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1. Introduction

If we think of the input to a queueing system as arising from some
process and depending on the history of that process, we might well expect
the duration of inter-arrival intervals to depend mostly on the recent
history and to a much smaller extent on that which is more remote.

The simplest model incorporating such behaviour is where the nth
inter-arrival interval 7, is given by

tn = un;

where {u,} is a sequence of identically and independently distributed
non-negative random variables. This is the well-known case of a general
recurrent input. The next simplest model has

Tp = un+1+ﬂun:

where # is a constant. This model has been considered for negative ex-
ponential services and a single server by Finch [1] and by Finch and
Pearce (2].

This paper extends the results of [2] to the more general case of a
moving average of order p > 1.

We consider a single server queueing system in which

(i) customers arrive singly at the instants 0 = 4, < 4, <4, <+,
where the time between the arrivals at 4,, and 4,,,,

(1'1) Am+1'_Am = bOUm+p+b1Um+p—l+' : '+bDU‘m’ m =0,

where the b, =0, 1, ---, p, are non-negative constants with sum unity
and {U,} is a sequence of independently and identically distributed non-
negative random variables with common distribution function

Az)=PU, < 2), m=0 =0,
such that
223
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f:o xdd (x) < oo,
and
(ii) the service time of the (m--1)th arrival is S,,, where {S,} is a
sequence of independently and identically distributed random variables,
and
P(S,, =) = l—exp (—ux), x=0, u>0.

If we denote by PT*, 1 = 0, m = 0, the probability that the arrival
at A4,, finds exactly j customers already in the system, then by the results
of Finch [1],

P, = lim P}, j =0,
m— 0o
exists. In fact, general formulae are obtained in [1] for the P, which are
applicable for any input process. In an attempt to simplify these for a
moving average input of order two, i.e., where

(1.2) Api—Apm = Uiy +Un

in the notation of (1.1), Finch made use of a heuristic symbolic method
which provided very simple expression for the probabilities P;.

The conjectured form of solution for a moving average input of order
two was investigated rigorously in a paper by Finch and-Pearce [2]. It
was found that whilst the form of the solution obtained in [1] was con-
firmed, the value found for a constant characterising the solution was
incorrect.

This paper generalises the results of [2] to a moving average input
of arbitrary order, and also confirms that the limiting queue length prob-
ability distribution is, after the first few probabilities, geometric in
form, as follows from the heuristic method. The initial probabilities will
not in general agree, as those in the heuristic solution depend only on
vy (a function later defined), whereas the present solution involves also
derivatives of . 2

When the U,, have an arbitrary common distribution function 4 (x),
the particular constants involved in the limiting distribution seem to
have no simple form and they are not obtained explicitly in this paper,
although equations are given sufficient to determine their values. The
case of a moving average of order three is considered in detail as an il-
lustration.

Our starting point is the set of recurrence relations expressing the
probabilities of the (#n+41)th arrival finding a given number of customers
already in the queue in terms of queue length as found by the preceding
arrival. From these we obtain an equation relating the corresponding
probability generating functions, but involving unwanted extra terms
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which we handle by a complex variable argument, working with Laplace-
Stieltjes transforms of the quantities concerned. Having found the func-
tional form of the limiting distribution of queue length by these means,
we consider the determination of the constants involved from the initial
recurrence relations. The procedure of determining the solution fully is
illustrated by the case of a moving average of order three.

2. Definitions and preliminaries

We employ similar notation to that of [2]. Capital letters are used
to denote random variables and the corresponding lower case letters for
particular values taken on by these variables. The (n+-1)-tuple (%, %,,**,4,,)
is represented by #(® and the corresponding vector random variable
(Uy, Uy, - -+, U,) by U™,

P,(u»+?-1) 4 > 0, is the conditional probability, given U™ = u(™,
that the arrival at A4, finds exactly j customers already in the system.
EP,(Utr+»-1) is the (unconditional) probability that the (»-1)th arrival
finds § customers in the system.

The probability, %;(z,, #,, -, «,), of § departures from the queue
during an interval byz,+b,%, ,+- - +b,7,, given that at the beginning
of the interval the queue length was at least 41, is given by

ki(xzg, 2y, * -0, ) = [{u(box, +0,25 + -+ - +b,%0) ¥/i!]

X exp {_lu’(bozﬂ_l_blxﬁ—‘l_l_ e +bpx0)}» i g 0’
and since

zkt'(xOI Xy, "% wr) = I’

=0
it follows that the probability K,(z,, ,, - - -, #,) of j departures during the
interval byz,+b,x, ;+- - -+b,%,, given that the queue length was j at
the beginning of this interval, is given by

oo
K;(@o, @1, - -7, 7,) = Z_ki(xo» Ty, "0y Bp).
t=2
The generating function of the %,’s is

o0
R(zg, 2y, -+, 2,5 2) =D kg, @1, "+ +, 2,)2¢
i=0

= exp {—(1—2)p(0e%,+b,2, 1+ - - - +,%) }-
We denote by

P(u(n+p—1); z) — Z Pi(u("*”_l))zi, |2] <1,

=0

the generating function of the P,(»!"+*-1), and its integral transform by
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P*(s®; z;n) = E[P(U"+7D; 2) exp (—5,U nip1—S5-1Unsps— - —51UL)],.
2 =1, Res; = 0, t=1---p,
P} (s, n) = coefficient of z' in the power series of p*(s'?; z; n).
We shall also need

00
Cci(utt?~1)) = %Pj(u(”+p—l))ki+i+l(un: Uil " s Ynin)s 120,
Je=

and its integral transform
¢t (s®;m) = E[c(U*) exp (—$,Upypr—" " —5.Un) ],
Res, =0, 1=i=<5p.
By the methods of [1] it can be shown that provided

o 1
xdA (x) > —,
(2.1) fo #
P, = lim E[P,(Utr+r-D), i=0,

exists and forms a proper probability distribution, and that

B(wl’ Wy, **° Wy, Z) = lim E[P(UO) Ul: Y Uﬂ—l’ Up, Upi1r* " un+p—1;z)]'

n-» 00

where the particular values w,, #,,,, ", %,,, 1 are w;, wy, ** -, w,,
exists for |z| = 1 and is the generating function of a probability distribution.
We write for its integral transform

(2.2) P*(sw;z) = E[P(W®);z) exp (—s,W,—s,_W,_1— - —s,W;}],
2] =7, Res; =0, 1=:=9p,

where the W,, 1 =< ¢ < p, are identically and independently distributed
random variables with common distribution function 4 (z).

We define
c¥(s®) = lim ¢ (s'?; n),
(2.3) e
c(s®;2) =3 (1—2%)cf(s®), |2/ <1, Res; =20, 1=i=p.

=0
It follows from (2.1) by use of Rouché’s theorem that the equation
(2.4) z2 = p(l—2),
where

p() = [ exp (—pau)dd (u),

has a unique solution inside the unit circle. This we shall denote by T.
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By putting z =1 in (2.2) we bbtain
(25) P*(s; 1) = pls,/u)pls,afu) - - p(sifu), Res, =0, 1=i=p.

3. Fundamental equations

It follows from the departure probabilities given in the last section that
(31) Pi(u(ﬂ+9)) = 2 Pl+i—1(u(n+p-l))ki(um Y un+1")’ n =0, 7 =1,
=0

oo
Po(u™9)) = 3 Py(u"™ P V)K 1 (#h, heys, " * ) Ynss)s n=0.

=0

We note that

(3.2) S c,um) = Py(utnin),
=0

Forming the product of the power series k(%,, %,.1, " * " %pip; 2),
P(u(n+#-1); z) and using the equations above, we obtain

P(“(""”); z) — § (l_z—i)ci(u("+9))+2P(u(”+ﬁ-l); z)
{0
X exp [— (1_'z_l).“(boun+1a+blun+p—l+' ‘ '+b9un)]

for |z] <1, z # 0. Hence

P*(s9; z; n+1) = § (A—z"%)c¥(s®; n+1)

im0
(3.3) +2P*[(1—2Y)uby+-5p40, -0, (=27 V) pby_y 451, (1—271)pby,; 2; 1]
X p{bo(1—2"1)+5,/u}

for 2/ =<1, 2#0, Res; =0 (t=1,2,---,p), Re[(1—z)ub;+s,_;] =0
G{=0,1,---,p—1), Re[(1—2z1)ub,] = 0. These conditions are satisfied
if z lies both in or on the unit circle and outside or on the circle with centre
(%, 0) and radius 4, with the origin deleted. We denote by R this domain
of the z-plane.

Letting n — o0 in (3.3) gives us

PA(s9); 2) = o{s); 2)+2p{(l—z1)by+5,/u}
(3.4) X P¥(1—z)pby+s, 4, * o) (1—27 )by g +8y, (1—27)udy; 2],
Z€R, Res, = 0, 1=1<p.

https://doi.org/10.1017/51446788700004808 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004808

228 C. Pearce ()]

4. Solution for P*(s®@; z)
Substitution of

s = (=2 Nub,, sy = (1=2)pu(by1tby), - -,
$p = (L—21)u(b+- - - +b,)
in (3.4) yields

P*(1—z)p(by+ -+ +8,), (1—27"ulbo+ -+ +b,), -+, (1—27)ub,; 2]
(¢1) = M=zl - ,), -, (L= )by 2]
[1—zp(l—2z71)]7L, 2 e R.

Also, if we replace s, s, 1, "+, s, by

(=2 Nuby+s, 1, A=z ubyts, 5, « -, (1—27)ub,

respectively and substitute in (3.4), we obtain

PH(1—z )by +5,, * -, (1—z71)ud,; 2)
= c[(1—z)uby+s,q, - -, (I—271)ubd,; 2] +29[(1—271) (Bo+b1) +5,-1 /K]
X P*[(l_z—l):u(bl‘*'bz)_f_sp—z’ Y (l_z_l)‘u(bp—l_i_bp)’ (1_2_1)/‘bp; Z],
ze R, Res;, =0, 1=12...,p.

By making substitutions in this equation analogous to those in (3.4), and
proceeding recursively in this manner, we find that

P*(s®; 2) = c*(s?; z) +2p{(1—271)bp+5,/u}
X [e*{(1—z"")ubs+5, 4, * -y (L—2"uby s 451, (1—27")ub,; 2}
+2yp{(1—27) (bo+01) + 5,1 /14}
X [*{(1—2)pu(by+bo) +Spop, * o s (1—27)pa(by—y+D,), (1—27")uiby; 2}
(4.2)  +2p{(1—27")(bo+b1+02) +5, 2 u}

X (*{(1—=z (bt - +b,), -+ o, (L—271)puby; 2}
X 1—zp(—z)] 1] -~ ],
z2€R, Res; = 0, 1=12---p,
the last term arising from the use of (4.1).
Writing the right hand side of (4.2) as D(s®; z), consider the function
F(s™; z) defined by
(1—=T2z)P*(s;2), |2/ =<1, Res;, =0, 1=:=<p,

F(s®: z) =
(s 2) { (1—Tz)D(s®;2), |2/ =1, Res; =0, 1=1¢=p.
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Since P*(s; z) is the generating function of a probability distribution,
P*(s'"; z) and hence F(s*?; z) must be a regular function of z for |z| =1,
Res;, =0,71=1,2,---, 5.

Also, since the only zero of 1—zyp(1—2z~1) outside the unit circle is
that of 1—Tz, F(s'®; z) must be a regular function of z for 2| = 1, Res; =0,
i=1,2-- 5.

Hence, by analytic continuation, F(s; z) is a regular function of z
for all finite z for Res, =0, 1 < ¢ < 5.

It can be shown from (2.3) and (3.2) by Abel’s theorem that ¢(s®; z)
converges to >, c¥(s) as z— o0, so from (4.2) lim,, ., F(s®;z)/z" exists,
in fact being given by

lim F(S(P); Z)

=00 22

X [Zlc?{:u(bl_l"' : '+bp—1)+slr Y Aubp}

Z 00

= —Tp(bo+5,/m)p(bo+b1 45, 1/pt) < - - 9 (Bo+b1+ -+ +by_a+Sa/1t)

—'/’(bo+b1+ tet +bp—-1+31/;u) [glc?{;u(bl'}" Te +bp)’ S .ubp}] X {1/’(1)}_1]'
Res; =0, 1579

Since a function 6(z) which is analytic for all finite z and 0(|z*]), %
a non-negative integer, as z — o0 is a polynomial of degree at most %,
F(s; z) must be of the form

F(sW;2) = F (s®z?+F,_,(s®)z? 14 -+ F(s"®), Res, =0, 1=5i=p,
where the F,(s'?’) are functions of the s; alone. Thus
P*(s9); z) = [F (s®)2P4 - - - +Fo(s'?)][1—-T2]"%, Res, =0, |21,
or, more conveniently
(4.3) P*(s®;z) = B, (s®)z?1+- - -+ B,(s?®) 4+ B(s®)(1—zT) ",

Res, =0, [z =1

When we put s,=s, ;="':-=s, =0, P¥(s®;z) becomes the
generating function >3, P,z of the limiting distribution of queue size
and the functions B,(s'®) and B(s”) reduce to constants B,, B. The
generating function of the limiting queue length distribution is thus given by

(4.4) S Pt = B, 14+ - + 4 Byt B(1—2T)

i=0

This is a probability distribution which assumes a geometric form from
P, onwards, the common ratio being 7.
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5. Determination of the B (s®).

From (3.1)
P =3 5 P e,
=0 15,8, ", 1, =0,1, %
b L
T [exp (b L200022], izl
k-o,l,"',? lk!

where the summation on the /, is over non-negative integers subject
to the restriction 3%_, 7, = .

Hence
* Q(=m) e .,
PP(s®), e oynt1) =3 ——— — [P 1(0b1+5,-1, 0by+s, g, *, 0by_y +5y, 0b
Py 1! 30"
X '/){(Ob0+sp)/.“}]» Re S g 0: ? g

Letting # — oo and using (4.3), we see that for j = p+1

BT = 3 M 2 1piab,ts, ., obyts, g - - -, 0by)TH
i-p 4! Ocf
(5.1) X p{(0bo+5,) B} omp
= B{p(1—T)by+s,_y, #(1—T)bg+5,5, * = -, p(1—T)b,}T"*
X p{(1—T)bg+s,/p}, Res; 20,
whence
B(s™)
= T*p{1—T)bo+s,/upp{(1—T) (bo+b,) +5,1/1}
(5.2) P{(1—=T)(bg+ 014 - - +b,_1)+5:/88}
X B{u(1—T)(by+: - *+b,), u(1—T) (g4 - = +8,), - - -, p(1=T)b,},
Res; = 0.

Working similar to the above for 1 <7 < p—1 yields

By (uby+5$y,1, #byt5,-9, * 0, wby 1151, b))y (0o t5,/u) = 0, Res, =0,
B, \(s®) = B, y(uby+5,-1, * * ) 4by)p(bot-5,/1)

0
+ (—,u) —3; [Bp—l(ab1+sp—l' Y ab,)ip{(abo+s,)/p}],_,,
Res, =0,
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By a(s®) = (Byoa)obyrtsyen, - b Ypl(obyr-s, )
() 5 (Byealobyt s - 0B (b, )]
(2

2| % [Bﬂ—1(0b1+39—1’ "t pr)’/’{(abo'l‘sg)//‘}]]g,p.
. Res, =0

+

Bl(s(p)) = [BO(Gbl+sp—1' Y pr)w{("bo“‘%)/ﬂ}
+ ...
(_‘u)z)—l or—1

+ (p__ﬁ—l— EF; [B’_l(abl_‘_sl’—l’ Y Ubﬁ)w{(gbo_*—sp)/‘u}]]v-pl
Res; = 0.

The now familiar recursive substitution procedure when applied to the
second of these equations provides an expression for B, ,(s*’) in terms
of B, , and its derivatives, evaluated at various arguments involving
the s;, similar functions of y, and B,_,; evaluated at a constant argument.
If B, ,(s) is known this suffices for the determination of B,_,(s).

Substituting for B,,,(s®) (known in terms of B, _,, known functions,
and a constant) in the third equation gives an expression for B, ,(s) in
terms of B, 3 and its derivatives, known functions, and a constant.

Proceeding in this fashion expressions are provided for B,_,(s*?),
B, 5(s®), -+, Bi(s®) in terms of By(s'”) and its derivatives, known
functions, and a set of constants. Use of these expressions, (5.2) and

p—1
(63)  w(sp/u)p(spafp) = - - (sy/p) = X Bi(s™)+B(s™)(1—T),
i=0
Res, =0,

an equation which results directly from (4.3) and (2.5), leads to a solution
for the B,(s*®) and B(s'®).

Putting s;, = 0,7 =1, 2, - - -, p in (4.3) then gives directly the limiting
queue length distribution as found by customers entering the system.
There does not seem to be a simple general form of solution, but it can
be seen that the solution will normally involve the derivatives of y as
well as g itself.

6. Moving average of order three

In this case P*(s'®;z) is of the form
P*(s@; 2) = B,(s®)z+ By(s®)+B(s®)(1—T2)1, Res, =0,
where T is the (unique) root within the unit circle of
T = y(1-T).
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The equations determining the solution become

(6.1) B,(uby+s,, by) = 0,

(6:2) Bu(s) = plbotsi) | Bolob-+s1, b +(—) o= Baloby-ts,, oby)|

Res; _;_-6,

(6.3) By(s)4 By(s®)+ B(s®)(1—-T)~ = p(sy/u)p(sifu),  Res, 20,
(6.4) B(s®) = T2p{(1—T)bo+s5/}p{ 1 —T) (bo+5,) + 51/}

B{u(1—T)(by+b,), u(1—T)b,}, Res; 2 0.

From (6.3) and (6.4),
By(s®) = p(safp)y(s1/u) — Bo(s)
(6.5) —(1=T)7 T 2p{(1—T)bg+Sofulp{(1—T) (bo+b1) +51/u}
X B{u(1—T)(by+b,), u(1—T)b,}, Res;, = 0.

Recursive substitution for B; in (6.2) shows us that B;(s'®) is of
the form

(6.6)  By(s®) = p(1+5,/u)[Bo(uby+s1, uby)+ayp(be+b1+s1/p)],

where a is a constant. Substituting s, = ub, in (6.5) and making use of
(6.1) and (6.6), we find that

By(s®) = p(so/u)yp(sy/p)— 1—T)*T
P{(1—=T)bg+s2/p}p{(1—T) (bo+b1) + 81/}
(6.7) X B{u(1—T)(b,-+b,), .“(1“'T)bz}"'l’(bo+$2/;“)a'P(bo+b1+31/“)
~p(bo+sa/1e) [ (b1 451 1) 9 (bg) — (1—T) T 2p{(1—T)by+b,+5,/u}
X p{(1~T)(bo+b,) +b} B{u(1—T) (b +b,), u(1—T)by}], Res,; 20,

B\ (s*?) = p(bo+so/u) [ay(bo+ b3+ 51/1) 1 (by+51 /1) (By)
(68) -+ (1—T)T-2p{(1—T)boby-+su}
{(1—T) (b +5,) +b2}B{/‘ (1—T)(by+52), p(1—T)bs}], Res,=0.

A little algebraic manipulation now enables us to find the two constants
a and B{u(1—T)(b,+b,), u(1—T)b,} required for our solutions (6.5),
(6.7) and (6.8) for B(s'®’), By(s*?) and B,(s?’) to be completely in terms
of known quantities. From (6.8), (6.1) we see that
69y ¢ = ~BMIIpOrtb)p(bs) + (1=T) 3T Hp{(1—T)by+b,-b3}
P{(1—T) (Bo+21) +b5} Bl 1~—T)(b1+bz)ﬂ(1 —T)by}],

and using this expression to simplify the working, we derive from (6.8) that

https://doi.org/10.1017/51446788700004808 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004808

[11j A queueing system 233

(—n) [—a— — By (oby+s,, abz)] — —byp(Bo-t-by+sy/u) ey’ (1)
o=p

oo
+9' (b1 1+2)p(Bs)
+Q=T)""T%'{(1-T) o+bl+b2}w{(1—T)(bo+b1)+bz}
B{u(1—T)(by+b)u(1—T)b,}1, Res; =0,

so that from (6.6)

a = [1+b,9'(1)]71(—b )[w'(bl-i-b (Y,
+Q1-7)7T- 2'/’{ (1=T)by+b,+by}p{(1—T) (bo+5,) + b} B{u(1—T)
(03+b5), p(1—T)b,}].

Hence from (6.9) we derive

a = [1+4byy' (1) =boy'{(1—T) Ybo+b1 4o}y (1)1
(6.10) X [—by9' (by+02) 9 (be) —y' {(1—T)bo+b1 405}
(b1+b ( '/’{ (1-T) bo+b1+b2}]

T~ 2B{u(1— ) (by+05), #(1—T)b,}
= (1=T)[y'{(1—T)by+by+b}p{(1—T) (bo+b,) +b2}]*
X [—' (by+by)p(b) — b3 {14-b59' (1)}
X {1+by9'(1) bz'/’{ (1—=T)by+b,+ba}p (1)}
X {—bay’ (b1+b2)p( —y'{(1-T )bo+b1+ b}
(b +ba)y (ba)p{(1—-T )bo+b1-+b,}].
The limiting queue distribution is thus

2 P2 =1—(1-T)p(1—T)p{(1—T)(by+51)}
T-2B{u(1—T) (by+85), n(1—T)bg}
—ayp(bo)p(bo+b1) —(0o) [y (61)y (b2) — (1—T) p{(1—T)bo+ 5}
X p{(1—=T) (bo+b,) +02}T2B{pu(1—T) (b1 +bs), u(1—T)b,}]
+2(bo) [y (bo+01) +9(81)p(Bs) + (1 —T) {1 —T')by+ by}
X P{(1=T) (bo+b,) + b} T 2B{u(1—T) (b,+b,), #(1—T)b,}]
—I—(I—TZ)_I'P(I— Jp{(1—T)(b+5,)}
T2B{u(1—T) (b, +0b,), p(1—=T)by}, |z =1,

where the constants a and T-2B{u(1—T)(b;+b,), u(1—T)b,} are given
by (6.10) and (6.11)

(6.11)

7. Waiting time distribution

In [3], Loynes considers the possibility of determining the stationary
waiting time distribution of single server queues in which inter-arrival inter-
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vals and service times are not necessarily independently distributed, and
under mild restrictions finds techniques applicable to a wide class of
queueing systems.

In this section we deduce the form of the limiting waiting time distri-
bution for the general moving average queue with negative exponential
service and compare this with results in [3].

We denote by S, T, W,, respectively the service time of the arrival
at 4,, the length of the interval (4, 4,,,), and the waiting time (excluding
service) of the arrival at 4,,.

Loynes shows in [4] that under the conditions that {S,—T,} is a
strictly stationary process and

(1.1) E(S,—T.,) <0,

the existence of a unique limiting distribution of waiting time is ensured.
In the present problem this condition becomes (2.1), our condition for the
existence of a unique limiting distribution of queue length, as one would
intuitively expect.

The class of systems dealt with in [3] consists of queues for which:
9. There exists a sequence {z,} of random vectors defined in finite-dimen-
sional Euclidean space with the following properties:

(i)  {za,» Tn, S.} is a strictly stationary process,
(i) S, T, W, are conditionally independent given z,.,, z,,
(i) W,, z, are conditionally independent given z,_,.

(One can regard the components of the 2’s as being of the nature of the
additional variables introduced in a queueing problem to recover the Mar-
kovian property, as in D. G. Kendall [5].)

We introduce

$(s, 2,) = [ exp (—s2)d, Pr (0011 S al2),

and similarly (s, z,), H(s, 2., 2.—y), G(5, 24, 2,,;) corresponding to
W, +S,+T,—w,y, S,., T,, respectively.

Loynes shows that the Laplace-Stieltjes integral form of the equation
here corresponding to the ordinary stationary waiting time integral
equation is

(7'2) 1—11’(5: Z,,) = ¢(S, Z,J—E[q&(S, zn—l)H(s» Zp» Z,,_l)G(———S, Zns zn-—l)]zn]-

This equation is set up only for s on the imaginary axis, but it is often
possible to continue H and ¢ analytically into the left half plane. Presuming
H can be so continued to give a single valued function analytic everywhere
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in the left half plane except for isolated singularities, the following theorem
is derived:

If (7.2) has a solution B(s, z,) such that

(i) B(s, z,) is, for fixed z,, the analytic continuation of (s, z,),

(i) a(z,), such that, for fized z,,lim,  exp (as)B(s, z,)[s exists with
value zero (in the left half plane), and

(iii) for fized z,, the analytic function composed of ¢(s, z,,) and B(s, z,)
is regular everywhere except for poles, then x for x = a, pr (w,,, < x|2,)—1
is a finite sum of terms of the form

k-1

(7'3) zgr(zn)x' €xXp (—bx)’

r=0
where —b is a pole of B of order k. These poles may depend on z,, but in any
case Reb = 0.

It is readily verified that z, = (#,.,, %n4p—1, * - *, %,) suffices for H
to be satisfied.

With negative exponential service of parameter x and the above
choice of the 2’s, H{s, z,, 2,_,) becomes u(u+s)~, independent of z,,, z,_,.

A subsidiary result in [3] gives that the conditions (i) and (ii) of the
main theorem are satisfied with @ = 0 when H is a rational function of s
and is independent of the z’s.

We now derive the form of (unconditional) limiting waltlng time
distribution directly from (4.4).

If an arrival finds the queue empty, he begins service immediately.

If on arriving he finds § > 0 customers already in the queue, we have

pr (waiting time < &) = pr (j services completed in time < x)
i-1
= 1—exp (—uzx) Y (ux)/i!, x = 0.

=0

Hence the (unconditional) waiting time distribution for an arrival is

Pr(wéx)=Po+ZlP;[1 —exp (—puz) z(ﬂx/”]

(1.4) = 1—exp (uz) 3 (Z B,) (uz)'l5!

J=0 j§=0
—BT(1—T)'exp{—pux(1—-T)}, p=2 =z=0,
using (4.4).
This is the sort of expression that would arise from (8.3) on integrating
out z, if B(s, z,) were in fact analytic everywhere except for poles at —u,
—pu(1—T) of orders p—1 and 1 respectively, both independent of z,. That
—u should be a pole seems natural from (7.2), since
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$(S, 2n) = plpts)7?

has a pole at s = —pu. The possibility is left as hypothesis.

We observe that when p = 1, i.e. when we have a general recurrent
input, the terms in (7.4) involving the B,’s do not appear, and the distribu-
tion becomes negative exponential together with a weight at the origin,
a fact noted by Smith [6].
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