ALMA spectrum of the extreme OH/IR star OH 26.5+0.6

1Chalmers University of Technology, Onsala Space Observatory, S-439 92 Onsala, Sweden
2Univ. College London, Dept. of Physics & Astronomy, Gower Street, London, UK
3Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany
4Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain
5Departamento de Astrofísica, Univ. de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain
6Koninklijke Sterrenwacht van België, Ringlaan 3, 1180 Brussels, Belgium
7School of Physics & Astronomy, Cardiff University, The Parade, Cardiff, UK
8Telespazio Vega UK Ltd for ESA/ESAC, Camino bajo del Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, E-28692 Madrid, Spain
9Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
10Sterrenkundig Instituut “Anton Pannekoek”, Science Park 904, 1098 XH Amsterdam, The Netherlands
11SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV Groningen, The Netherlands
12Argelander-Inst. fr Astronomie, Univ. of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
13University of Vienna, Dept. of Astrophysics, Türkenschanzstrasse 17, 1180 Wien, Austria
14European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile

Abstract. We present ALMA band 7 data of the extreme OH/IR star, OH 26.5+0.6. In addition to lines of CO and its isotopologues, the circumstellar envelope also exhibits a number of emission lines due to metal-containing molecules, e.g., NaCl and KCl. A lack of C18O is expected, but a non-detection of C17O is puzzling given the strengths of H217O in Herschel spectra of the star. However, a line associated with Si17O is detected. We also report a tentative detection of a gas-phase emission line of MgS. The ALMA spectrum of this object reveals intriguing features which may be used to investigate chemical processes and dust formation during a high mass-loss phase.

Keywords. stars: AGB and post-AGB, circumstellar matter, stars: individual (OH 26.5+0.6), stars: late-type, stars: abundances

1. Introduction

A number of intermediate-mass (∼ 4-8 M⊙) that evolve on the AGB are known to be undergoing hot-bottom burning (HBB) from observations of enhancement of 7Li and other s-process elements (e.g., Garcia et al. 2013). The CNO cycle operates during this
Figure 1. ALMA spectrum of CO J=3-2 and its isotopologues (bottom), Si17O and a tentative detection of MgS. The vertical line denotes the LSR velocity of OH 26.5+0.6.

An evolutionary phase and drives the 12C/13C towards the equilibrium value of ∼4. The process shuts down when the envelope mass is reduced to 1 M\textsubscript{☉} (Karakas & Lattanzio 2014). The Herschel spectrum OH 26.5+0.6 shows a lack of H18O while H16O and H17O are readily detected (Justtanont et al. 2013). HBB preferentially destroys 18O (Karakas & Lattanzio 2014) thereby confirming that the progenitor of OH 26.5+0.6 is an intermediate-mass star. We subsequently observed the object with ALMA in band 7 in 2016 with spectral windows centered on the transition J=3-2 of CO, 13CO, C17O and C18O (Justtanont et al. 2018, ADS/JAO.ALMA#2015.1.00054.S).

2. The ALMA spectrum

A total of about 60 emission lines have been detected in our ALMA observations. Fig. 1 shows the spectrum of CO isotopologues. The C17O J=3-2 is not detected above the noise which is unexpected considering that strong H17O lines have been detected in the Herschel spectrum of the star. However, we detected a line which can be attributed to Si17O J=8-7 at 334.3015 GHz. The resolution of this line is 14 km s-1 as it falls in a spectral window assigned to a continuum measurement. The ALMA spectrum indicates a possible chemical pathway of molecular formation of oxygen in a high density environment: 17O is locked up in H17O and Si17O rather than C17O.

A line at 335.9845 GHz may be assigned to a new circumstellar molecule. It corresponds to the MgS J=21-20 transition. Previously, a broad dust emission feature at 30 μm has been attributed to MgS dust, but this has been observed only towards C-rich circumstellar environments. A number of lines in the spectrum are due to the lines of SO and metal-containing molecules like NaCl, KCl and their isotopologues. Unlike the low-mass AGB stars, no SO\textsubscript{2} lines are detected within the spectral range covered by our observations.

References
Karakas, A. I. & Lattanzio, J. C. 2014, PASA, 31, 30

https://doi.org/10.1017/S174392131318007986 Published online by Cambridge University Press