ALMA spectrum of the extreme OH/IR star OH 26.5+0.6

K. Justtanont¹, S. Muller¹, M. J. Barlow², D. Engels³,
D. A. García-Hernández^{4,5}, M. A. T. Groenewegen⁶, M. Matsuura⁷, H. Olofsson¹, D. Teyssier⁸, I. Marti-Vidal¹, T. Khouri¹,
M. Van de Sande⁹, W. Homan⁹, T. Danilovich⁹, A. de Koter¹⁰,
L. Decin⁹, L. B. F. M. Waters^{11,10}, R. Stancliffe¹², W. Vlemmings¹,
P. Royer⁹, F. Kerschbaum¹³, C. Paladini¹⁴, J. Blommaert⁹ and R. de Nutte⁹

¹Chalmers University of Technology, Onsala Space Observatory, S-439 92 Onsala, Sweden ²Univ. College London, Dept. of Physics & Astronomy, Gower Street, London, UK ³Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany ⁴Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain ⁵Departamento de Astrofísica, Univ. de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain $^6\mathrm{Koninklijke}$ Sterrenwacht van België, Ringlaan 3, 1180 Brussels, Belgium ⁷School of Physics & Astronomy, Cardiff University, The Parade, Cardiff, UK ⁸Telespazio Vega UK Ltd for ESA/ESAC, Camino bajo del Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, E-28692 Madrid, Spain ⁹Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium ¹⁰Sterrenkundig Instituut "Anton Pannekoek", Science Park 904, 1098 XH Amsterdam, The Netherlands ¹¹SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV Groningen, The Netherlands ¹²Argelander-Inst. fr Astronomie, Univ. of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany ¹³University of Vienna, Dept. of Astrophysics, Türkenschanzstrasse 17, 1180 Wien, Austria

¹⁴European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile

Abstract. We present ALMA band 7 data of the extreme OH/IR star, OH 26.5+0.6. In addition to lines of CO and its isotopologues, the circumstellar envelope also exhibits a number of emission lines due to metal-containing molecules, e.g., NaCl and KCl. A lack of $C^{18}O$ is expected, but a non-detection of $C^{17}O$ is puzzling given the strengths of $H_2^{17}O$ in Herschel spectra of the star. However, a line associated with $Si^{17}O$ is detected. We also report a tentative detection of a gas-phase emission line of MgS. The ALMA spectrum of this object reveals intriguing features which may be used to investigate chemical processes and dust formation during a high mass-loss phase.

Keywords. stars: AGB and post-AGB, circumstellar matter, stars: individual (OH 26.5+0.6), stars: late-type, stars: abundances

1. Introduction

A number of intermediate-mass ($\sim 4-8 \,\mathrm{M}_{\odot}$) that evolve on the AGB are known to be undergoing hot-bottom burning (HBB) from observations of enhancement of ⁷Li and other s-process elements (e.g., Garcia *et al.* 2013). The CNO cycle operates during this

Figure 1. ALMA spectrum of CO J=3-2 and its isotopologues (bottom), $Si^{17}O$ and a tentative detection of MgS. The vertical line denotes the LSR velocity of OH 26.5+0.6.

evolutionary phase and drives the ${}^{12}C/{}^{13}C$ towards the equilibrium value of ~4. The process shuts down when the envelope mass is reduced to $1 M_{\odot}$ (Karakas & Lattanzio 2014). The Herschel spectrum OH 26.5+0.6 shows a lack of $H_2^{18}O$ while $H_2^{16}O$ and $H_2^{17}O$ are readily detected (Justanont *et al.* 2013). HBB preferentially destroys ${}^{18}O$ (Karakas & Lattanzio 2014) thereby confirming that the progenitor of OH 26.5+0.6 is an intermediate-mass star. We subsequently observed the object with ALMA in band 7 in 2016 with spectral windows centered on the transition J=3-2 of CO, ${}^{13}CO$, $C^{17}O$ and $C^{18}O$ (Justanont *et al.* 2018, ADS/JAO.ALMA#2015.1.00054.S).

2. The ALMA spectrum

A total of about 60 emission lines have been detected in our ALMA observations. Fig. 1 shows the spectrum of CO isotopologues. The C¹⁷O J=3-2 is not detected above the noise which is unexpected considering that strong H₂¹⁷O lines have been detected in the Herschel spectrum of the star. However, we detected a line which can be attributed to Si¹⁷O J=8-7 at 334.3015 GHz. The resolution of this line is 14 km s^{-1} as it falls in a spectral window assigned to a continuum measurement. The ALMA spectrum indicates a possible chemical pathway of molecular formation of oxygen in a high density environment: ¹⁷O is locked up in H₂¹⁷O and Si¹⁷O rather than C¹⁷O.

A line at 335.9845 GHz may be assigned to a new circumstellar molecule. It corresponds to the MgS J=21-20 transition. Previously, a broad dust emission feature at 30 μ m has been attributed to MgS dust, but this has been observed only towards C-rich circumstellar environments. A number of lines in the spectrum are due to the lines of SO and metalcontaining molecules like NaCl, KCl and their isotopologues. Unlike the low-mass AGB stars, no SO₂ lines are detected within the spectral range covered by our observations.

References

García-Hernández, D. A., Zamora, O., Yagüe, A., et al. 2013, A&A, 555, L3
Justtanont, K., Muller, S., Barlow, M. J., et al. 2018, A&A, submitted
Justtanont, K., Teyssier, D., Barlow, M. J., et al. 2013, A&A, 556, A101
Karakas, A. I. & Lattanzio, J. C. 2014, PASA, 31, 30