
Canad. Math. Bull. Vol. 47 (1), 2004 pp. 30–37

Existence of Leray’s Self-Similar Solutions
of the Navier-Stokes Equations In D ⊂ R

3

Xinyu He

Abstract. Leray’s self-similar solution of the Navier-Stokes equations is defined by

u(x, t) = U (y)/
√

2σ(t∗ − t),

where y = x/
√

2σ(t∗ − t), σ > 0. Consider the equation for U (y) in a smooth bounded domain D

of R
3 with non-zero boundary condition:

−ν 4 U + σU + σy · ∇U + U · ∇U + ∇P = 0, y ∈ D,

∇ ·U = 0, y ∈ D,

U = G(y), y ∈ ∂D.

We prove an existence theorem for the Dirichlet problem in Sobolev space W 1,2(D). This implies the

local existence of a self-similar solution of the Navier-Stokes equations which blows up at t = t∗ with

t∗ < +∞, provided the function G(y) is permissible.

1 Introduction

Consider the incompressible Navier-Stokes equations in R
3 × [0,∞)

∂u

∂t
+ u · ∇u = −∇p + ν 4 u,(1.1)

∇ · u = 0,

where u(x, t) = (u1, u2, u3) denotes the velocity field, p the pressure scalar, and the
constant viscosity ν is positive. In 1934 Leray [L] suggested (backward) self-similar
solutions of (1.1) of the form:

(1.2) u(x, t) =
1√

2σ(t∗ − t)
U (y), y =

x√
2σ(t∗ − t)

∈ R
3,

where 0 < σ ≤ 1 is a constant, and 0 < t < t∗ < ∞. If a solution U 6≡ 0 is found,
then the system (1.1) develops a finite-time singularity at (0, t∗).

For the Leray system in an unbounded domain, it was proved in [NRŠ] and [T]
that if a weak solution U (y) is in Lp(R

3) for 3 ≤ p ≤ ∞, then U must be trivial.
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Note that in their proofs, it was implicitly assumed that the self-similar solution sat-
isfies (1.1) for all x ∈ R

3. There is also a recent work [NOZ] on the similarity solution

in a domain bounded in one direction: the blowup problem is connected to existence
of the non-trivial steady state which has the unstable manifold.

On the other hand, some works (for instance [BP], [M], and [P]) have raised a
subtle question: could the Leray’s solutions exist only locally? That is, could a solu-

tion of (1.1) be self-similar only in a bounded domain Ω and be regular in Ω
c, where

Ω = {(x, t) : |x| ≤ y0

√
2σ(t∗ − t)} for some y0 > 0? Interestingly, such a local

self-similar blowup is found for the nonlinear Schrödinger equation by rigorous and
numerical analysis (see [SS] for a review). For example in the supercritical dimen-

sion, it is found that the domain of the similarity solution is bounded above in the
x-coordinate by some x0 < K < ∞, with three regions: (i) in the inner, the exact
self-similarity remains in a domain bounded in the y-coordinate as defined in (1.2);
(ii) in the intermediate, the domain of non-stationary self-similar solution tends to

infinity in the y-coordinate at the singular time; (iii) in the outer, there is a solution
of the linear Schrödinger equation, decaying rapidly as |x| → ∞ to ensure the finite
wave energy. On each of the boundaries the solutions are continued smoothly, and
depending on initial conditions, x0(t) can be a constant.

Pondering these works and the analogy of the Navier-Stokes equation to the non-
linear Schrödinger equation, it seems natural to explore the possibilities of local Leray
solution (1.2). As a small step, we shall study the following problem for U in a smooth
bounded domain D:

−ν 4U + σU + σy · ∇U + U · ∇U + ∇P = 0, y ∈ D,(1.3)

∇ ·U = 0, y ∈ D,

U = G(y), y ∈ ∂D,(1.4)

where G is a prescribed function. A physical motivation of the present study is that
if this solution exists, it may serve as a central part of the blowup solution, and a

continuation to the other regions. The boundedness of D is assumed on the base of
numerical evidence [K], [OG], which indicates multiple length scales in the singular-
ity formation.

In this paper, we show that Leray’s solutions do exist for the above Dirichlet prob-

lem. To prove the theorem, an inequality has to hold: 4σd2 < ν, where d = diameter
of D. For a “turbulent” Navier-Stokes flow of small ν, the inequality requires that
either σ or d be small. In the construction, the boundary condition G appears to
be a forcing term, which is also critical for the proof. For general works related to

the interest here, see for example, [CFM], [CKN], and [G]. There are also results on
Leray’s forward solutions [GM], [CP], which are regular on R

3 × (0,∞) and singular
at (0, 0).

Remark Suppose the self-similar solution is local, so it is defined in a bounded do-
main Ω = {(x, t) : |x| ≤ y0

√
2σ(t∗ − t)}. Let x0 = y0

√
2σ(t∗ − t) denote its

extension. It is clear from the transformation (1.2) that for any x arbitrarily close to
x0, we have y → ∞ as t → t∗. This shows that although the self-similarity could be
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local in the x-coordinate, it cannot be local in the y-coordinate in any case. Hence
to have a complete solution to the system (1.1), a solution of the problem (1.3) and

(1.4) needs to be continuously connected to other regions. For a solution at the final
self-similar region, it must match smoothly at the point y = ∞ to an outer solution
uout , where uout is a regular solution to (1.1). Note that uout should take a finite but
non-zero value on the boundary, as there are incoming and outgoing motions in the

vortex interaction zone (see Figure 4 of [P], and Section 7 of [M] for a discussion
of the matching condition). We thus observe that this local self-similar problem is
different from the one treated in [NRŠ] and [T] due to the above subtleties, though,
at this stage we cannot state whether the complete solution exists or it is non-trivial.

2 Preliminaries

Let the domain D ⊂ R
3 be an open set with smooth boundary. Let Ck

0(D) be the

class of Ck real functions f with compact support on D. Unless otherwise stated, a
vector function f is divergence-free. Let ∇ f denote ∂i f or ∂i f j , and write

〈 f , g〉 =

∫

D

f · g dy, 〈 f , g, h〉 =

∫

D

fig j∂ jhi dy.

Denote a Hilbert space Hm(D) = W m,2(D), where W m,p are the Sobolev spaces. Let
H1

0 (D) be the closure of C∞
0 (D) in H1(D), with the norm on H1

0(D) by

‖ f ‖H1
0
= ( f , f ) =

{

∫

D

|∇ f |2 dy
} 1/2

.

Let d = diameter of the domain D.
For a weak solution U ∈ H1(D), multiplying (1.3) by a divergence-free vector

function ϕ = (ϕ1, ϕ2, ϕ3) ∈ C∞
0 (D), integrating by parts we have

ν〈∇ϕ,∇U 〉 + σ〈ϕ,U 〉 + σ〈ϕ, y,U 〉 + 〈ϕ,U ,U 〉 = 0.

To treat (1.4), let G be a divergence-free extension to D of the given function G at the

boundary, satisfying

(2.1) G(y) ∈ C2( D ), ∇ · G = 0, |G(y)| ≤ κ, G = G(y) on ∂D,

where κ is a positive constant. We further assume κ to be small, in the sense κ ≤ d, d

being the diameter of D. This implies the smallness of the boundary data. Note that
in (2.1), G(y) must satisfy the compatibility condition:

∫

∂D

n · G dS =

∫

D

∇ · G dy = 0.

Then we set

U = v(y) + G(y), ∇ · v = 0, v = 0 on ∂D, v ∈ H1
0 (D).
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So solving (1.3) and (1.4) weakly is equivalent to finding a v such that

ν〈∇v,∇ϕ〉 − 2σ〈v, ϕ〉 − σ〈v, y, ϕ〉(2.2)

− 〈v, v + G, ϕ〉 − 〈G, v, ϕ〉 = 〈 fG, ϕ〉,

where fG(y) = ν 4 G − σG − σy · ∇G − G · ∇G, fG 6≡ 0.

We now present a few results to be used in the sequel.

Lemma 2.1 Let D be a bounded set in R
3. Then ∀ f ∈ H1

0 (D),

‖ f ‖L2(D) ≤ c1‖∇ f ‖L2(D), ‖ f ‖L4(D) ≤ c2‖∇ f ‖L2(D),

where c1, c2 are constants depending on D and are bounded above by d.

Proof The result is the well-known Poincaré Lemma.

Lemma 2.2 Let D be bounded in R
3. Let G be as in (2.1), where κ ≤ d. Then there

exists some constant c3 ≤ κd such that

|〈G, f , f 〉| ≤ c3‖∇ f ‖2
L2(D) ∀ f ∈ H1

0(D).

Proof By the assumption and Cauchy-Schwarz’s inequality,

|〈G, f , f 〉| ≤ κ〈 | f |, |∇ f | 〉 ≤ κ‖ f ‖L2
‖∇ f ‖L2

.

Using Lemma 2.1, we obtain

|〈G, f , f 〉| ≤ c3‖∇ f ‖2
L2(D), c3 = κc1.

The assertion is proved.

Concerning (2.2), we define operators for fixed v on the Hilbert space H1
0 (D):

T1(ϕ) = 2σ〈v, ϕ〉, T2(ϕ) = σ〈v, y, ϕ〉,
T3(ϕ) = 〈v, v + G, ϕ〉, T4(ϕ) = 〈G, v, ϕ〉.

Define

(2.3) T = T1 + T2 + T3 + T4.

Lemma 2.3 Let D ⊂ R
3. For each fixed v, T in (2.3) is a bounded linear functional on

H1
0 (D).
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Proof Let v ∈ H1
0 (D) be fixed. Note that |y| ≤ d, and G ∈ L2(D) by (2.1). Applying

Lemma 2.1, we observe that there exists finite N > 0 such that:

|T1(ϕ)| ≤ C1‖∇v‖L2(D)‖ϕ‖H1
0
≤ N‖ϕ‖H1

0
,

|T2(ϕ)| ≤ C2‖∇v‖L2(D)‖ϕ‖H1
0
≤ N‖ϕ‖H1

0
,

|T3(ϕ)| ≤ C3‖v‖L4(D){‖v‖L4(D) + ‖G‖L4(D)}‖ϕ‖H1
0
≤ N‖ϕ‖H1

0
,

|T4(ϕ)| ≤ C4‖G‖L2(D)‖∇v‖L2(D)‖ϕ‖H1
0
≤ N‖ϕ‖H1

0
.

Hence the functional T is bounded on the Hilbert space H1
0(D).

Corollary 2.4 Equation (2.2) can be reduced to a mapping equation:

(2.4) v − λ(Tv + F) = 0, λ = 1/ν, Tv, F ∈ H1
0 (D).

Proof Since for fixed v, T is a bounded linear functional, Riesz’s representation
theorem guarantees there exists an element Tv ∈ H1

0 such that T(ϕ) = (Tv, ϕ),

where (·, ·) is the inner product. The 〈 fG, ϕ〉 also define a linear functional, and its
boundedness follows from (2.1). Hence there exists an element F ∈ H1

0 such that
T fG

(ϕ) = (F, ϕ). This gives (νv − Tv − F, ϕ) = 0 ∀ϕ ∈ H1
0 .

3 Existence Theorem

Theorem 3.1 Let D ⊂ R
3 be open with ∂D ∈ C2. Let κ = σd be the constant in

Lemma 2.2, where σ ∈ (0, 1] as in (1.2) and d = diameter of D. Assume ν, σ and d

satisfy the condition 4σd2 < ν. Then there exists a weak solution U ∈ H1(D) for the

Dirichlet problem (1.3) and (1.4).

Proof The weak form of (1.3) and (1.4) is equivalent to (2.2). According to Corol-
lary 2.4, solvability of (2.2) is reduced to that of (2.4) in the Hilbert space H1

0 . We
shall apply Leray-Schauder’s fixed point theorem [LS] to prove the solvability. The

proof proceeds in 2 steps.

Step 1. Compactness of the Operator T: Recall an operator A is compact on the
Hilbert space if for every bounded sequence {vn} ⊂ H1

0 , the sequence {Avn} has
a convergent subsequence. It suffices to show the operators Ti , i = 1, . . . , 4 are
compact, as T in (2.3) is a linear combination of them. We start with

|(T1vm − T1vn, ϕ)| =

∣

∣

∣
2σ

∫

D

(vm − vn) · ϕ dy
∣

∣

∣
≤ C‖vm − vn‖L2(D)‖ϕ‖H1

0
.

By Rellich’s selection theorem, the vm converges strongly in L2(D). Setting ϕ =

T1vm − T1vn, we thus obtain

‖T1vm − T1vn‖H1
0
≤ C ′‖vm − vn‖L2(D) → 0 as m, n → ∞.
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Similarly,

|(T2vm − T2vn, ϕ)| =

∣

∣

∣
σ

∫

D

(vm − vn) · y · ∇ϕ dy
∣

∣

∣
≤ C‖vm − vn‖L2(D)‖ϕ‖H1

0
,

i.e., ‖T2vm − T2vn‖H1
0
≤ C ′‖vm − vn‖L2(D) → 0 as m, n → ∞.

|(T3vm − T3vn, ϕ)| =

∣

∣

∣

∫

D

[vm(vm + G) − vn(vn + G)] · ∇ϕ dy
∣

∣

∣

≤
{

∫

D

|vm(vm + G) − vn(vn + G)|2 dy
} 1/2

‖ϕ‖H1
0
.

We make use of the identity: |vm(vm + G) − vn(vn + G)| = |(vm − vn)(vm + G) +
(vm − vn)vn|. By Lemma 2.1, the vm also converges strongly in the L4(D) norm. Set
ϕ = T3vm − T3vn. Then

‖T3vm − T3vn‖H1
0
≤ C‖vm − vn‖L4(D) → 0 as m, n → ∞.

Finally,

|(T4vm − T4vn, ϕ)| =

∣

∣

∣

∫

D

G · (vm − vn) · ∇ϕ dy
∣

∣

∣
≤ C‖vm − vn‖L2(D)‖ϕ‖H1

0
,

i.e., ‖T4vm − T4vn‖H1
0
≤ C ′‖vm − vn‖L2(D) → 0 as m, n → ∞.

It has been shown that T is compact.

Step 2. Bound On ‖v‖H1
0

: To show all possible solutions of (2.4) are uniformly

bounded in H1
0(D), we return to (2.2) by putting ϕ = v. Noticing 〈v, v + G, v〉 = 0,

we get
ν‖v‖2

H1
0
− 2σ‖v‖2

L2
− σ〈v, y, v〉 − 〈G, v, v〉 = 〈 fG, v〉.

Here fG is introduced in (2.2). Using Lemma 2.1, we estimate

‖v‖2
L2
≤ d2‖v‖2

H1
0
, |〈v, y, v〉| ≤ d2‖v‖2

H1
0
, |〈 fG, v〉| ≤ d| fG| ‖v‖H1

0
.

Taking κ = σd in Lemma 2.2 leads to

|〈G, v, v〉| ≤ σd2‖v‖2
H1

0
.

Collecting these together, we have

(ν − 4σd2)‖v‖2
H1

0
≤ C‖v‖H1

0
, C = d| fG|.

The assumption on smallness of either σ or d then yields the bound:

‖v‖H1
0 (D) ≤ M, M = C/(ν − 4σd2).

We now appeal to the Leray-Schauder theorem. Since T is compact, then S = T+F

is also compact, where F in (2.4). Write (2.4) as v = λSv, λ ∈ [0, 1/ν]. It is true that
‖v‖H1

0 (D) ≤ M ∀v ∈ H1
0(D) satisfying the equation, so S has a fixed point.
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4 Remarks

(a) By the regularity theory for the steady Navier-Stokes equations, it can be
shown that the weak solution U is smooth (cf. [G]). The pressure P can be ob-
tained by solving the divergence equation in the sense of distributions. The solu-

tion is unique if (ν − 4σd2)2 > d3| fG|; clearly from the definition of fG in (2.2), the
uniqueness requires the smallness of boundary data G(y). We do not know whether
solutions proved in Theorem 3.1 are stable.

(b) For a meaningful singular solution to (1.1), its L2-norm should be bounded.

Suppose we are looking for a complete local self-similar solution, which has its spatial
extension x0 = y0

√
2σ(t∗ − t). Using (1.2), we can formally write down the kinetic

energy,

E :=
1

2
‖u‖L2(R3) =

1

2

∫

|x|≤x0

|u|2 dx +
1

2

∫

|x|>x0

|u|2 dx(4.1)

=

√

1

2
σ(t∗ − t)

∫

|y|≤x0/
√

2σ(t∗−t)

|U |2 dy +
1

2

∫

|x|>x0

|u|2 dx.

The first term on the r.h.s of (4.1) is the self-similar energy:

Eself-similar :=

√

1

2
σ(t∗ − t)

∫

|y|≤x0/
√

2σ(t∗−t)

|U |2 dy

(4.2)

=

√

1

2
σ(t∗ − t)

(

∫

|y|≤d

|U |2 dy +

∫

d<|y|≤x0/
√

2σ(t∗−t)

|U |2 dy
)

,

where d = diameter of the bounded domain D. Let U be a solution as in Theo-

rem 3.1, then we have in (4.2)
∫

|y|≤d
|U |2 dy < K < +∞. So the self-similar energy

in this central region tends to zero as t → t∗ because of the factor
√

1
2
σ(t∗ − t). This

would imply that some energy is going back to the second integral in (4.2), and fur-
ther to the second integral in (4.1). These two integrals have to be bounded at t = t∗

to guarantee the finiteness of the energy.

(c) For the existence, the inequality 4σd2 < ν must hold for a fixed ν. Since σ
in (1.2) is a free parameter, it takes arbitrary values in (0, 1]. Let σ = ν2/4. Now
the inequality becomes νd2 < 1. In this case for a turbulent flow with small ν, a
finite d would satisfy the condition. One could think of the boundedness of d in the

y-coordinate as a ball uniformly shrinking in the x-coordinate: the singular solutions
appear to be very localised in the x-variable if they do occur.

(d) If G(y) = 0 on ∂D, then fG ≡ 0. We would have a trivial solution in this case.
This shows the prescribed data is necessary for proving the existence result, which

supplies the necessary energy and vorticity into the central self-similar region. But
our work does not show how to construct the imposed function G, nor how it may be
connected with an outer solution (suppose the outer flow is not self-similar). These
interesting questions are left for future studies.
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