
Bull. Aust. Math. Soc. 95 (2017), 66–72
doi:10.1017/S0004972716000812

POLYGONAL QUASICONFORMAL MAPPINGS AND
CHORD-ARC CURVES

SHENGJIN HUO�, SHENGJIAN WU and HUI GUO

(Received 19 May 2016; accepted 8 August 2016; first published online 2 November 2016)

Abstract

In this paper we show that a polygonal quasiconformal mapping always corresponds to a chord-arc curve.
Furthermore, we find that the set of curves corresponding to polygonal quasiconformal mappings is path
connected in the set of all bounded chord-arc curves.
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1. Introduction

Let D be the unit disc in the complex plane C and ∂D be its boundary. A Jordan curve
Γ is said to be a chord-arc curve if there exists a constant C such that for every ξ1,
ξ2 ∈ ∂D,

L(γ) ≤ C|ξ1 − ξ2|,

where γ is the ‘shorter’ arc of Γ joining ξ1 and ξ2 and L(γ) denotes its arc length. A
domain Ω in the plane is said to be a chord-arc domain if its boundary is a chord-arc
curve. A weaker condition than chord-arc is Ahlfors’ three-point condition: a Jordan
curve γ satisfies the three-point condition if there is a constant C such that for any
three points z1, z2 and z3 on the curve γ with z3 ∈ (z1, z2), |z1 − z3| ≤ C|z1 − z2|.

Suppose that Γ is an oriented Jordan curve in the plane which separates the
plane into two complementary regions Ω+ and Ω−. Let f and g be conformal
mappings of D and C \ D onto Ω+ and Ω−, respectively. These two mappings
extend homeomorphically to the boundary and hence f −1 ◦ g determines an oriented
homeomorphism h of the unit circle to itself. Furthermore, if Γ is a chord-arc curve,
then the welding h = f −1 ◦ g belongs to the group SQ(∂D) of strongly quasisymmetric
homeomorphisms of the unit circle, that is, for each ε > 0 there is a δ > 0 such that

|E| ≤ δ|I| ⇒ |h(E)| ≤ ε|h(I)|
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whenever I ⊂ ∂D is an interval and E ⊂ I is a measurable subset. From [5] or [2], we
know that SQ(∂D) is the group of all homeomorphisms of the unit circle for which the
associated measure dh = h′ds is absolutely continuous with density h′ belonging to the
class of weights A∞ introduced by Muckenhoupt. We can define a distance in SQ(∂D)
by d(h, k) = ‖ log(h′) − log(k′)‖BMO to make SQ(∂D) a topological space, since log(h′)
is in BMO(∂D), the space of functions of bounded mean oscillation. The important
problem of the connectivity of the manifold of chord-arc domains remains open. See
[1] for more results on this topic.

Let M(D) denote the unit sphere of all essentially bounded measurable functions in
D. For a given µ ∈ M(D), there exists a unique quasiconformal self-mapping f µ of D
fixing 1,−1 and i and satisfying

∂ f µ

∂z
= µ

∂ f µ

∂z
a.e. z ∈ D.

The measurable function µ is called the Beltrami coefficient of f µ. Similarly, there
exists a unique quasiconformal homeomorphism of the plane fµ which is conformal
outside of the unit disc D with the normalisation

fµ(1) = 1, fµ(i) = i and fµ(−1) = −1.
In the unit disc D, we have again

∂ f µ

∂z
= µ

∂ f µ

∂z
a.e. z ∈ D.

If µ ∈ M(D), then f µ has well-defined boundary values giving a quasisymmetric
homeomorphism of the unit circle. We define an equivalence relation on M(D) by
µ ∼ ν if f µ |∂D= f ν |∂D. The equivalence class which contains µ is denoted by [µ] or
[ f µ] and the set of all the equivalence classes is the universal Teichmüller space T (D).

For any µ ∈ M(D), let f µ ∈ [µ] be a quasiconformal self-homeomorphism of the unit
disc D. Define

k0([µ]) = inf{‖ν‖∞ : ν ∼ µ}.
A quasiconformal mapping f µ is extremal if ‖µ‖∞ = k0(µ). It is well known that there
always exists at least one extremal mapping in each point of T (D). If the complex
Beltrami coefficient of f µ is of the form kϕ̄/|ϕ|, where k = ‖µ‖∞ and ϕ is a holomorphic
quadratic differential with finite norm

||ϕ|| =

∫
D

|ϕ(z)| dx dy,

where z = x + iy, then we call f µ a Teichmüller mapping and ϕ the associated quadratic
differential for f µ. It is well known that the Teichmüller mapping f µ is the unique
extremal mapping in [µ]. A well-known criterion for f µ ∈ [µ] to be extremal is the
following theorem due to Hamilton–Krushkal–Reich–Strebel.

Theorem 1.1 [4]. Let [µ] ∈ T (D). Then f µ ∈ [µ] is extremal if and only if

sup
{
<

"
D

µ(z)ϕ(z) dx dy
}

= ‖µ‖∞,

where the sup is taken over all holomorphic quadratic differentials with norm one.

https://doi.org/10.1017/S0004972716000812 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000812


68 S. Huo, S. Wu and H. Guo [3]

Polygonal quasiconformal mappings were introduced by Strebel (see [10, 12]) and
they play a fundamental role in the theory of extremal quasiconformal mappings. They
are defined as follows.

Let D(z1, z2, . . . , zn) denote the unit disc D with n ≥ 4 anticlockwise ordered
distinguished points z1, z2, . . . , zn fixed on ∂D; D(z1, z2, . . . , zn) is called an n-
polygon. For a pair of n-polygons, D(z1, z2, . . . , zn) and D(w1, w2, . . . , wn), with
vertices corresponding to each other in the same order, there always exists a
Teichmüller mapping f : D(z1, z2, . . . , zn)→ D(w1,w2, . . . ,wn) such that f (z j) = w j for
j = 1,2, . . . ,n (see [10, 12]). The Teichmüller mapping f will be called an n-polygonal
quasiconformal mapping or polygonal quasiconformal mapping. Every polygonal
quasiconformal mapping determines a pair of quadratic differentials ϕn onD(z1, . . . , zn)
and ψn onD(w1, . . . ,wn) with ‖ϕn‖ = ‖ψn‖ = 1, which are called polygonal differentials.
The two differentials are real along the sides of the boundary of the polygons and have
at most simple poles at the vertices. The quadratic differentials ϕn and ψn can be
analytically continued outside of the unit disc and consequently they are rational. The
critical points of the differentials are the poles and zeros of the differentials. The set of
all critical points of a polygonal differential is a finite set.

With the foregoing background we now present the results in this paper. In
[7], the authors proved that if µ ∈ M(D) is the Beltrami coefficient of a polygonal
quasiconformal mapping f , then the Hausdorff dimension of fµ(∂D) is one. In this
paper, we will give a stronger result that the curve fµ(∂D) is not only rectifiable, but
also a chord-arc curve.

Theorem 1.2. Let µ ∈ M(D) be the Beltrami coefficient of a polygonal quasiconformal
mapping f µ. Then the curve fµ(D) is a chord-arc curve.

Let Q be the set of all the curves γ, where γ = fµ(∂D) and µ ∈ M(D) is almost
everywhere equal to the Beltrami coefficient of a polygonal quasiconformal mapping.
From Theorem 1.2, we easily deduce the following corollary.

Corollary 1.3. The set Q is a path-connected subset of the manifold of bounded
chord-arc curves.

2. Proofs of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2. Let D(z1, z2, . . . , zn) and D(w1, w2, . . . , wn) be a pair of n-
polygons and f be the polygonal quasiconformal mapping between them. By the
extremal Teichmüller theory, we know that the Beltrami coefficient of f has the form
µ(z) = k|ϕ(z)|/ϕ(z), where k is the essential norm of the Beltrami coefficient and ϕ(z)
is a holomorphic quadratic differential. For µ(z), there exists a conformal mapping g
such that g ◦ f = fµ on the unit disc. It is easy to see that f (z) restricted to the unit
circle is equal to the conformal welding g−1 ◦ fµ, since fµ is conformal outside the unit
disc; denote its extension by h = g−1 ◦ fµ.
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Let z0 ∈ ∂D and ξ0 = fµ(z0).
Claim 1: The smoothness or nonsmoothness of the welding h at z0 is dependent only
on the local nature of the curve fµ(∂D) around the point ξ0.

The proof of the claim is similar to the proof of [8, Lemma I.1]. Let Dr be a disc
with centre z0 and radius r. Suppose that g1 is a conformal mapping from the half-disc
Dr ∩D onto a topological half-disc Ω bounded by a portion of the curve fµ(∂D) around
the relevant point ξ0 ∈ fµ(∂D). Let h1 = g−1

1 ◦ fµ be the welding on the arc ∂D ∩ Dr.
Then

h = g−1 ◦ fµ = g−1 ◦ g1 ◦ g−1
1 ◦ fµ = g−1 ◦ g1 ◦ h1.

Furthermore, the mapping g−1 ◦ g1 maps the interval ∂D ∩ Dr onto an interval of the
unit circle. By the Schwarz reflection principle, the mapping g−1 ◦ g1 on the half-disc
Dr ∩ D extends conformally throughout a full disc containing the arc ∂D ∩ Dr. So
g−1 ◦ g1 is real analytic on the arc ∂D ∩ Dr. Hence, h1 and h have the same smoothness
or nonsmoothness properties.

In the following we give another representation of h. Let ϕ onD(z1, . . . , zn) and ψ on
D(w1, . . . ,wn) be the polygonal differentials associated with f . From the introduction,
we know that ϕ and ψ are real on the unit circle. Furthermore, they have rational
extensions to the whole plane. The trajectory structures of ϕ and ψ partition the
unit disc into finitely many horizontal strips R j ( j = 1, 2, . . . , J) in D(z1, . . . , zn) and
R′j ( j = 1, 2, . . . , J) in D(w1, . . . ,wn). Let Φ(z) =

∫ √
ϕ(z) dz and Ψ(w) =

∫ √
ψ(w) dw,

where
√
ϕ(z) and

√
ψ(w) denote the principal values of the square roots. These

horizontal strips R j and R
′

j ( j = 1, 2, . . . , J) are mapped by the conformal mappings
Φ(z) and Ψ(z) onto the Euclidean horizontal rectangles

Φ(R j) = {ζ = ξ + iη : 0 < ξ < a j, 0 < η < b j};
Ψ(R′j) = {ζ′ = ξ′ + iη′ : 0 < ξ′ < Ka j, 0 < η′ < b j}.

The polygonal mapping f in R j ( j = 1, 2, . . . , J) satisfies the relation

Ψ ◦ f ◦ Φ−1(ζ) = Kξ + iη, ζ = ξ + iη.

Set
F = Ψ ◦ f ◦ Φ−1

and
h = f |∂D = Ψ−1 ◦ F ◦ Φ|∂D.

Claim 2: The curve fµ(∂D) is rectifiable.
We first show that the curve fµ(∂D), except for a finite number of points, is locally

rectifiable. By [8], if the curve fµ(∂D) has a ‘corner’ of positive angle at some point,
then the welding for fµ(∂D) will have a ‘power law’ behaviour at the corresponding
point. Thus, the welding h = g ◦ fµ will have vanishing or infinite derivative there.
Furthermore, smooth curves always correspond to C∞ welding.

The sets of critical points of ϕ and ψ in the closure of the unit disc, denoted by
E1 and E2, respectively, are finite sets. For any eiθ ∈ ∂D \ (E1 ∪ Φ ◦ f −1(E2)), by the
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representation of h and the trajectory structures of ϕ and ψ, there exists r > 0 such that
ϕ is real in (ei(θ−r), ei(θ+r)) ⊂ ∂D \ E and ψ is real in (h(ei(θ−r)),h(ei(θ+r))). It is easy to see
that h is a smooth map from (ei(θ−r), ei(θ+r)) to (h(ei(θ−r)), h(ei(θ+r))). By Claim 1 and [6,
Theorem 4.2, page 60], fµ((ei(θ−r), ei(θ+r))) is rectifiable. So, except for a finite number
of points, the curve fµ(∂D) is locally rectifiable.

Now we discuss the local properties of h at a critical point of ϕ. Without loss of
generality, we suppose that p0 = 1 is a zero of order n and the representation near p0
is

ϕ(z) = (z − 1)n(an + an+1(z − 1) + · · · ), an , 0.

In a sufficiently small neighbourhood of p0, we can select a single-valued branch of
the square root, say (an + an+1(z − 1) + · · · )1/2 = b0 + b1(z − 1) + · · · . Then√

ϕ(z) = (z − 1)n/2(b0 + b1(z − 1) + · · · )

and, by integrating term by term,

Φ(z) = (z − 1)(n+2)/2(c0 + c1(z − 1) + · · · )

with
ck =

2bk

n + 2(k + 1)
.

Similarly, when p0 = 1 is a pole of order one, the representation of Φ(z) near p0 is

Φ(z) = (z − 1)1/2(c0 + c1(z − 1) + · · · ).

Let
ζ(z) = (c0 + c1(z − 1) + · · · )2/(n+2), n ≥ −1

be a single-valued branch of the right-hand side in some sufficiently small
neighbourhood of p0. Then

Φ(z) = ((z − 1)ζ)(n+2)/2.

From the introduction, ϕ(z) is real on the unit circle ∂D. For odd n ≥ −1, Φ(p0) is
the intersection of a horizontal trajectory and a vertical trajectory of ϕ. Hence, Φ(z),
restricted to the unit circle, is real or pure imaginary on the different sides of p0. So
there exists a subarc γ0 of fµ(∂D) which contains p0 as an interior point such that

h = Ψ−1 ◦ F ◦ Φ|γ0 = Ψ−1(KΦ)|γ0

or
h = Ψ−1 ◦ F ◦ Φ|γ0 = Ψ−1 ◦ Φ|γ0

on different sides of p0. As in [8, pages 299–301], fµ(p0) is the common eye of two
logarithmic spirals. When n is even, Φ|γ0 is real, so

h = Ψ−1 ◦ F ◦ Φ|γ0 = Ψ−1(KΦ)|γ0
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and fµ(∂D) has a tangent at fµ(p0). Hence, whether p0 is a pole of order one or a
zero point, fµ(∂D) is locally rectifiable near fµ(p0). By the compactness of fµ(∂D), the
claim follows.

Now, to prove the theorem, we only need to show that there exists a bi-Lipschitz
mapping between the unit circle and the curve fµ(∂D). Let m = L( fµ(∂D)) denote the
length of the curve fµ(∂D) so that 0 < m < ∞. We identify the unit circle with the
interval [0, 2π) (identifying 0, 2π in the usual way). Fix a point p ∈ fµ(∂D) and choose
an orientation of fµ(∂D). Define T : fµ(∂D)→ [0, 2π) by T (ξ) = (2π/m)L(I(p, ξ)),
where L(I(p, ξ)) is the length of the subarc of fµ(∂D) with end points p and ξ.

It is easy to see that T is bijective and continuous on the curve fµ(∂D). Since fµ
is a quasiconformal homeomorphism of the plane, fµ(∂D) is a quasicircle. So fµ(∂D)
satisfies Ahlfors’ three-point condition. Hence, fµ(∂D) does not contain a closed angle.
By Ahlfors’ three-point condition and the compactness of fµ(∂D),

0 < c1 ≤
L(I(ξ1, ξ2))

d( f −1
µ (ξ1), f −1

µ (ξ2))
≤ c2,

where I(ξ1, ξ2) is the ‘shorter’ closed subarc of fµ(∂D) with end points ξ1, ξ2 and c1, c2

are two constants. Thus, the mapping T is bi-Lipschitz and the theorem follows. �

Remark 2.1. For more detail of the method that we use to prove that fµ(∂D) is bi-
Lipschitz equivalent to the unit circle, see [3]. Schechter [11] asserts that fµ is of
class C1+ε provided that µ is a compactly supported function in Lip(ε,C). The main
result of [9] identifies a class of nonsmooth functions µ which determine bi-Lipschitz
quasiconformal mappings fµ. It is easy to see that the polygonal quasiconformal
mappings do not belong to the above two cases.

Proof of Corollary 1.3. Choose a curve γ from Q. By Theorem 1.2, γ is a chord-arc
curve. By the definition of Q, there exists a bounded measure function µ ∈ M(D) of the
form k|ϕ|/ϕ, where ϕ is a polygonal quadratic differential associated with a polygonal
quasiconformal mapping f µ and k is the essential norm of µ. Let µt = tµ. By Theorem
1.1, f µt is a polygonal quasiconformal mapping. So γ connects with the unit circle (the
case for t = 0) by the path ftµ(∂D). The corollary follows. �

Remark 2.2. For any quasiconformal homeomorphism f of the unit disc, we can
choose a sequence of polygonal quasiconformal mappings { fn} such that { fn} → f
pointwise almost everywhere on the unit circle. But this does not mean that the
polygonal mapping is dense in the set of all quasiconformal homeomorphisms of the
unit disc. In [7], the authors gave some quasiconformal homeomorphisms that cannot
be approached by polygonal mappings. However, the examples given in [7] correspond
to curves with Hausdorff dimensions bigger than one. So they are not chord-arc curves.
Let MCD denote the manifold of all chord-arc curves. We ask whether or not the set
Q is dense in MCD under the BMO metric defined in the introduction.
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