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REWRITABLE PRODUCTS IN FC-BY-FINITE GROUPS 

RUSSELL D. BLYTH AND AKBAR H. RHEMTULLA 

1. Introduction. Let n be an integer greater than 1. The group G has the 
property Q„, or is n-rewritable, if for each «-element subset {x\1X21... ,*„} of 
G, there exist permutations a ^ r in Sn such that 

X<r(l)Xa(2) • • -xa(n) = - * T { 1 ) X K 2 ) . . -X^n). 

If one of cr,r can always be chosen to be the identity, then G has P„, or is 
totally n-rewritable. We also use Vn and Q„ to denote the classes of groups 
having these properties. Making use of the obvious inclusions, we define 

P= [J P„ and Q= [J Q„, 
«=2,3 , . . . AI=2 ,3 , . . . 

which are the classes of totally rewritable and rewritable groups respectively. 
The classes Pn for semigroups were introduced by Restivo and Reutenauer 

in [12], and for groups by Curzio, Longobardi and Maj [6]. A classification 
for P-groups was given by Curzio, Longobardi, Maj and Robinson [7] and for 
Q-groups by Blyth [2]; in fact, the classes P and Q are precisely the class of 
finite-by-abelian-by-finite groups (recall that a group G is finite-by-abelian-by-
finite if it has subgroups H and K, where H is a. normal subgroup of G of finite 
index, K is a. finite normal subgroup of / / , and the quotient H JK is abelian). 
Classifications for Vn -groups and Q„ -groups for small n are given in [1], [3], 
[5], [8], [9], and [10]. A summary of the results for groups is given in [4]. 

The purpose of this article is to discuss the following properties: we say 
that the group G has the property P^ , or is eventually totally rewritable, if for 
each infinite sequence JCI,JC2, . . . of elements of G, there is an integer n and a 
nonidentity permutation a G Sn such that 

X\X2 ...Xn — Xa(\)Xa(2) • • .Xa(n). 

Similarly, the group G has the property Qoo, or is eventually rewritable, if 
for each infinite sequence jti,*2,... of elements of G, there is an integer n and 
distinct permutations a , rG5„ such that 

•*CT(1)*<7(2) ' ' -xv(n) — -*7<l)Xr<2) . . - X ^ ) . 
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We use some elementary theory of FC-groups (see [15]). A group G is an FC-
group if every element of G has a finite number of conjugates in the group, or 
equivalently, if the centralizer CG(X) of every element x G G has finite index in 
G. The FC-center of any group is the characteristic subgroup consisting of its 
FC-elements, that is, of the elements which have a finite number of conjugates. 
A group is FC-by-finite if it has a normal FC-subgroup of finite index. 

The main results are 

PROPOSITION 1. P = P ^ . 

PROPOSITION 2. Qoo is the class of FC-by-finite groups. 

At first glance, these two results are unexpected considering that the classes 
P and Q are the same. Observe that a Qoo-group is locally a Q-group and 
Q C Qoo C LQ with both inclusions being strict. An infinite direct product of 
finite nonabelian groups is not a Q-group [2], but it is a Q^-group, since it is an 
FC-group. Since a locally FC-by-finite group does not have to be FC-by-finite, 
the class Q ^ is not L-closed. Proposition 1 is surprising because by definition 
the length m of the product x\...xm that can be rewritten depends on the given 
sequence Jti,Jt2, Yet GGP„ for some n and hence for any group G in P^ , 
this number m is bounded above. A direct proof showing P ^ = P is not likely 
without knowledge of the structure of such groups. 

2. Poo-groups. The proof that every P^-group is finite-by-abelian-by-finite 
mimics parts of the corresponding proofs for P-groups and Q-groups. 

LEMMA 2.1. Suppose that G is a V^-group. Then the FC-center F of G has 
finite index in G. 

Proof. Choose a sequence JCI,*2, . . . of elements of G in the following way: 
(i) xx G G\F 
(ii) for y ^ 1, Xj+\ EG\{FUi j~ 1 . . . i ^ 1 F| ( / i , . . . , / ' r ) an arrangement chosen 

from {1 , . . .y}, \ û r Û y}, and JCI . . . xJ+i does not rewrite. 
This sequence must stop, say at x i , . . . ,xm, since G G PQO (that is, x\,...xm 

is a sequence of this type of maximal length). 
The remainder of the proof follows that of (2.1) of [7]. Let 

S = { l G } U { ^ . . ^ - i | ( , - 1 , . . . , i r ) 

an arrangement chosen from { 1 , . . . w}71 ^ r ^ m). 

If xm+\ G G\SF, the sequence JCI, . . . ,xw,xm+i rewrites, that is, there is a a ^ 1 
in Sm+\ such that 

X\X2 . . .Xm+\ = Xa(\)Xa(2) . • .-*<r(m+l)« 

Clearly a(m + 1) ^ m + 1 here. For each a G Sm+\ such that a(m + 1) ^ m + 1 
define Aa to be the (possibly empty) set of all xm+\ G G\SF such that 

X\X2 . . .Xm+\ = Xa(\)Xa(2) • • -Xa(m+\)' 
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Then 

seS a 

Let aa be a fixed element of Aa (if the latter is nonempty) and let b be any 
element of Aa. If <J(Z) = m + 1, then we have the equations 

*1*2 • • -Xm^a — Xa(l)Xa(2) • • -^cT(/-l)^or^a(/+l) • • . - ^ (m+lh 

X1X2 . . .XmZ? = XCT(i)XCT(2) . . . ^ ( / - l ) ^ a ( / + l ) • • ••*<r(m+l)-

These equations yield 

aadaa~l = fe^fc-1 

where 

"CT ~ -*<7(i+l) • • - - ^ ( m + l ) -

Hence & G aaCG(da) and it follows that 

sES a 

Suppose that da = x^ ...Xjk G F. Let 

r = max /, and r = is. 

Since F <G we may solve for xr, obtaining 

xr G x."1, .. .xj~lxj~\ .. -x~lF. 
' h-\ l\ ls+\ lk 

This contradicts condition (ii). The Cc(da) thus have infinite index in G and can 
be omitted from the above union by a well-known theorem of B.H. Neumann 
([11], or [13], Lemma 4.17). Therefore 

ses 

and hence 

\G :F\S \S\ ^ l + m + m ( m - l) + . . . + m! 

This completes the proof. 

It now remains to show 
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PROPOSITION 2.2. If G G Poo is an VC-group, then G is finite-by-abelian. 

We shall essentially mimic the corresponding proof for Q-groups (see [2]), 
with one major departure. 

LEMMA 2.3. Let G ~ G\G2. ..be an infinite product ofnonabelian subgroups 
such that the derived subgroup G' = [G,G] of G is the direct product 

G'= Dr G' 
/=1,2,... 

of the derived subgroups G\ of the G, and [Gi,Gj] = 1 whenever i ^ j . Then 
G0Poo. 

Proof Choose elements g/,/i/ from G; so that 

Ighht] = g^h^giht = ci±\ 

and select the elements x\,X2,... in G to be 

*i =g\, 

*2 = h\g2, 

Consider decomposing [xqixi] into a product of commutators of the hi and gj 
using the commutator identities 

[x,yz] = [x,z][x,y]z and [xy,z] = [x,z]y[y,z]. 

Since [G;, G7] = 1 whenever / ^ j , we conclude for q < I that 

If <7 > /, then 

[jc , ] = ( ^ / l i f / + l = t f 
l**'*/J \ l ifl+l^q. 

For each «, and each a ^ 1 in 5n, consider JC^I) .*^) . . .xa(n). Let y be the 
smallest integer such that Xj appears to the right of Xj+\ in the product; that is, 
j is the smallest integer such that a~l(j) > a_1(/ + 1). Then 

Xa(\)Xa(2) • • • Xa(n) = X\X2 . . . XnC- m o d / / / , 
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using the identity xy — yx[x,y], where 

and hence, since cjx £ Hj, we deduce that 

MDXCT(2) • • -xa(n) ^ X\,X2 • • -*n m o d / / / . 

Thus the product xi^2 ...xn does not rewrite. Since n is arbitrary, G ^ Poo. 

LEMMA 2.5. If G is an ¥C torsion Y OQ-group which is nilpotent of class at 
most 2, then the derived subgroup G' has finite exponent. 

Proof. G is torsion and nilpotent, so 

G = DrGPi 

i 

for various primes pi ([14], 5.2.7) and 

G' =DrG' 
i Pl 

(i) Suppose that GPi ^ 1 for infinitely many odd primes /?/, say p\,p2l  

Choose Xi,yt G GPi such that Q = [JC/, V/] ^ 1. Let zi = X\ and for / > 1, let 
zi = yi-\xt. Since [Gt,Gj] = 1 whenever / ^y , 

{ Q if; = 1 + 1 

1 if |/ - y | ^ l . 

Then 

zi . . . z n = xiyxx2y2•..yn-ixn = x\ • • -xny\...yn-\-

For a ^ 1 in Sn, let 7 be the least integer such that a(j) = m>j. Let 

* = (G;I.,/ = 1 , 2 , . . . ; I V / « - 1 ) . 

Hence, using the commutator identity xy = yx[x,y], we have 

Z(T(D • • • za(n) =z\... zm-2zmzm-\zm+\ ...zn modK 

= z\... znc~^-\ mod^T =£ z\ ... zn modK. 

Therefore z\ ...zn does not rewrite, and we conclude that Gp. = 1 for all but 
finitely many /?,. If the exponent of Gp. is finite for each pt then the exponent of 

https://doi.org/10.4153/CJM-1989-018-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-018-8


374 R. D. BLYTH AND A. H. RHEMTULLA 

G' is finite. If the result is false then there is a prime p such that the exponent 
of Gf

p is not finite, so we reduce to considering this case. 
(ii) Suppose that G G Poo is an FC torsion p-group which is nilpotent of class 

at most 2. Suppose to the contrary that the exponent of G' is infinite. Then the 
exponent of G/Z(G) is not finite, since ;c,_y GG, with xn G Z(G) implies that 
(as G is nilpotent of class at most 2) [x,y]n = [xn,y] = 1. Set G\ = G. Pick 
x\,y\ G G\ such that 1 ^ UbJi] = c*i is of order/?. For each integer / > 1 we 
pick Xi,yi from 

Gi = CG{x\,y\,...,Xi-\,yi-\) 

such that 1 T̂  [JC/, j / ] = c; is of order pl. This is possible since G is FC, so G; 
has finite index in G, and hence the exponent of 

GiZ(G)/Z(G) = Gt/Z(G) 

is not finite. Now let z\ = x\ and for / > 1 choose z, = y/_ix/. Then 

Zi . . . Z „ = X i J i ^ 2 ^ 2 . . . ^ / i - l ^ i i = ^ 1 - ^ 2 . . . ^#ijl —3^/i—1-

Suppose that cr ^ 1 and consider z^i) . . . zCT(n). Observe that 

!

1 if/ =y or | / - y | > 1 

ci if 7 — i = l 
c ^ if i - 7 = 1 . 

Let) be the largest integer such that zy comes to the left of z7_i in the product 
za(i).. .za{n). This is the same as saying that j is the largest integer such that 
<j~x(j) < cr~l(j — 1). As in (i) above, we conclude that 

z<7(i) • •. Za(n) = z\... zncj}x mod fly_2, 

where 

ÇlJ_2 = (aeG'J</~2 = 1). 

Thus 
Zi . . . Z „ ^ Z a ( 1 ) . . . Z a ( n ) . 

Since « is arbitrary, G ̂  Poo-

Proof of (2.2). Assume that G G PQO is an FC-group. We proceed through 
several special cases. 

(i) Case. G is residually finite and torsion. Suppose to the contrary that G 
is not finite-by-abelian. Thus G is also not abelian-by-finite. We construct a 
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sequence Gi, G2,... such that (Gi, G2,...) = Gi x G2 x Let gi and #2 be 
noncommuting elements of G, and define G\ to be 

By Dicman's Lemma ([14], 14.5.7, or [15], Lemma 1.3), the subgroup G\ is a 
nonabelian finite normal subgroup. Suppose that the finite nonabelian subgroups 
Gi, G2, . . . , G„ have been defined, with (Gi , . . . , Gw) = G\ x .. x G„. Let 

C=C G ( (G 1 , . . . ,G„) G ) . 

Since, by Dicman's Lemma, 

(Gu...,Gnf = (gf\gieG„xeG) 

is finite, then |G : C| is finite because G is an FC-group. By residual finiteness, 
there is a normal subgroup H of G of finite index with 

(Gl,...Gn)riH = l. 

Then H P\C has finite index in G and so is not abelian. We can therefore find a 
finite nonabelian subgroup Gn+\ of H PiC which is normal in G. It follows that 

(G\,... G„+i ) = G\ x . . . x G„+i. 

This construction is continued ad infinitum to produce an infinite product K = 
G\ x G2 x . . . which is a subgroup of G. By (2.3) K is not eventually rewritable, 
which is a contradiction. Therefore G is finite-by-abelian. 

(ii) Case. G is a p-group which has elementary abelian derived subgroup. 
Suppose again that G is not finite-by-abelian and therefore also not abelian-by-
finite. It follows that G' is an infinite elementary abelian /?-group. We construct 
a sequence of finite nonabelian subgroups Gi,G2,.. . such that [Gi,Gj] — 1 
whenever / ^ j , and (G\, G2,...)' = G\ xGf

2x Choose a nontrivial element 
h\ — \a\\,b\\\...\a\s,b\s\ in G', where each [au,bu] is nontrivial. Let c\ — 
[a\\,b\\] and define the nonabelian /?-group G\ to be (#11,&n). The subgroup 
G\ is finite, since it is a finitely generated nilpotent torsion group. Suppose 
now that the finite nonabelian subgroups Gi, . . . ,G„ have been defined, with 
[G,-, Gj] = 1 whenever / ^ j and (Gu . . . Gn)' = Gj x . . . x G'n. Let 

/ / = f|CG(G,-). 
/=i 

H has finite index in G and therefore / / is not abelian. Suppose that H is finite-
by-abelian. Since G is nilpontent of class 2, H is normal in G, and thus G is 
finite-by-abelian-by finite. But since G is an FC-group, this implies that G is 
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actually finite-by-abelian, a contradiction. Therefore H' is an infinité elementary 
abelian p-group. We can choose an element h E H' which is not in G\ x . . . x G'n. 
Thus h — [a\,b\]... [at, bt] is a product of nontrivial commutators with #/, bi E 
H and at least one commutator [a,,/?,] not in G[ x . . . x G'n. Choose one such 
commutator [aj,bj]; since G' is elementary abelian, 

([ajlbJ])n(G,
lx...xG'n)=L 

Let cn+\ = [cij,bj], and define the finite nonabelian subgroup Gn+\ of H to be 
(a,-, fry). It follows that [Gn+\, Gt] — 1 for / = 1 , . . . , w, and 

(Gi, . . .Gn + iy = (ci) x . . . x (c„+1) = Gi x . . . x G^+1. 

We continue this construction to produce an infinite product K = G\G^... of 
nonabelian subgroups such that [Gi,Gj] = 1 whenever / ^ j . In addition, 

oo 

/<: /=DrG'. 
i=i 

By (2.3), K is not rewritable, which is a contradiction. Therefore G is finite-by-
abelian. 

(iii) Case. G is nilpotent of class 2 and torsion. G is the direct product of its 
maximal /7-subgroups Gp. Since by (2.5) 

G' =DrG'i 
p 

has finite exponent e, say, it now follows that if p does not divide e, then G'p — 1. 
Suppose now that G' is not infinite. Then some G'p is an infinite abelian /?-group 
of finite exponent. By the structure theorem of Kurilov for abelian p -groups 
[14], G'p is an infinite direct product of cyclic ^-groups. Let 

Gp = Gp/{G'pf. 

On the one hand, 

(Gp)' = G'p/((G'pf n G'p) = G'p/(G'pf 

is an elementary abelian p-group of infinite order. On the other hand, since Gp 

is a/7-group with (Gp)
f elementary abelian, it follows from (ii) that Gp is finite-

by-abelian. This contradicts the fact that (Gp)
f is infinite. Therefore each G'p is 

finite, and we conclude that G' is also finite; that is, G is finite-by-abelian. 
(iv) Case. G is a general FC P^-group. Suppose first that G is torsion. The 

group G = G/Z(G) is residually finite [15], and thus by (i) it is finite-by-
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abelian. Therefore there is a finite normal subgroup H of G such that G JH is 
abelian. Using residual finiteness, let 

gGH 

where each Ng is a normal subgroup of G of finite index not containing g. N is 
normal and has finite index in G, and meets H trivially. From N H H — 1 we 
obtain 

N ^NH/H ^G/H, 

and therefore N is abelian. There is a normal subgroup N of G such that N = 
N/Z(G). Since Z(N) ^ Z(G\ it follows that N/Z(N) is abelian, and thus that 
N is nilpotent of class at most 2. By (iii), N is finite-by-abelian and therefore 
G is finite-by-abelian-by-finite, and hence finite-by-abelian [2]. 

Finally, consider a general FC Poo-group G. The group G/Z(G) is torsion [15], 
and thus using Zorn's Lemma we can find a maximal torsion-free subgroup H 
of Z(G). Then H is normal in G and Z(G)/H is a torsion group. Therefore G JH 
is a torsion group, and so, by the above, it is finite-by-abelian; that is, (G/H)' 
is finite. Since G' is torsion [15], 

(G/H)f = G 7 ( G ' n / / ) = G'. 

Therefore G is finite-by-abelian, and the proof is complete. 

3. Qoo-groups. Lemma 3.1 reflects the essential difference between Q-groups 
and Qoo-groups. 

LEMMA 3.1. Every FC-group is eventually rewritable. 

Proof. Let G be an FC-group and x = JCI,JC2,JC3,... be an infinite sequence 
of elements in G. Let 

cr = [ x - 1 , ^ . . . ^ ) - 1 ] . 

Since JC has finitely many conjugates, c/ = q for some 1 < / < j . Hence 

X\ . . .Xj — CjX2 • • . XiX\Xi+\ . . .Xj — C;X2 • • .X;X\\ 

that is 

X2 . . .XiX\Xi+\ . . . * / = X2 . . . JÇ/Xi. 

Thus G e Q( 

https://doi.org/10.4153/CJM-1989-018-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-018-8


378 R. D. BLYTH AND A. H. RHEMTULLA 

LEMMA 3.2. Let H be a subgroup of finite index in the group G. Suppose that 
H is eventually rewritable. Then G is eventually rewritable. 

Proof. Let *i,jt2,... be a sequence of elements of G. Consider the cosets 
H,x\H,x\X2H, Since \G : H\ is finite, there is some coset in the list above 
which appears infinitely often, that is, there is a sequence 0 ^ i\ < h < . . . such 
that JCI ...xi{H = x\.. .xi2H — . . . (if i\ — 0, the first coset is H). The elements 
u\ = JC/1+I .. .x/2, U2 — JC/2+I . . . JC/3, . . . therefore belong to H. Since H G Qoo, 
there is an n and purmutations o ^ r G Sn such that 

Ua{\) • • . Ua(n) — U^\) . . . U^n). 

Thus 

X\ . . . X/, Wa(i) . . . Ua(n) — Xi . . . X;, U?(\) . . . M^n) 

shows that the subset {x\,x2l... ,xin+l} rewrites, and hence G G Qoo-

Thus every Qoo-by-finite group is a Qoo-group; in particular, every FC-by-
finite group is eventually rewritable. 

LEMMA 3.3. Suppose that G is an eventually rewritable group. Then the FC-
center F of G has finite index in G. 

Proof Choose a sequence x\1X21... of elements of G in the following way: 
(i) let xx G G\F 
(ii) for j ^ 2, let Xj be an element of 

G\{F U x^{ .. . A ^ F I O ' I , . . . , ir) is an arrangement chosen from 

such that xa(\).. .xa(j) — x^i).. .x^-) only if a = r G Sj. 
This sequence must stop, say at x\,X2,... ,xm, since G G Qoo- Thus we assume 

that x\, JC2,..., xm is a maximal sequence of this type. The remainder of the proof 
follows (3.1) of [2]. 

For each pair of permutations a ^ r of Sm+i, let r — cr~{(m + 1) and 5 = 
T_1(m + 1), and define 

(*<r(r+l) • • ••*cr(m+l))(*7<s+l) * • -X-Km+1))~ 

i f r ^ m + l , s ^ m + l 

d ( a , r ) = < if r = m + l , s ^ m + l 
-*<r(r+l) • • --*<7(m+l) 

i f r ^ m + l , s = ra+l 
1 

ifr = m + l , 5 = w + l 
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and 

e{p,T) xlii)...xlis-i) if r = 1, s^ 1 
(xa{X).. . ^ r - i ) ) - 1 if r ^ 1, j = 1 
1 i f r = l , j = l. 

For the sake of brevity we shall express d(a,T) and e(p,r) in the first form (that 
is, for r ^ m + 1 and s ^ m+ I, and for r ^ 1 and s ^ 1, respectively). For 
<z G G, note that 

*<T(1) ' * ••*<7(r-l)fl*a(r+l) • • - ^ ( m + l ) = -*T{1) • • ••*7<j-l)tf*Ks+l) • • -*T<m+l) 

is equivalent to ad(a,T)a~l — e(a,T). 
Let 6 be the set of all sequences of distinct pairs (a, r) of permutations cr ^ r 

in Sm+\, together with the sequence ( ) of length zero; each sequence has length 
at most 

/w = ( w + l ) ! [ ( / n + l ) ! - l ] . 

If s G S, then let l(s) be the length of the sequence s, let s(i) be the /th term of 
s, and let s~ be the subsequence 0(1) , . . . s(l(s)—l)) of s when l(s) > 1, and ( ) 
when /(s) = 1. Corresponding to each sequence s — ((O"I,TI), . . . , (o>,7>)) in 6 
we define a sequence t(s) such that either t(s) = ( ), or /(s) = (# I O ) , . . . , tf*Cs)), 
where 

ai(s)d(ahTi)ai(s)~l = e(ahTi) for 1 ^ / ^ £, 

ûi(^) e p | CG(d(av,rv)) for 2 ^ / ^ k, 
v = l 

and a/O) = a/CO for 1 ^ / ^ ^ — 1, when k ^ 2. The elements of 

£ = {f(*)|* e 6} 

are constructed in order of increasing length of s. For s — ( ), define r(s) to be 
( ). Let s = ((O"I,TI)) for ai ^ ri in Sm+\. If there is an element a €G such that 

ad(aUT{)a~l = e(aUTi), 

then choose one such element and call it a\{s). In this case, define t(s) to be 
(a\(s)). If there is no such element a G G, then define f(s) to be ( ). Suppose 
that t(s) has been defined for all sequences s G S of length at most /: — 1, 
where k ^ 2. Let s — ((O"I,TI), . . . , (O>,T*)) be a sequence in 6 of length £, 
where A: < / m . Since the sequence s~ G 6 has length £ — 1, the sequence t(s~) 

https://doi.org/10.4153/CJM-1989-018-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-018-8


380 R. D. BLYTH AND A. H. RHEMTULLA 

has been defined. If t(s ) = ( ), then define t(s) to be ( ) also. Suppose that 
t(s~)^ ( ). If there exists an element a G G such that 

ad(ak,Tk)a~{ = e(ak,Tk) and 

aE f)CG(d(av,Tv)), 
v = l 

then choose one such element, call it ak(s), and define t(s) to be (a\(s~~),..., 
ak-\(s~), ak(s)). If no such a G G exists, then define f(s) to be ( ). The set X 
has now been defined inductively. 

For each s G S for which t(s) ^ ( ), let 

/=i 

Let u(s) — 1 when f(s) = ( ). Take S to be the set 

{(jcy, . ..*/*)"11O'I, — -Jk) is a n arrangement chosen from 

{ l , . . . , m } , 1 £k^m}U{\}. 

Let 

r = (J "(*)*• 

Suppose that G^TF. We shall show that this leads to a contraction. Let 

V = TF\J (J rcG(x„...xyi) 

where (y'i, ...Jk) ranges over all arrangements chosen from { 1 , . . . , ra}, 1 ^ 
& ^ m. 

Suppose that G = V. As in (2.1), each JC7I . . .A^ 0 F, and therefore each 
CG(XJ{ .. .Xjk) has infinite index in G. Since G = V is a finite union, we may, as 
in (2.1), discard those cosets of infinite index. In other words, G = TF, which 
is a contradiction. Consequently, G^V. 

We now construct a sequence (go?g\ig2i---) of elements of G which has 
associated with it a sequence (so, s\1S2,...) of elements of 6, such that 

go = u(sk)gk for k = 0 ,1 ,2 , . . . , 

where 

gk-\d{<Jk,Tk)g^li = e(ok,Tk) for k = 1,2,..., 
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k 

gk € p | CG(d(ov,Tv)) for k = 1,2,..., 
v = l 

£*gSF for* = 0 , l , 2 , . . . , 

50 = ( ) and j * = (((7i,ri),..., (^,7*)) for £ = 1, 2 , . . . . 

and 

^ = sk-\ for fc = 1,2,.... 

Choose an element go G G\Vr, and let ^ = ( )• The element go and sequence 
so satisfy the conditions above for k = 0. Suppose that the first q terms of the 
sequences (go, gi, #2, • • •) and (.so, ^1,̂ 2? • • •) have been defined and they satisfy 
the conditions above for k = 0, ...,<7 — 1. Let xm+\ = gq-\, and consider 
the (m + l)-tuple (x\,...,xm,xm+i). By the maximality of (Jti,...,*m), either 
{JCI, . . . ,xw,xm+i} is rewritable, or 

Xm+\ £ {F Ux^1 .. .x^lF\(i\,..., /r) is an arrangement chosen from 

{ l , . . . , / - l } , l ^ r S i - 1 } . 

But the latter implies that xm+i = gq-\ G 5F, which is a contradiction. It follows 
that there are permutations aq ^ rq in 5m+i such that 

gq-idiaq^g'^ =e(aqirq). 

Unless ((JqjTq) = (OJ,TJ) for some 1 ^ 7'^ï g — 1, we continue by defining ĝ  
and sq. Since 

g<?-i G p | CG(d(av,Tv)) whenever q>\, 
v = l 

we have already defined ^(^) of nonzero length in % corresponding to 

Sq = ( ( ^ l , T l ) , ...,((Tq,Tq)) 

in 6. In fact, we have t{sq) — (a\{sq\ . . . , aq(sq)), where 

a,-(fy) = ai(^_i) for 1 ^ / ^ <? - 1, 

aq(sq)d(aq,Tq)aq(sqy
l = e(aq,Tq) 

and 

<7-i 

^Cfy) ^ P | Q?(d(tfv,Tv)) whenever # > 1. 
v = l 
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It follows that gq-\ = aq(sq)gq, where gq E CG(d(aq,Tq)). Moreover, since both 
gq-\ and aq(sq) are elements of 

q-\ 

p | CG (d(av, rv )) whenever q > 1, 
v = l 

we have that 

g<? G p|CG(d(<rv,Tv)). 
v = l 

Therefore, 

go = u(sq-i)gq-i 

= ai(fy-i) •. • V i ( V i K ( ^ ) ^ 

= u{sq)gq. 

Finally, should gq € SF, then g0 € u(sq)SF, which contradicts go 0 V • The 
sequences (go, gi, g2, • • •) and (so, ̂ 1,^2,...) have now been defined inductively. 

Construction of the sequences (go,gi,g2, • ••) and (so, s 1,^2,...) halts when 
((JjiTj) — (o>/,Tjv) for some j < N; this occurs for some N ^fm + 1. To simplify 
the notation, we write o and r in place of cr# and T/V , and let r — a'1 (m + 1 ) 
and s = r_1(m + 1). By definition, 

d(aj,Tj) = d(a,T) and e(<jj,Tj) = e{a,T). 

Furthermore, 

/v-i 
gN- l G p | CcWfavjTv)) . 

v=l 

In particular, 

gN-xdiarfgû^ = J(a,r). 

Since gN-\d(a,T)gûL\ = e{a^r) by construction, we conclude that d(a,T) = 
e(cr,T), that is, 

*(j(r+l) • • -^cr(m+l)(^Ks+l) • • • X-^rn+l)) = *<r(l) • • . * ( j ( r - l ) ) -*T{1) • • . X ^ 5 _ i ) . 

We may assume that r ^ s. Rearranging the equation above gives 

•*<x(l) • • -Xa{r-\)X<T(r+\) • • --^(m+l) — *T{1) • • • -^T<5-1)^T<5+1) • • .-X^m+1)-
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If m ^ 2, this expression is a rewriting of {x\1... ,xm} and so it follows that 

O( l ) , . . . , a(r - 1), a(r + 1) , . . . , a{m + 1)) 

= ( 7 < 1 ) , . . . , T < J - 1 ) , T < 5 + 1 ) , . . . , T ( / W + 1 ) ) . 

Therefore r ^ s. If m = 1, then we must have r — 1 and s = 2, corresponding 
to a = (1,2) and r—\. Using r < s, we have a(l) = r(/) for 1 ^ / ^ r — 1 and 
for s + 1 ̂  / è m + 1. We can now simplify d(a,T): 

d(o,T) — Xa(r+\) . . .Xa(s)Xa(s+i) . . .Xa(m+\)(xa(s+\) . . .* a (m+l) ) 

= *cr(r+l) • • - -^(s) -

Since ^ - i centralizes d(a,T) and go = w(^- i )^ - i» it n o w follows that 

go G u(sN-i)CG(xa{r+i). ..xa{s)). 

But this contradicts go £ V, and therefore we conclude that G — TF. Since 7 is 
a finite set, the proof is complete. 

Proposition 2 has not been proved. 

COROLLARY 3.4. Every finitely-generated Qoo-group G is a Q-group. 

Proof. Let F be the FC-center of G. Since it has finite index in a finitely gener
ated group, F is finitely-generated and hence is abelian-by-finite [15]. Therefore 
G is finite-by-abelian-by-finite, that is, a Q-group. 

REFERENCES 

1. M. Bianchi, R. Brandi and A. G. B. Mauri, On the 4-permutational property for groups, Arch. 
Math. (Basel) 48 (1987), 281-285. 

2. R. D. Blyth, Rewriting products of group elements I, J. Algebra 116 (1988), 506-521. 
3. Rewriting products of group elements II, J. Algebra 118 (1988), 246-259. 
4. R. D. Blyth and D. J. S. Robinson, Recent progress on rewritability in groups, Proceedings of 

the 1987 Singapore Group Theory conference, to appear. 
5. R. Brandi, General bounds for permutability in finite groups, preprint. 
6. M. Curzio, P. Longobardi and M. Maj, Su di un problema combinatorio in teoria dei gruppi, 

Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 74 (1983), 136-142. 
7. M. Curzio, P. Longobardi, M. Maj and D. J. S. Robinson, A permutational property of groups, 

Arch. Math. (Basel) 44 (1985), 385-389. 
8. P. Longobardi and M. Maj, On groups in which every product of four elements can be reordered, 

Arch. Math. (Basel) 49 (1987), 273-276. 
9. On the derived length of groups with some permutational properties, preprint. 

10. P. Longobardi, M. Maj and S. E. Stonehewer, The classification of groups in which every 
product of four elements can be reordered, preprint. 

11. B. H. Neumann, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954), 227-
242. 

12. A. Restivo and C. Reutenauer, On the Burnside problem for semigroups, J. Algebra 89 (1984), 
102-104. 

https://doi.org/10.4153/CJM-1989-018-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-018-8


384 R. D. BLYTH AND A. H. RHEMTULLA 

13. D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Part I, Ergebnisse der 
Mathematik und ihrer Grenzgebiete, Band 62 (Springer-Verlag, Berlin, 1972). 

14. A course in the theory of groups, Graduate Texts in Mathematics, 80 (Springer-Verlag, 
New York-Berlin, 1982). 

15. M. J. Tomkinson, FC-groups, Research Notes in Mathematics 96 (Pitman, London, 1984). 

Saint Louis University, 
St. Louis, Missouri; 
University of Alberta, 
Edmonton, Alberta 

https://doi.org/10.4153/CJM-1989-018-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-018-8

