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Abstract. Let Mm be a closed smooth manifold with an involution having fixed
point set of the form Fn ∪ F2, where Fn and F2 are submanifolds with dimensions n
and 2, respectively, where n ≥ 4 is even (n < m). Suppose that the normal bundle of
F2 in Mm, μ → F2, does not bound, and denote by β the stable cobordism class of
μ → F2. In this paper, we determine the upper bound for m in terms of the pair (n, β)
for many such pairs. The similar question for n odd (n ≥ 3) was completely solved in
a previous paper of the authors. The existence of these upper bounds is guaranteed
by the famous 5/2-theorem of Boardman, which establishes that, under the above
hypotheses, m ≤ 5/2n.

2000 Mathematics Subject Classification. (2.000 Revision) Primary 57R85;
Secondary 57R75.

1. Introduction. Let F be a disjoint (finite) union of smooth and closed manifolds,
F = ⋃n

j=0 Fj, with Fj denoting the union of those components of F having dimension j
and thus n being the dimension of the components of F of largest dimension. Suppose
that Mm is an m-dimensional, smooth and closed manifold equipped with a smooth
involution T : Mm → Mm whose fixed point set is F . It is well known, from equivariant
bordism theory, that if (Mm, T) is non-bounding then n cannot be too small with respect
to m. This fact was evidenced from an old result of Conner and Floyd (Theorem 27.1
of [3]), which stated: for each natural number n, there exists a number ϕ(n) with the
property that, if m > ϕ(n), then (Mm, T) bounds equivariantly. Later, this was explicitly
confirmed by the famous 5/2-Theorem of Boardman [1]: if Mm is nonbounding, then
m ≤ 5/2n. A strengthened version of this fact was obtained by Kosniowski and Stong
[6]: if (Mm, T) is a non-bounding involution, which is equivalent to the fact that the
normal bundle of F in Mm is not a boundary (see [3]), then m ≤ 5/2n. In particular, if
F is non-bounding (which means that at least one Fj is nonbounding), then m ≤ 5/2n.
The generality of this last result allows the possibility that fixed components of all
dimensions j, 0 ≤ j ≤ n, occur; in this way, it is natural to ask whether there exists
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a better upper bound for m when we omit some components of F . This is inspired
by the fact that, if F has constant dimension n and if m > 2n, then (Mm, T) bounds
equivariantly; this result was proved by Kosniwoski and Stong [6]. In particular, if
F = Fn with constant dimension n is nonbounding and if (Mm, T) fixes F , then m ≤ 2n.
This bound is best possible, as can be seen by taking the involution (Fn × Fn, T),
where Fn is any non-bounding n-dimensional manifold (with the exception of n = 1
and n = 3) and T switches coordinates. That is, m ≤ 5/2n can be improved to m ≤ 2n,
in a best possible way, if all Fj with j < n are omitted.

Once the case F = Fn with constant dimension n is established, the next natural step
is to consider fixed sets of the form F = Fn ∪ Fj, j < n. If the normal bundle of Fj in Mm

is a boundary, it can be equivariantly removed to give a new involution, equivariantly
cobordant to (M, T) and with fixed point set Fn (see [3]); that is, this case reduces
to the constant dimension case. Thus, it is reasonable to suppose that the normal
bundle over Fj does not bound. In this case, we showed in [8] that for j = n − 1 we
also have m ≤ 2n and that this bound is best possible. For j = 0, F = Fn ∪ F0 reduces
to F = Fn ∪ {point}, and the normal bundle over Fj is nonbounding automatically.
Concerning this case, Pergher and Stong proved [10] that, for each natural number
n, m ≤ m(n), where the bounds m(n) are described as follows: writing n = 2pq, where
p ≥ 0 and q is odd,

m(n) =
{

2n + p − q + 1, if p ≤ q + 1
2n + 2p−q, if p ≥ q.

Further, they constructed, for each n ≥ 1, special involutions (Vm(n), Tn) with the
fixed point set having the form F = Fn ∪ {point}, thus showing that the bounds m(n)
cannot be improved. For q = 1, m(n) is precisely the Boardman bound, but for q > 1
it is a smaller bound. The bounds m(n) have a special feature: for some other values
of j, the corresponding bounds are related to m(n). In fact, in [4] and [5], Kelton
studied bounds for m when F has the special form F = Fn ∪ RPj, where RPj is the
j-dimensional real projective space, and a consequence of the obtained results is that,
for F = Fn ∪ F1, m ≤ m(n − 1) + 1 if n is odd and m ≤ m(n − 1) + 2 if n is even. In
addition, these bounds are best possible. In [8], we considered the case F = Fn ∪ F2,
and showed that m ≤ m(n − 2) + 4 is the best possible bound in this case (it is also
interesting to note the following relation between the case j = n − 1 and the numbers
m(n): m(n − j) + 2j = m(1) + 2n − 2 = 2 + 2n − 2 = 2n).

If η → Fn and μ→ Fj are the normal bundles of Fn and Fj in Mm, and if μ → Fj

and μ′ → F ′j are cobordant as bundles over j-dimensional and closed manifolds, that is,
represent the same element in the cobordism group Nj(BO(m − j)), then there exists an
involution (Nm, T ′), cobordant to (Mm, T), and with fixed data (η → Fn) ∪ (μ′ → F ′j)
(see [3]). Thus μ must be considered up to cobordism; that is, when looking for
bounds, it suffices to consider the non-zero classes of Nj(BO(m − j)) for m > n. Since
Nj(BO(k)) ∼= Nj(BO(k + 1)) if k ≥ j and Nj(BO(k)) ⊂ Nj(BO(k + 1)) if k < j, these
non-zero classes are concentrated in Nj(BO(j)) up to stability. In the cases j = 0 and
j = 1, one has a unique such non-zero stable cobordism class: the class of the trivial
bundle when j = 0 and the class of the canonical line bundle over RP1 when j = 1.
However, as it was seen in [7] and [8], in the case j = 2 one has seven such classes. Each
one of these classes is identified by a non-zero list of three mod 2 characteristic numbers,
(a1, a2, a3), coming from the list of characteristic classes (w2

1, (F2), v2(F2), v2
1(F2)).

Specifically, we used β1, β2, β3, β4, β5, β6 and β7 to denote the stable cobordism classes
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corresponding to the lists (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (0, 0, 1), (0, 1, 0) and
(0, 1, 1), respectively (see Lemma 2.1 of [7] for an explicit description of these classes).
The bound m ≤ m(n − 2) + 4 works for any n > 2 and any βi and it was shown to
be best possible via an example with μ → F2 representing β4. Hence this suggests the
question of improving this bound for specific values of n and βi. Inspired in this setting,
we define the number

ϕ(n, βi) = maximum {m | there exists an involution (Mm, T) having fixed set of the
form F = Fn ∪ F2 and such that μ �→ F2 represents βi }.

In [7], we completely solved this question for n odd, showing that ϕ(n, βi) =
m(n—2) + 2 = n + 1 if either n ≡ 3 mod 4 and μ represents β2, β3, β5 or β6, or n ≡ 1
mod 4 and μ represents β1, β2, β6 or β7 and that ϕ(n, βi) = m(n − 2) + 4 = n + 3 in all
the remaining cases.

This paper considers the case n even. We completely solve the case in which n ≡ 0
mod 4. We also calculate ϕ(n, βi) in the cases:

(i) i = 3, 5 or 7 and n satisfies the fact that n − 2 = 2pq where q is odd and p ≤ q.
Note that if n ≡ 0 mod 4 then n is of this form.

(ii) i = 1 or 4 and n > 2 is any even.
Precisely, the results are summarized in the following table:

βi n even ϕ(n, βi)
β1 every n even m(n − 2) + 2
β2 n ≡ 0 mod 4 m(n − 2) + 4
β3 n − 2 = 2pq, where p ≤ q m(n − 2) + 2
β4 every n even m(n − 2) + 4
β5 n − 2 = 2pq, where p ≤ q m(n − 2) + 2
β6 n ≡ 0 mod 4 m(n − 2) + 4
β7 n − 2 = 2pq, where p ≤ q m(n − 2) + 2

The cases where n ≡ 2 mod 4 and i = 2 or 6, and where n − 2 = 2pq with p > q
and i = 3, 5 or 7, are left open. The difficulty in these cases consists in finding suitable
maximal examples.

Section 2 shows, via a characteristic number calculation, that the bound ϕ(n, βi) ≤
m(n − 2) + 4 can be improved to ϕ(n, βi) ≤ m(n − 2) + 2 for i = 1, 3, 5 and 7 (not
necessarily in the best possible way). Section 3, the key point of the paper, is devoted to
the construction of suitable maximal examples, which give the results of the table above;
in comparison with the odd case, the examples for n even require more sophistication.

2. An improvement for the bound ϕ(n, βi ) ≤ m(n − 2) + 4. First we establish
some notations and facts. As in Section 1, take an involution (Mm, T) with fixed
data of the form (η → Fn) ∪ (μ→ F2), where n > 2 is even and μ→ F2 does
not bound. Write W (Fn) = 1 + θ1 + · · · + θn, W (η) = 1 + u1 + · · · + uk, W (F2) =
1 + w1 + w2 and W (μ) = 1 + v1 + v2 for the Stiefel–Whitney classes of Fn, η,
F2 and μ, respectively. As described in Section 1, the cobordism class βi =
[μ→ F2] ∈ N2(BO(m − 2)) is determined by the non-zero list of characteristic numbers
(a1, a2, a3) = (w2

1[F2], v2[F2], v2
1[F2]), where [F2] is the fundamental homology class

of F2.
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LEMMA 2.1. If m > m(n − 2) + 2, then w2
1 = v2

1 .

As a consequence, one has

THEOREM 2.2. ϕ(n, βi) ≤ m(n − 2) + 2 for i = 1, 3, 5 and 7.

The following basic fact from [3] is needed to prove Lemma 2.1: the projective space
bundles RP(η) and RP(μ), with the standard line bundles λ → RP(η) and ν → RP(μ),
are cobordant as elements of the bordism group Nm−1(BO(1)). Then any class of
dimension m − 1, given by a product of the classes wi(RP(η)) and w1(λ), evaluated
on the fundamental homology class [RP(η)], gives the same characteristic number as
the one obtained by the corresponding product of the classes wi(RP(μ)) and w1(ν),
evaluated on [RP(μ)]. In this setting, a very special class plays a crucial role. This class,
denoted by X , was introduced by Pergher and Stong [10] to find bounds in the case
Fn ∪ {point}. With this same general aim, X was also used in [4] and [8]. We proceed
with the description of X and the proof of Lemma 2.1. Write W (λ) = 1 + c. From [2]
one knows that

W (RP(η)) = (1 + θ1 + · · · + θn){(1 + c)k + (1 + c)k−1u1 + · · · + (1 + c)uk−1 + uk},

where we are suppressing bundle maps. For any integer r, one lets

W [r] = W (RP(η))
(1 + c)k−r

.

Note that each class W [r]j is a polynomial in the classes wi(RP(η)) and c. Further,
these classes satisfy the following special properties (see [10], Section 2):

W [r]2r = θrcr + terms with smaller c powers,

W [r]2r+1 = (θr+1 + ur+1)cr + terms with smaller c powers.

Write n − 2 = 2pq, where p ≥ 1 and q is odd and suppose first that p < q + 1. In this
case, the class X is

X = W [2p − 1]q+1−p
2p+1−1.W [r1]2r1 .W [r2]2r2 · · · W [rp]2rp ,

where ri = 2p − 2p−i for 1 ≤ i ≤ p. If p ≥ q + 1, X is

X = W [r1]2r1 .W [r2]2r2 · · · W [rq+1]2rq+1 ,

where ri = 2p − 2p−i for 1 ≤ i ≤ q + 1. An easy calculation shows that X has dimension
m(n − 2); also, by using the properties of the classes W [r]j above listed, it can be proved
that X has the form

X = Al.cm(n−2)−l + terms with smaller c powers,

where Al is a cohomology class of dimension l ≥ n − 1 and comes from the
cohomology of Fn (see [8] or [10]). Now W [0]1 = θ1 + u1, and so dim(W [0]21.Al) =
dim((θ2

1 + u2
1).Al) ≥ n + 1 which comes from the cohomology of Fn. Therefore W [0]21.X

is a class in Hm(n−2)+2(RP(η), Z2) with each one of its terms having a factor of dimension
at least n + 1 from Fn. Thus W [0]21.X = 0. Since m > m(n − 2) + 2, one can form the
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class

W [0]21.X.cm−1−(m(n−2)+2),

which yields the zero characteristic number

W [0]21.X.cm−1−(m(n−2)+2)[RP(η)].

Our next task is to analyse the class associated to ν → RP(μ) which corresponds to
W [0]21.X.cm−1−(m(n−2)+2). Setting W (ν) = 1 + d, this class is

W [n − 2]21.(RP(μ)).Y.dm−1−(m(n−2)+2),

where Y is obtained from X by replacing each W [r]i by W [n + r − 2]i. The Stiefel–
Whitney class of RP(μ) is

W (RP(μ)) = (1 + w1 + w2){(1 + d)n+k−2 + (1 + d)n+k−3v1 + (1 + d)n+k−4v2}
= (1 + d)n+k−4{(1 + w1 + w2){(1 + d)2 + (1 + d)v1 + v2}}.

Then

W [n − 2](RP(μ)) = (1 + d)n−4{(1 + w1 + w2){(1 + d)2 + (1 + d)v1 + v2}}.

Since n ≥ 4 is even, (1 + d)n−4 has no terms of dimension 1, and thus W [n −
2]21(RP(μ)) = (w1 + v1)2 = w2

1 + v2
1. Denote by I the ideal of H∗(RP(μ), Z2) generated

by the classes coming from F2 and with positive dimension. Then W [n −
2]21(RP(μ)).v = 0 for each v ∈ I. This means that, in the computation of Y , one
needs to consider only W (RP(μ)) ≡ (1 + d)n+k−2 mod I and, for each integer l,
W [l] ≡ (1 + d)l mod I. For ri = 2p − 2p−i, i = 1, 2, . . . , p, set li = n + ri − 2 = 2pq +
2 + 2p − 2p−i − 2 = 2pq + 2p − 2p−i. Then

W [li]2ri ≡
(

2pq + 2p − 2p−i

2p+1 − 2p−i+1

)
d2ri mod I.

Also, if r = 2p − 1, l = n + r − 2 = 2pq + 2p − 1 and

W [l]2r+1 ≡
(

2pq + 2p − 1
2p+1 − 1

)
d2r+1 mod I.

The lesser term of the 2-adic expansion of 2pq + 2p is 2p+1. Using the fact that a
binomial coefficient ( a

b ) is non-zero modulo 2 if and only if the 2-adic expansion
of b is a subset of the 2-adic expansion of a, we conclude that the above binomial
coefficients are non-zero modulo 2. It follows that all classes W [r]i occurring in Y
satisfy W [r]i ≡ di mod I, which implies that Y ≡ dm(n−2) mod I. Since H∗(RP(μ), Z2)
is the free H∗(F2, Z2)-module on 1, d, d2, . . . , dn+k−3, we then have

W [n − 2]21(RP(μ)).Y.dm−1−(m(n−2)+2)[RP(ν)]

= (
w2

1 + v2
1

)
.dm−3[RP(ν)] = (

w2
1 + v2

1

)
[F2].

Putting together with the previous calculations on Fn, we get w2
1 = v2

1 and Lemma 2.1
is proved.
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3. Maximal examples. In this section we construct examples that, together with
the general bound ϕ(n, βi) ≤ m(n − 2) + 4 and its particular improvement given by
Theorem 2.2, provide the results displayed in Section 1. We will use εr → W to denote
the r-dimensional trivial vector bundle over any space W . As mentioned in Section 1,
in [10] Pergher and Stong constructed, for each n ≥ 1, maximal involutions (Vm(n), Tn)
with the fixed point set having the form F = Fn ∪ {point}.

THEOREM 3.1. For every n ≥ 4 even, ϕ(n, β1) = m(n − 2) + 2 and ϕ(n, β4) = m(n −
2) + 4.

Proof. First recall that β1 and β4 are characterized, respectively, by the lists
(1, 0, 0) and (1, 1, 1). Consider the involution (Vm(n−2) × RP2, T) given by T(x, y) =
(Tn−2(x), y). The fixed point set of T has the form (Fn−2 × RP2) ∪ RP2, and the
normal bundle of RP2 in Vm(n−2) × RP2 is εm(n−2) → RP2, which represents β1. This
gives ϕ(n, β1) = m(n − 2) + 2. Now consider the involution (Vm(n−2) × RP2 × RP2, T),
where T(x, y, z) = (Tn−2(x), z, y). Again the fixed point set has the form (Fn−2 ×
RP2) ∪ RP2, and in this case the normal bundle of RP2 in Vm(n−2) × RP2 × RP2 is
τ ⊕ εm(n−2) → RP2, where τ is the tangent bundle over RP2; this bundle represents
β4, which gives ϕ(n, β4) = m(n − 2) + 4 (this example was used in [8] to show that the
general bound ϕ(n, β4) = m(n − 2) + 4 is best possible). �

In order to obtain the next examples, we need the following:

LEMMA 3.2. Write n = 2pq, where p ≥ 1, q is odd and p ≤ q. Then, for each
0 ≤ r ≤ m(n), there exists an involution S : Vm(n) → Vm(n) commuting with Tn (thus the
isolated fixed point P of Tn is also fixed by S) so that the dimension of the vector subspace
of the tangent space of Vm(n) at P on which the representation of S acts as −1 is m(n) − r
(equivalently, the dimension of the component of the fixed point set of S containing P is
r; we say in this case that the representation of S on the tangent space to Vm(n) at P has
the form Rr

+ ⊕ Rm(n)−r
− ).

Proof. To construct the maximal involutions (Vm(n), Tn), Stong and Pergher used
an inductive procedure on p ≥ 0 starting at q ≥ 1. So the idea for constructing S
is to insert suitable involutions in the steps of the induction so that in the last step
we get the desired S. It was known that m(q) = q + 1 and (Vq+1, Tq) = (RPq+1, Tq),
where Tq([x0, x1, . . . , xq+1]) = [x0,−x1, . . . ,−xq+1] (see [11, Theorem 2.3, page 269];
note that the fixed point set of Tq is RPq ∪ {point}), and this is the first step of the
induction. The next step builds, from a previous involution (Mm, T) with fixed point set
of the form F = Fn ∪ {point} and with m < 2n + 1, a new involution (W m+2n+1, θ ) with
fixed point set of the form F = F2n ∪ {point}, in such a way that if m = m(n), then
m + 2n + 1 = m(2n). Since m(n) < 2n + 1 for p < q and m(n) ≥ 2n + 1 for p ≥ q, this
construction can be realized only for 0 ≤ p < q, which means that the last n attained is
n = 2qq. W m+2n+1 is the orbit space

W m+2n+1 = Sk × Mm × Mm

K
,

where Sk is the k-dimensional sphere, k = 2n + 1 − m and K(x, y, z) = (−x, z, y).
On Sk × Mm × Mm we define the involution U × T × T , where U(x0, x1, . . . , xk) =
(x0,−x1, . . . ,−xk). This involution commutes with K and then induces an involution
on W m+2n+1, which is our θ . If P is the isolated fixed point of T , [((1, 0, . . . , 0), (P, P))]
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is the isolated fixed point of θ (see [ 10, Section 4, page 83] for the details concerning the
computation of the fixed point set of θ . In fact, besides F2n ∪ {point}, θ has two more
n-dimensional components whose normal bundles are cobordant; then, up to
cobordism, they can be eliminated. These components have no influence in the
argument, which involves only the isolated fixed point).

To insert suitable involutions, first define, for 0 ≤ r ≤ q + 1, the involution S :
RPq+1 → RPq+1 given by S([x0, . . . , xq+1]) = [x0, . . . , xr, ,−xr+1, . . . ,−xq+1]. Then S
commutes with Tq and the isolated fixed point P = [1, 0, . . . , 0] of Tq belongs to
the component of the fixed point set of S given by RPr = {[x0, . . . , xr, 0, . . . , 0]}.
This means that the representation of S at P is of the form Rr

+ ⊕ Rq+1−r
− . Now

consider the involutions (Mm, T) and (W m+2n+1, θ ) as above described, and inductively
suppose one has an involution S : Mm → Mm commuting with T and having
representation of the form Rr

+ ⊕ Rm−r
− at the isolated fixed point P of T . Denote

by Dr ⊂ Mm the r-dimensional component of the fixed point set of S that contains
P. On Sk × Mm × Mm we consider the involution L × S × S, where L(x0, . . . , xk) =
(x0, . . . , xj,−xj+1, . . . ,−xk) and 0 ≤ j ≤ k. This involution commutes with K and then
induces an involution S on W m+2n+1. The component of the fixed point set of S that
contains the isolated fixed point [((1, 0, . . . , 0), (P, P))] of θ is

Sj × Dr × Dr

K
,

where Sj ⊂ Sk consists of the points of the form (x0, . . . , xj, 0, . . . , 0). This component
has dimension j + 2r, which means that S has representation of the form Rj+2r

+ ⊕
Rm+2n+1−j−2r

− at the isolated fixed point of θ .
Now note that, by starting either at 0 or at 1, we attain any natural number

r ≥ 0 after an iterated number of steps by either doubling or doubling and adding
1 in each step. To see how to proceed in each step, write r = 2p1 q1 = 2p1 ((q1 − 1) +
1) = 2p1 (2p2 q2 + 1) = 2p1 (2p2 ((q2 − 1) + 1) + 1) = 2p1 (2p2 (2p3 q3 + 1) + 1) = · · ·, where
pi ≥ 0 is even and qi is odd. To end the proof, we use this principle and our inductive
construction of S with r = 0 or 1 and j = 0 or 1. �

THEOREM 3.3. For n ≥ 4 even, where n − 2 = 2pq with p ≤ q, and for every βi, there
are examples of involutions (Mm, T) with fixed data of the form η → Fn ∪ μ→ F2, where
βi = [μ→ F2] and m = m(n − 2) + 2. In particular, ϕ(n, β3) = ϕ(n, β5) = ϕ(n, β7) =
m(n − 2) + 2 when n − 2 = 2pq with p ≤ q.

Proof. For 0 ≤ r ≤ m(n − 2), take an involution S : Vm(n−2) → Vm(n−2) commuting
with Tn−2 so that its representation on the tangent space to Vm(n−2) at the isolated
fixed point of Tn−2 has the form Rr

+ ⊕ Rm(n−2)−r
− . Consider the closed (m(n − 2) + 2)-

dimensional manifold given by the orbit space

Vm(n−2) × S2



,

where 
 is the involution 
(x, y) = (S(x),−y). On this manifold one has the involution
B([x, y]) = [Tn−2(x), y], whose fixed point set is

(Fn−2 ∪ {point}) × S2



= Fn−2 × S2




⋃
RP2
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and has in this way the form Fn ∪ F2. The normal bundle of RP2 in

Vm(n−2) × S2




is (m(n − 2) − r)ξ ⊕ εr → RP2, where (m(n − 2) − r)ξ → RP2 is the Whitney sum of
m(n − 2) − r copies of the canonical line bundle ξ over RP2. Since n ≥ 4, m(n − 2) ≥ 5
and in particular this can be performed for r = m(n − 2), m(n − 2) − 1, m(n − 2) − 2
and m(n − 2) − 3. Using the fact that the Stiefel–Whitney class of (m(n − 2) − r)ξ is
W = (1 + α)m(n−2)−r, where α ∈ H1(RP2, Z2) is the generator, we can see that these
values give examples (Mm(n−2)+2, T) realizing β1, β2, β3 and β4, respectively. Now note
that if (Mm, T) and (Nm, S) are involutions having fixed set of the form Fn ∪ F2,
and in such a way that μ �→ F2 represents βi for (Mm, T) and βj for (Nm, S), then
(Mm, T) ∪ (Nm, S) has still fixed set of the form Fn ∪ F2 with μ representing βi + βj;
also, the sum of cobordism classes of bundles is compatible with the sum mod 2 of the
corresponding characteristic numbers. Then, by summing the obtained examples, we
obtain examples for every βi, which ends the proof. �

The following theorem solve the question of computing ϕ(n, βi) for every βi and
n ≡ 0 mod 4.

THEOREM 3.4. For n ≥ 4 and n ≡ 0 mod 4, one has

ϕ(n, βi) =
{

m(n − 2) + 2, if i = 1, 3, 5 or 7,
m(n − 2) + 4, if i = 2, 4 or 6.

Proof. Because of Theorem 3.1, for i = 1 or 4 there is nothing to prove. Write
n = 4t, where t ≥ 1. Since 4t − 2 is of the form 2pq with p ≤ q, Theorem 3.3 covers
the cases i = 3, 5 and 7. Therefore, since β2 + β4 = β6, it suffices to exhibit a maximal
example (Mm(n−2)+4, T) for i = 2. Write j = t − 1, that is, n = 4j + 4 with j ≥ 0. Note
that

m(n − 2) + 4 = m(2(2j + 1)) + 4 = 3(2j + 1) + 2 + 4 = 6j + 9.

Consider the Dold manifold

M = P(2j + 5, 2j + 2) = S2j+5 × CP2j+2

θ
.

Here, CP2j+2 is the (2j + 2)-dimensional complex projective space and θ is the
involution θ (x, y) = (−x, y), where y means complex conjugation. Note that the
dimension of M is 6j + 9. On M one has the involution T : M → M induced by
U × L, where

U(x0, x1, . . . , x2j+5) = (x0, x1, x2,−x3, . . . ,−x2j+5)

and

L[z0, z1, . . . , z2j+2] = [z0,−z1,−z2, . . . ,−z2j+2].

To find the fixed set, one looks at (U(x), L[z]) = (x, [z]) and (U(x), L[z]) = (−x, [z]).
If (U(x), L[z]) = (x, [z]), x = (x0, x1, x2, 0, . . . , 0) ∈ S2 and [z] ∈ CP0 ∪ CP2j+1, which
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gives the fixed component

S2 × (CP0 ∪ CP2j+1)
θ

= S2

A

⋃ S2 × CP2j+1

A × C
,

where A is the antipodal map and C is the complex conjugation; that is, this fixed
component is RP2 ∪ P(2, 2j + 1), which has the form RP2 ∪ Fn. On the other hand, if
(U(x), L[z]) = (−x, [z]), x = (0, 0, 0, x3, x4, . . . , x2j+5) ∈ S2j+2 and [z] ∈ RP2j+2, where
RP2j+2 ⊂ CP2j+2 consists of the points of the form [r0, ir1, ir2, . . . , ir2j+2] with ri real
(that is, the points [z0, z1, z2, . . . , z2j+2] with z0 = r0 real and zp pure imaginary for
p > 0). This gives a fixed component

S2j+2 × RP2j+2

A × C

of dimension 4j + 4 = n. That is, the fixed point set of (M, T) has the form Fn ∪
RP2. To find the normal bundle of RP2 in M, first denote by ξ → P(2j + 5, 2j + 2)
the real canonical line bundle coming from RP2j+5 and by η → P(2j + 5, 2j + 2) the
complex canonical line bundle coming from CP2j+2. If P(p, t) ⊂ P(2j + 5, 2j + 2) is
a canonically embedded Dold-submanifold of P(2j + 5, 2j + 2), with p ≤ 2j + 5 and
t ≤ 2j + 2, it is known that the normal bundle of P(p, t) in P(2j + 5, 2j + 2) is (2j +
5 − p)ξ ⊕ (2j + 2 − t)η, where ξ and η are restrictions of the previous ξ and η, and the
natural numbers express Whitney sums. For t = 0, the total space of η → P(p, 0) is

Sp × CP0 × C1

A × C × F
= Sp × IR2

A × F
,

where IR2 (∼= C1) is the euclidean two-dimensional space and F(x, y) = (x,−y). Then,
over P(p, 0), η reduces to ξ ⊕ ε1, and the normal bundle of P(p, 0) in P(2j + 5, 2j + 2)
reduces to (4j + 7 − p)ξ ⊕ (2j + 2)ε1. Since our RP2 is

S2 × CP0

A × C
= P(2, 0),

the normal bundle of RP2 in M is then (4j + 5)ξ ⊕ (2j + 2)ε1 → RP2. Since 4j + 5 ≡ 1
mod 4, this bundle represents β2 and the result follows. �

REMARK. Although easy, it is illustrative and curious to give a numerical example
to compare the bounds cited in Section 1. Take n = 288; in this case, the Boardman’s
bound is 720. For the case F = Fn ∪ Fj, the (best possible) bounds are 573, 290 and
432 for j = 0, 1 and 2, respectively. In this paper we have seen that, for j = 2, the bound
m = 432 can be improved to m = 430 if [μ→ F2] = β1, β3, β5 or β7.
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