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Abstract

In this paper, we present sufficient conditions for global optimality of a general nonconvex
smooth minimisation model problem involving linear matrix inequality constraints with
bounds on the variables. The linear matrix inequality constraints are also known as "semi-
definite" constraints which arise in many applications, especially in control system analysis
and design. Due to the presence of nonconvex objective functions, such minimisation prob-
lems generally have many local minimisers which are not global minimisers. We develop
conditions for identifying global minimisers of the model problem by first constructing a
(weighted sum of squares) quadratic underestimator for the twice continuously differen-
tiable objective function of the minimisation problem and then by characterising global
minimisers of the easily tractable underestimator over the same feasible region of the orig-
inal problem. We apply the results to obtain global optimality conditions for optimisation
problems with discrete constraints.
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constraints, discrete constraints, linear matrix inequalities, multi-extremal problems.

1. Introduction

Consider the following nonconvex smooth optimisation model problem:

min f(x) s.t. I F° + ^'= 1 *'Fi ~ °' (LMIP0)
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where / : 05" -> 05 is a twice continuously differentiable function, «,, v, e K and
M, < Vj, i = 1 , . . . , n, Ft € Sm,i = 0, 1 , . . . , m and Sm is the set of all symmetric
m x m matrices. The linear matrix inequality (LMI) constraint, Fo + J21=i x>^i - 0>
means that the matrix Fo + 5Z"=, XjFj is positive semidefinite. Optimisation model
problems with LMI constraints are also known as semidefinite optimisation problems
[6,11]. Semidefinite optimisation has now come to be recognised as a valuable
numerical as well as a modelling tool for control system analysis and design [3],
and for many practical discrete optimisation problems [3,12]. Model problems of
type (LMIP0) cover a large class of nonconvex continuous optimisation problems,
including quadratic programming problems which arise in various applications [5].
Moreover, continuous relaxations of many discrete optimisation model problems such
as optimisation problems with bivalent constraints [10], where x, = — 1 orx, = +1 or
binary constraints [2], where JC, = 0 or JC, = 1, are of the form (LMIP0). Such discrete
problems include the quadratic assignment problem [10] and the max-cut problem [2],
arising in routing and scheduling in the area of transportation management.

Due to the presence of nonconvex objective functions, the problems (LMIP0)
generally have many local minimisers which are not global minimisers. In recent
years, much attention has been focused on developing criteria which identify global
minimisers of multi-extremal quadratic optimisation problems [2,7-10]. In this paper
we present conditions which guarantee that a given feasible point is a global minimiser
of the general nonconvex smooth minimisation problem (LMIP0). Our approach to
developing a global optimality condition is based on quadratic underestimators [1].
We first show that the objective function admits a (weighted sum of squares) quadratic
underestimator. We then characterise global minimisers of the underestimator over
the feasible region of the original problem. We finally apply this approach to obtain
global optimality criteria for discrete optimisation problems which include problems
with bivalent constraints or binary constraints.

The paper is organised as follows. Section 2 presents basic recent results on the
characterisations of global solutions of weighted least squares problems. Section 3
develops sufficient global optimality conditions for (LMIP0) with the box constraints.
Section 4 provides global optimality conditions for (LMIP0) with discrete constraints.

2. Preliminaries: quadratic minimisation problems

In this section, we present basic results on the characterisations of global solutions
of weighted least squares problems subject to box or binary constraints and they play
key roles in the development of sufficient global optimality conditions. We begin by
presenting basic definitions and notation that will be used throughout the paper. The
real line is denoted by OS and the n-dimensional Euclidean space is denoted by OS".
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For vectors x, y e K", x > y means that *, > yt, for / = 1, . . . , n. The identity
matrix is denoted by / . The notation A >; 0 means that the matrix A is positive
semi-definite. A diagonal matrix with diagonal elements ot\,... ,an is denoted by
diag(a!,..., an). We will use the symbol V/(x) (respectively V2/(x)) to denote the
gradient (respectively Hessian) of /(•) a t i . Clearly, for each x e K", V2/0O e S",
the space of all (« x n) symmetric matrices. The spaces S" and Sm are partially
ordered by the Lowner order, that is, for Nu N2 € 5', N\ >; N2 if and only if N\ — N2

is a positive semi-definite matrix.
Consider the quadratic minimisation problem with box constraints which was re-

cently examined in [9]:
1 n n n

min - Y\ y,x] + Y]d-,Xi s.t. x e ]"[[«,, vt], (QP0)
< = 1 i = l i=\

where y,, d, e K, M,, U, € D& and M, < u,, / = 1 , . . . , n. Define

10 if Yi > 0

- y , if y, < 0.

For x = (xi, . . . , xn)
T e S, define

— 1 if xt = Uj,

x,: := \ 1 if xi = Vj, (2.2)

+YiXi if i , e («(-,Ui).

For self containment, we provide a proof outline of the following lemma, which was
given in [9]. This lemma plays a key role in developing sufficient optimality conditions
for (LMIPo).

PROPOSITION 2.1 ([9]). For (QP0), let x e S := n"=i["<> vtl Then * is a global
minimiser of (QPo) if and only if, for each i = 1, . . . , n,

2YiiVi -Ui) + ^(di + YiXi) < 0. (2.3)

PROOF. Let f(x) := (1/2) Yl"i=l Yi*J + Z"=i dix" f o r x € K"- BY definition, x is
a global minimiser of (QP0) if and only if, for each x e S,

d'x> - U E y * ' 2 + E **'
L
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Thus* is a global minimiser of (QP0) if and only if for each/ = 1, . . . ,n,;t, e [«,, vi\,

YL{x. _ i.)2 + W. + y/jE/)(jc. _ j . ) > o. (2.4)

The equivalence of (2.4) and (2.3) is obtained by directly verifying the equivalence in
three simple cases, where jc, = «,-, i , = D, and Jc, e («,, u,). D

Consider the following minimisation problem with discrete constraints:

n - n n

2 diXi s.t. * € 1 !{«,-, i>,}, (BQPo)

where yit dj e K, «,, t>, € K and M, < u,, / = 1 , . . . , n.

PROPOSITION 2.2 ([9]). For the problem (BQP0), let x e SB := YILA"" "<•}• ^ r

i, Z?e defined by (2.2). T/ien i « a global minimiser of (BQP0) if and only if for each
i = 1, . . . , n,

Xiidt + YiXi) - y ( v , - u ( ) < 0 . (2.5)

PROOF. The proof is similar to the proof of Proposition 2.1 and so is omitted. •

3. Smooth minimisation with box constraints

In this section, we derive sufficient global optimality conditions for smooth min-
imisation problems with box constraints. We consider the problem, discussed in the
Introduction:

min/(jc) s.t. I °+ ±*i=i x<Fi - °' (LMIP0)

where / : K" -*• R is a twice continuously differentiable function on an open set
containing A := Flilit"" u<]> ^ G ^m- ' = 0,..., n and 5m is the space of all
symmetric m x m matrices. Let 5"' = {M e 5m | M >: 0} and let r = {x € K" |
^o + £"=. x,Ft e SI}. Set D := T n A.

For each x = (xi, . . . , x2)
T € D, the gradient and the Hessian are given by

) , . . . , | ^ ( i ) ) and 2

9 /
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where a , 7 ( i ) = d2f(x)/dXidxj, i, j = 1 , . . . , n. For each i = 1 , . . . , n, define

a, := min Ia^z) - ^ |a,,(z)| : z e A 1 , (3.1)

G : = d i a g ( o , , . . . , a ( 1 ) . (3.2)

We recall that a n n x n symmetric matrix A := (Yu)nxn is said to be diagonally
dominant if |yi(-| > Yl"j=i.j#\Yij\> f ° r * = 1, • • • , « . Every diagonally dominant
symmetric matrix A with non-negative diagonal elements is positive semi-definite.
For more details we refer the reader to [4].

Let

Then F(-) is a linear operation from K" to 5m and its dual is defined by

F*(M) = ( T r [ F , M ] , . . . , Tr[FnM])r for any M eSm,

where Tr[] is the trace operation. For details, see [3,12].
For (LMIPo), define a quadratic function g : OS" —> K by

g(x) := \xTGx + (V/(Jc) - Gi - F\M))Tx,

where M e 5m.
Recall that the function h : W —> R is a quadratic underestimator for the objective

function / at x over D if h is a quadratic function, and, for each x € D, f(x) >
h(x), and f(x) = /i(x). For applications of quadratic underestimators in numerical
optimisation, see [1].

LEMMA 3.1. Let x € D := F D A. Suppose that there exists M >_ 0 SMC/I

Tr[MF(i)]=O. Tften,
(i) for each x € D, /(*) - /(x) > g(jc) - g(i);

(ii) thefunctionh : R" - • R, defined by h(x) = g(x)-g(x) + f(x), isaquadratic
underestimator of f at x over D.

PROOF, (i) LetZ(x) := f{x) - F*(M)Tx - Tr[MF0] and let <p(x) := l(x) - ,
x e A. It is easy to show that V<p(jc) = 0 and VV(z) = V 2 / (z ) - G for all z e A.
Moreover, for all z € A,

ai»(z) \

= (y,v(z))nxn =

ani(z) an2(z) ••• ann(z)-an/
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Since (p(-) is twice continuously differentiable, V2<p(z) € 5" for all z € A. From (3.1)
it follows that a,,(z) — a, > 5Zy=i ;// \°iM)\ - 0 for all z 6 A and i = 1, . . . , n. So,
for each z € A, the matrix V2<p(z) is diagonally dominant with non-negative diagonal
elements. Hence V2<p(z) € S™ for every z e A. Since for each x e A, there is z e A
such that

<p(x) - <p(x) = V<p(x)T(x - x) + -(x - x)TV2<p(z)(x - x),

it follows that <p(x) - <p(x) > 0 for all x € A. Therefore l(x) - l(x) > g(x) - g(x)
for all x e A, and hence l(x) - l(x) > g(x) - g(x) for all x e D. Since M e S™ and

€ S£, for all x € T, we have Tr[A/F(x)] > 0, for all x e £> C T. Hence

f(x) - fix) > f(x) - Tr[MFix)] - fix)

= fix) - Tr[MFix)] - ifix) - Tr[MFix)])

= lix) - lix)

> gix)-gix) VxeD.

(ii) The conclusion follows from (i) since, for each x € D, fix) > hix) and
fix) = hix). D

LEMMA 3.2. Let x e D := V n A. Suppose that there exists M >: 0 such that
Tr[MF(Jc)] = 0. Ifx is a global minimiser of the quadratic function g over A, then
x is a global minimiser of (LMIP0).

PROOF. Since x minimises g ( ) over A, x minimises g ( ) over D, that is, gix) —
gix) > 0 for all x € D. Now, it follows from Lemma 3.1 that x is a global minimiser
of (LMIPo). Q

For (LMIPo), we assume, without loss of generality, that M, < vit i = 1, . . . , n.
For each i = 1 , . . . , n, define

a, := max{0, —a,}, (3.3)

G :— diag(ai,..., an). (3.4)

Let u = (« i , . . . , un)
T and v = ivt, ..., vn)

T. Let x = (Jci, . . . , xn)
T e D. Define

- 1 if *,- = «,,

1 if x, = v,, (3.5)

(V/(Jc) - F*iM)). if * e («„ «,-),

and

, . • •, i»). (3.6)
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THEOREM3.3. Letx € D := THA. If there exists M >; OsuchthatTr[MF(x)] = 0
and

l-G(v -u) + X(Vf(x) - F*(M)) < 0, (3.7)

then x is a global minimiser of (LMIP0).

PROOF. Let

g(x):=-xTGx + (Vf(x)-Gx-F*(M))Tx and A := ["[[H,, «,-].

The conclusion will follow from Lemma 3.2 if we show that x is a global minimiser
of g over A. Since G = diag(a,,..'.,<*„) and dt = (V/(x)), - a,x, - (F*(M)),,
it follows from Proposition 2.1 that i is a global minimiser of g over A if and only
if for each i = 1 , . . . , n, |d,(v,- - «,) + Jc,-((V/(i)),- - (F*(M)),) < 0. That is,
\G{v - u) + X(Vf(x) - F*(M)) < 0. Now, by the hypothesis, x is a global
minimiser of g over A. •

The following simple numerical examples illustrate how global minimisers of
smooth minimisation problems can be identified by Theorem 3.3. In the first example
a global minimiser occurs at an interior point, whereas in the second example it occurs
at a boundary of the feasible set.

EXAMPLE 1. Consider the following smooth minimisation problem:

s.t. I ° + £?=• ' / ' - '
|*€A:=nL,[l/2,ll/2],

where

(3 1 0\ /O 1 0\ / I 0 0\
= | 1 1 0 ] , Ft = I 1 0 01 and F2 = 0 0 0 .

^0 0 1/ \0 0 1/ \0 0 0 /

Let x = (xx,x2) = (2/3, 2/3) € D := {x e A | (x{ + I)2 < x2 + 3}. It is easy to
check that x is a local minimiser of (El). Let z € A. Then

'11/3 5/3 0 \
F(x) = | 5/3 1 0 , V / ( i ) = (0,0)r and

0 0 5/3/

/6z, - 2 0 \
" ^ 0 6z2 - 2 / '
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It now follows that G = ( i °) and G = (g g). Taking

(0 0 0>

0 0 0

0 0 Oy

we obtain M e S\, TT[MF(X)] = 0 and F*(M) = (Tr[MF,], Tr[MF2])r = (0, 0)7",
and so (3.7) holds for (El) at x = (2/3,2/3). The point x = (2/3, 2/3) is a global
minimiser of (El) as is also seen from the graph of / given below

EXAMPLE 2. Consider the following smooth minimisation problem:

min f(x) =
xeR2 xxx\ — x\ — x2 s.t.

where

(E2)

'1 1 0 \ / 0 - 1 0\ / I 0
F 0 = | l 1 0 , F , = - 1 0 0 and F2 = 0 0 0

{0 o 1/ V o 0 1 /

Let Jc = ( i | , Jc2) = (0, 0) € D. Clearly, x belongs to the boundary of D. Let z € A.
Then,

/ I 1 0\
F ( i ) = 1 1 0 , V/ ( i ) = ( - l , - l ) r and

\ 0 0 1/

•G
2z2

2z2 2z,
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So, G = (-0
6 _°5) and G = {%%). Taking

2 - 2 0\
M = - 2 2 0

0 0 0/

we obtain M e S*, Tr[MF(x)] = 0 and F*(Af) = (Tr[MF,], Tr[MF2])r = (4, 2)r.
Condition (3.7) now becomes

Thus (3.7) holds for (E2) at x = (0, 0) which is a global minimiser of (E2).

-0.6

0.25
-0.2

0.3 0

Let us examine a special case of (LMIPO where the matrix inequality constraints
are replaced by the standard linear inequalities:

min f(x) s.t.
b0 + Bx > 0,

(LIP,)

where B = (bjj)mxn is an m x n matrix and b0 =

COROLLARY 3.4. LetxeD. If there exists k(> 0) € Km, such that kT (b0 + Bx) = 0
such that

)-G(v -u) + X(Vf(x) - BX) < 0, (3.8)

then x is a global minimiser of (LIPi).
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PROOF. For each / = 0 , . . . , « , let Ft = diag(6,,,..., bim). Let M = diag(A.).
Then F*(M) = BX. Applying Theorem 3.3 gives x as a global minimiser of problem
(LIP,). •

4. Applications to discrete minimisation problems

In this section, we will apply the technique, described in Section 3, to a smooth
minimisation problem with discrete constraints:

min/Oc) s.t. p« + ET-,^i>:0.

where / : R" -*• K is a twice continuously differentiable function on an open set
containing A := f\"=l[ui, vt] and F, € Sm,i = 0 , . . . , n. LetC := f lLi i"" u<)- T h i s

model problem covers important optimisation problems with bivalent constraints [10],
where x,• = — 1 or xt = +1 or binary constraints [2] where A:, = 0 or xt = 1. Such
discrete problems include the quadratic assignment problem [10] and the max-cut
problem [2].

In this section, we apply the results of the previous section to derive sufficient
global optimality conditions for the discrete model problem (LMIP2) by examining a
continuous relaxation of the discrete constraints.

THEOREM 4.1. Let x e r D C. If there exists M > 0 such that Tr[MF(x)] = 0 and

' --G(v-u) + X(Vf(x)- F*(M))<0, (4.1)

then x is a global minimiser of problem (LMIP2).

PROOF. Let^(jt) := ±xTGx + (Vf(x)-Gx-F*(M))Tx,x € A := fl^it".- w,-].
Lemma 3.1 yields that f(x) - f(x) > g(x) - g(x) for all x e F D C as D D F D C,
where D = F D A. The conclusion will follow if we show that ^ is a minimiser of g
over C = n"=i{"<» u'}> which means that for all x 6 f~["=i{">> u<}>

I= I /=i

By Proposition 2.2, x is a global minimiser of g over C if and only if for each
i = l , . . . , «, Jcl-(rff+a,Jc1-)-iorl-(u/—ii,-) < 0, where4 = (V/( i ) ) , -a , i , - (F*(M)) , .
By hypothesis, (4.1) holds, and so, (4.2) holds. Hence x is a global minimiser of g
over C. •
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EXAMPLE 3. Consider the following smooth minimisation problem:

I E"' I \ Y . C\ N̂ . C\

.'=l ' ' ~ ' (E3)
x e I~F-i{l' 2}.

where

(3 1 0\ /0 1 0\ /I 0 0>

1 1 01 , F, = I 1 0 01 and F2 = 0 0 0
0 0 1/ \0 0 1/ \0 0 Oy

It is easy to check that the feasible set is {(1, 1), (1, 2)}. Let x = ( i , , x2) = (1, 1).
Let z 6 A. Then

(A 2 0>
F(x) = I 2 1 0 I , V/(x) = (2, 2)r,

Taking

( 1 - 2 0>

- 2 4 0
0 0 0y

we see that M e 5 j , TT[MF(X)] = 0 and #*(M) = (Tr[A/F,],Tr[MF2])r

( - 4 , l ) r . Now,

)-("o -0(0
= f"17/2Y

\-V2jHence (4.1) holds for (E3) a t i = (1, 1), which is a global minimiser of (E3).

Finally, consider the problem

min/W ,t. K * * ; 0 ' f (LIP2)

w h e r e B = (bjj)mxn is an w x n m a t r i x a n d i>0 = ( b o u ..., bOm)T.

COROLLARY 4.2. Letx e D. If there exists X € Km, A. > 0 such that XT(bo+Bx) —
0

I 0, (4.3)

JC is a global minimiser of problem (LIPj).
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PROOF. For each i = 0 , . . . , n, let Ft = diag(fc,,,..., bim). Let M = diag(A.).
Then F*(M) = BX. Applying Theorem 4.1 gives x as a global minimiser of prob-
lem (LIP2). D
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