, "Resolutions by relations", J. Lond. Math. Soc. 35 (1960), 481-494.
[3] K.W. Gruenberg, "A new treatment of group extensions", Math. Zeitschr. 102 (1967), 340-350.
[4] G. Hochschild, "Cohomology and representations of associative algebras", Duke Math. J. 14 (1947), 921-948.
[5] G. Hochschild, "Cohomology of restricted Lie algebras", Amer. J. Math. 76 (1954), 555-580.
[6] G. Hochschild, "Lie algebra kernels and cohomology", Amer. J. Math. 76 (1954), 698-716.
[7] J. Knopfmacher, "Extensions in varieties of groups and algebras", Acta Math. 115 (1966), 17-50.
[8] J. Knopfmacher, "Some homological formulae", J. Algebra 9 (1968), 212-219.
[9] Abraham S.-T. Lue, "Crossed homomorphisms of Lie algebras", Proc. Cambridge Philos. Soc. 62 (1966), 577-581.
[10] Mitsuya Mori, "On the three-dimensional cohomology group of Lie algebras", J. Math. Soc. Japan 5 (1953), 171-183.

University of the Witwatersrand,
Johannesburg, South Africa.

[^0]: Received 9 April 1969. Received by J. Austral. Math. Soc. 18 September 1968. Communicated by G.B. Preston.

