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Twisted Vertex Operators and Unitary Lie
Algebras

Fulin Chen, Yun Gao, Naihuan Jing, and Shaobin Tan

Abstract. A representation of the central extension of the unitary Lie algebra coordinated with a skew
Laurent polynomial ring is constructed using vertex operators over an integral 7Z,-lattice. The irre-
ducible decomposition of the representation is explicitly computed and described. As a by-product,
some fundamental representations of affine Kac-Moody Lie algebra of type AP are recovered by the
new method.

1 Introduction

Affine Kac—-Moody Lie algebras, or nontrivial central extensions of loop algebras, are
a class of infinite dimensional Lie algebras fundamentally important in mathemat-
ics and theoretical physics. They were first realized by vertex operators in [LW] and
[KKLW] for the principal picture and later in [FK, S] for the homogeneous picture.
During the last two decades these constructions have been generalized in several di-
rections. The vertex operator representations of the toroidal Lie algebras have been
given in [MRY,Y,EM, T3] (see also [FJW]) in the homogeneous setting and in [B,T2]
in the principal setting; vertex representations of quantum affine algebras have been
obtained in [FJ] for untwisted cases and in [J] for twisted cases; the vertex represen-
tations of the extended affine Lie algebras of type A coordinated by a quantum torus
have been provided in [BS, G4] via the principal construction and in [G3] via the
homogeneous construction. Finally in [BGT] a unified treatment of vertex repre-
sentations of affine Lie algebras using mixed bosons and fermions has been studied,
and in [T1] the Tits—Kantor—Koecher algebra has also been realized using the vertex
operator calculus.

On the other hand, before the development of toroidal Lie algebras, the elemen-
tary unitary Lie algebra eu, (R, ™) associated with an involutive associative algebra
R was studied in [AF] as a derived subalgebra of the unitary Lie algebra 1, (R, ™).
These Lie algebras are generalizations of the usual loop algebras, replacing the com-
mutative coordinate ring with an noncommutative algebra. As is well known, the
central extension of Lie algebras is essentially given by A. Connes’ cyclic homology
[KL]. For the extended affine Lie algebras the central extensions are also described
by the dihedral homology [ABG, G1], and the relevant central extensions in the uni-
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tary algebras coordinated with an involutive algebra will be given by a Steinberg Lie
algebra structure.

The Steinberg group is the universal central extension of the commutator sub-
group of the general linear group. The Steinberg Lie algebra is defined as an associa-
tive algebra generated by the generators x;;(\) subject to the Steinberg relations. The
extended affine Lie algebras share many common features with loop algebras and
have also distinguished central extensions given by dihedral homology. When one
further generalizes the algebraic structure by replacing the coordinate rings with the
quantum polynomial ring or even an associative algebra, Steinberg unitary Lie alge-
bras will be the key for the universal central extensions. The realization of Steinberg
unitary Lie algebras is thus a natural question in this regard.

In this paper, inspired by the work of Wakimoto [W], we will construct a family
of twisted vertex operators associated with an integral 7,-lattice of rank v to real-
ize the Steinberg relations. More precisely, for any nonzero complex number a, we
define vertex operators X;;(a,z) for 1 < i, j < v on a Fock space M. For the pur-
pose of computing the commutator relations, two multi-product decompositions of
the d-function and the DJ-function are developed. For any abelian group G with
a character 0: G — C*, we can define a corresponding skew Laurent-polynomial
ring R, and an anti-involution ~ over R,. We will show that the vertex operators
Xi;(a, z) give a representation for the Lie algebra 1,(R,, ™) and also provide a non-
trivial central extension of the unitary Lie algebra 11, (R,,™ ) associated to the pair
(Rs, ™), namely, the twisted vertex representation is actually a module for the central
extension €11, (R,, ™).

As was shown in [W], it is interesting to analyze the irreducible decomposition of
the twisted module. Based on the observation that the twisted group algebra of the
integral Z,-lattice is isomorphic to a (finite dimensional) Clifford algebra we are able
to use the well-known classical representation theory of finite dimensional Clifford
algebras to achieve this goal. We remark that this is slightly different from the ap-
proach taken by Wakimoto [W]. Let |o| be the order of the group o(G). If |o| = oo
or |o| € 2N, then each irreducible component of i, (R, ~)-module M remains ir-
reducible as an €11, (R,, ~)-module. For the case |o| € 2N + 1, note that in this case
all the elements in o(G) are roots of unity. To this end, we introduce a conjugate
anti-involution 7 on 11, (R, ) as all the elements of o(G) lie in the unit circle in the
complex plane. Then, we prove that the 1, (R, ~)-module M is unitary with respect
to 7, which in turn deduce that M is completely reducible as €11, (R, ~)-module even
if|o| € 2N+ 1. As a by-product, when taking G = {1} we get a completely reducible
module M for the affine Kac-Moody Lie algebra of type A(fll, which recovers the
result in [W].

This paper is organized as follows. In Section 2, we define a family of vertex op-
erators for any a € C* and then compute their commutation relations. In Section
3, using the derived relations we construct the vertex operator representations for
the unitary Lie algebra with nontrivial central extension and then determine the ir-
reducible components. Finally, in Section 4, we construct vertex representations for
the elementary unitary Lie algebra with nontrivial central extension. As an example
we also obtain a new realization of the affine Kac-Moody algebra of type Af,zll.
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Throughout the paper, we denote the field of complex numbers, the group of non-
zero complex numbers, the ring of integers, and the set of non-negative integers by
C,C*,7Z, and N, respectively.

2 Fock Space and Vertex Operators

Let v > 2 be a positive integer. Let I' = @;’:1 Lei, (€i,€;) = djjfori, j=1,...,v,
and let ¢;(n) be a linear copy of ¢; forn € 2Z+ 1andi = 1,...,v. We define a Lie
algebra

H = spanc{e;i(n),1jn € 2Z + 1}

subject to the following Lie algebra relation
m
la(m), B(n)] = =-(et; B)0mrno

for a, 3 € T, and m,n € 27+ 1. Let T = I'/2I be the quotient additive group of
I factored by the subgroup 2I'. Let C[T'] = €D, Ce” be the twisted group over
the finite group T' with multiplication defined by e%¢” = (a, B)e**” for a, B € T,
where the two-cocycle e: T' x I' — {1} is given by

1 ifi<
2.1 El€,€j) = e
@D (& ¢5) {—1 ifi > j.

and

e(Xmie, Yonjej) = [1(ete,e)) ™.

L]

We note that the multiplication in C[I'] is well defined, as £(av;, 1) = £(a, 3,) if
oy — ay, By — By € 2T, Let z, w be formal variables and o € T, set

oy,

Ei(a,z) = exp(—Z
ne£(2N+1) 1

and define the Fock space

M = C[[] ® 8(3H7),

where §(JH{ ™) is the usual commutative symmetric algebra over the subalgebra JH{~
of H spanned by ¢;(n) with 1 <i <wvandn € —(2N +1).

Lemma 2.1 Fora,f €1, onehas

Ei(OL, Z) = E:I:(faa 72)5

1 —w/zy\ (@)

Eule 2E-(8.w) = E_(B.wE (o, 1) ( L22)
+w/z

Proof The first identity is clear. To prove the second identity, we set

aln n
A=-2 > —( )z*”, B=-2 —5( )w’”
ne(2N+1) M ne—(N+1) N

)

https://doi.org/10.4153/CJM-2014-010-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-010-1

576 F. Chen, Y. Gao, N. Jing, and S. Tan
and note that

me —n

(4Bl=4 > % Z——[a(m),fmn)

meE(2N+1) ne —(2N+1)

=1y Y

me(2N+1)

_ (,8)
= 2ap) Y /=g A E)

me(2N+1) M 1+w/z

z

Then by applying the formal rule e’e? = el45leBe?, if [A, B] commutes with A and
B, we get the required identity. ]

Fora € C*and 1 < i, j < v, we define the following vertex operators, which act
on the Fock space M in the usual way (see [FLM]).

(2.2) X,‘j(a,Z) =
(e €j)e " E_(€i,2)E_(—¢€;,az)E,(€;,2)Ei(—¢€j,az) i # ],
4¢;(z) i=ja=1,
T2 (E_(&i,2)E_(—¢€;,a2)E; (6, 2)E( (—€i,a2) — 1) i=j,a#1,

where €;(z) = Zn€27L+1 €i(n)z™", and e“~9 is the usual operator acting on the group
algebra C[T'] twisted by the two-cocycle . Set

Ay =-2 > @(az)fn, By = -2 ﬂz”’.

ne+(2N+1) 1 nex(2N+1) 1

Then for a # 1, we have

—— (Bale2) — Bl a2))
1 1 > 1
- - (S R )
1 X1 €i(n) " e(n) _,\ & oi—j
Zn[(zﬁ%m w2 3 S B

l—ai5 n nG:I:(ZNH) n =0

> 1 €(n) _,a"—11
R = o

S L nedaheny 7 l—a =

oo
—2 > en)z” Z 'lBl L > €(n)z7"Ex (€, 2)
n€+(2N+1) l nE:t(2N+1)

asa — 1.
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From this we obtain that, for a # 1,

1+
Xii(a,z) = . aEf(—Ei,aZ)(Ef(Ei,Z)Ear(Ei,Z) — E_(¢€;,az)E,(€;,az)) E4(—¢;, az)
—a

E_ (Ei,Z) —E_ (Eiv aZ)
1—a

1+ a)E,(—ei,az)( Ei(€i,2)+

E.(€;,2z) — Ei(€;,az)

E_(¢j,az) —

) Ei(—€;,az)
— 4¢;(z) asa— 1.
Therefore, we have lim,_.; X;;(a, z) = X;;(1, 2).
Moreover, from the definition of the vertex operator X;;(a, z), we can easily check
the following result.

Lemma 2.2 Forac€ C*and1 <i,j <v,onehas
Xij(a,z) = —Xji(a™', —az).

The vertex operator X;;(a, z) can be formally expanded as follows

Xij(a,z) = > xij(a,n)z”",
nerz

where x;;(a, n) are operators acting on the Fock space M. Then the equation in the
previous lemma implies that

xjila™',n) = —(=1)"a"x;;(a, n),
forne’Z,i,j=1,...,v,a€ C*.

Lemma 2.3 Fora €T, seta(z) = > a(n)z™". Then
ne2/+1

[a(2), Ex(B,w)] = (. E£(B,w) 32 (3)”.

ne+(N+1) Y W

Proof The result follows from the formal rule [A, €] = [A, B]e® if [A, B] commutes
with B, and the identity

(n) _, z
@2y Mo ws » (2)" .
ne£(N+1) M ne£(N+1) N W
The following result is well known (see [FLM]) and will be used frequently later

on.

Lemma 2.4 Let Y(w,z) be a formal power series in w, z with coefficient in a vector
space such that lim,_,,, Y (w, z) exists (in the sense of [FLM]). Set D, = z%. Then

Y (w, z)é(ag) =Y(w, aw)5<a%> ,

w

Y(w,z)(Dé)(ag) — Y(w, aw)(Dé)(a;) + (DZY)(W,Z)é(aLZV>.
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Now we are going to compute the Lie product [X;;(a,z),Xu(b,w)] for 1 <
i,j,k, ] < v,and a,b € C*. For this purpose we need several combinatorial identi-

ties.
Lemma 2.5 LetBandA; fori = 0,1,...,n be nonzero distinct complex numbers.
Then
B 2 n B n A 2 A B
(B A) 113 A-:Z(A IA) ( I % lAz)B A;
—Ao/ o B—Aj SNA A N Ai —Aj) B A;

nA Ay N2 A A
(520 | G2)  (Eas) 7o)
Ha—a) |\ B=a S A— A B A

forn > 1.
Proof We will prove the first identity by induction on n. The proof of the second

one is similar to the first, so we omit it.
It is not difficult to check the result for n = 1. For the case n + 1, we have

n+l A; 2 A; B
Z(A-—A)( Il A-—A-)B—A'+
i=1 N Aj 0 1<j<n+1, £l j i
J#i
ntl A B 2 mtl A B
(20 | G2n) (a2 s
i1 Ay — A; B— A, i Al—Ay/ B—A
2

()

j An+1 A] B An+1

2( H A,‘ ) Al‘ B
1<j<n, Ai —Aj/ Aj — Appy B— A

( Ao B )( B Apni ns A )}
Ag—Ap1 B—Ag/ \B—Ay Ag—An1 5 AI— A

:< Apt 2<12[ Aut ) B
An+1_AO 'lAn+1_Aj B_An+1

(L) () i
1<j i Aj —Apn B—Aij/ B— A
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) ) - () T
i=1 Ao — Aj B—Ap Ay —Ans1/ 1 B—Aun

N (H” Ay ) (Z” A ) ( An N B ) B
i=1 AO — Ai =1 Al — AO AQ — An+1 B— AO B— An+1
A 2,1 A B
_ ( n+l ) (1—[ n+l1 ) +F1 + Fz,
Aur1 — Ao i=1 Au1 —Aj/ B—Aun
where
F "( A; )2< A; )( A ) B
! ,Z,l A; — A ISIKI_ A=A NA — Ay ) B— A
j#i
N (H" Ay ) [(Zﬂ A ) Aniq _ ( Ani )2} B
i=1 AO — A,‘ =1 Al — A() A() — An+1 A() — An+l B — Ale ’
F— n ( A; )2( A; ) ( B ) B
2T 2\A - A ISIJ-SI wAi— A \B—A;) B~ A
j#i
H” A B 2 Z" A B B
i:lAO_Ai B—AO l:lAl—AO B—Ao B—Am.l

Now, by using induction on n, we find

F ( Ant1 )2( o Apn ) B
1= =\ & 9
An+1 - AO An+1 - A] B— An+1

B 2 n+l B
e () T
B—Ay/ j=i B—Aj

j=1

as required.

Corollary 2.6 LetA; # A; fori # j be nonzero complex numbers. Then

1 2 1 n A; 2 A; 1
1 —on j=1 1 —A]x ; Al _AO 1<j<n, Al —A] 1 —Alx
j#i

n Ay Apx ( u A 1
+ +(1+ ) },
<HA0—A1'>|:(1—A0X)2 ;A[—AO I—on

=1

Agx 2n Aix n Ag 2 A; Aix
1 —on j=1 1 —AJ.X i=1 A, —A() 1<j<n, Al _A] 1 —A,x
J#i

oA A oA A
(=) o (s ) sl
AO - Ai (1 - AQX) =1 Al - AO 1-— on

i=1
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Proposition 2.7 Let A; for 0 < i < n be distinct nonzero complex numbers, then

1o\ ] Ag'x7t N2 ATIxT!
() T - (5
1—Apx/ i51—Ax 1—-Ay xS 1—A7 %!

1=

fi{(A ) B | sasm)
' <Hl AoA A ) [ Do) + (l+éAlfle>6(A0x)}

Proof By applying the second identity in Corollary 2.6, we have

( 1)n_1( Al—l )2n Al—l
1- Ayt 51— A7t
Ayl 2 AT! A7y
S B ) (L )
— —1 : —1 —1 1.1
A AO 1§]§”7Ai _Aj l—Ai X
J#i
n ATl
(=)
o (1=
[ Ay'x! N (2”: Ay 1) Ay'x! }
(1—A0—‘x—1)2 DA — Ay 1—Ay'x!

Z” i 2 il A; A 'x!
( ) ( ; ') 1 71
i=1 A AO 1<j<n, Al — A] 1— A

j#i

" Ap AT x! A AT X!
() [y (S ) )
i=1 Ao — A, (1_A0 x 1) —Ag 1_A0 X

Therefore, from the first identity in Corollary 2.6, we obtain

) 11 —(—1)"(11‘5?_1)2121&—1?—1

( 1 *on i:I 1—Ax AO lx_l i=1 1 _Ai lx_l

2 A 1 Afl .
(0 =) ot )
1<j<njsi Al —Aj/ NT=Aix - 1— A7 'x™!

—y
' @1 AoA—OA,> (5 —A:;xﬁ T —AA; 1;102)
A2 (5520 ()]
:g{(AiéiAo)zK,g#lA AIA J 64
4 (1:11 AO{ A,> [(D(S)(on)Jr (1+1§A1 ’jl 0)5<A0x>] n
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Proposition 2.8 Let A; for 1 < i < n be distinct nonzero complex numbers. Then
1 no A x! " A
NG EUE p (ks S ( i
izl_‘[l 1—Ax (=1 ,'];[1 1 —Ai_lx_l ; H

=1

) 8(Asx).
1<j<n i Ai — A
Proof By using Proposition 2.7 and the fact that

2 ALt 2
1-A 2( ) =1=(1-A 2(7" ),
( 0X) 1~ Agx ( 0%X) I_A(;lx,l
one may get that,
1 no A7
I1

Sil—Ax (71)7111;[1 1— A7 %!

i 2 ;
:u—Aﬁyg[L%fAJ gﬁwﬁ&fAJ&&m
+ (1 —on)z(igl AoA—OAi) [(Dé)(AOx) + (1 +§

-x( o

) o(asx),
i=1 N 1<jn i Ai — Aj

A flA()) 5(A°x)}

where we have used Lemma 2.4 for the second equation.

| ]
For convenience, we set

:Xij(a, 2)Xi(b, w): = e~ "9E_(€;,2)E_(—¢€;, az) E_(ex, w)E_(—¢;, bw)

: E+(6i7 Z)E+(_6j7 ﬂZ)E+(€k, W)E+(_€l7 bW)7
where 1 <, j, k,I < v,a,b € C* with the condition thati # jifa = 1and k # [ if
b = 1. The proof of the following results is straightforward and is omitted.

Lemma 2.9 Fora,b € C* and o €T, one has

[Xij(av 2)7 eﬁ] = ((_1)(675].‘0) - l) EEXij(aa 2)7
Xij(a,2)Xu(b, w) = :Xij(a,2)Xu(b, w): P,
wherei # jifa=landk # 1ifb =1, and

i 1 —w/az\ —i
Py = e(ei,€j)e(ex, en)elei — €j, e — El)(ler;az)
. ( 1-— w/z) 5ik( 1— bw/aZ) 511( 1-— bW/Z) —di
1+w/z 1+bw/az 1+bw/z '

By symmetry, from the previous lemma and (2.1), we obtain the following lemma.

Lemma 2.10 Leti+# jifa= landk # 1ifb= 1. Then

[Xii(a,2), Xu(b,w)] = :X;;(a,2)Xu(b, w): Ay,
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where
(2.3) A;{Jl = (g) g ( %Z) 6k]5(€i7 €;)e(ex, eNe(e — €, ek — €1)

. ( azaZW) O ( z —Z W) dik ( az ;ZbW) o ( z +wa) 51‘1QZ7
and

™ 1 Sik 1 i 1 Sit 1 djt
A=) (=) (—=) (=)
z az

az
z iy az . z . az g,
z az z az N
1+ 1-% -5 1+

In the rest of this section, we will compute the Lie product [X;;(a, z), X (b, w)]
with 1 < i,k 1 < v,and a,b € C*, where the vertex operators are defined by
(2.2). For this purpose, we divide the argument into the following three cases:
Casel i # j, k# I
Case2 i=j, k#1
Case3 i=j, k=1
We first consider Case 1, with i # j, k # L.

Proposition 2.11 Leti # j, k# 1, anda,b € C*.

(i) Ifi, j, k, L are distinct integers, then [X;;(a, z), Xu(b, w)] = 0.
(i) Ifj=ki#]I then

[Xij(a,2), Xji(b,w)|] = 2Xi(ab, 2)5(;”;) .

(iii) Ifj=ki=1 andab # 1, then
bw
[Xi5(a.2), X6, w)] = 2X;(ab,2)0( 22 ) —2;(ab, w)o (=)

%
1+ ab b
2o (0(5) —*(5))-

(iv) Ifj=ki=1andab=1, then
b b
[Xij(a,2), Xji(b,w)] = 2(Xii(1,2) —ij(l,W))5(7W) +4(D5)(7W) :

Proof From (2.3), one can easily see statement (i). For statement (ii) of the propo-
sition, we have

ij az+w 1 b
Aj’_g(ei’el)( az )[ —ﬂ—i_lfwﬁ

e Z2)a( )
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Thus, by Lemma 2.10, we get
[Xij(aa Z);le(ba W)]
w
= sl ) () 0( ) Xis(a, (b, w:

— 2e(ei, o a—t) ¢ 9E_(;,2)E_(—e;, abz)E, (e;, 2)E. (—e, abz)

az +w

- 2Xi1(ab,z)6( a%) .

This gives statement (ii). Similarly for statement (iii), we have, from (2.3) and Propo-
sition 2.8,

az z

Aij_<az+W)(z+bW)[ 1 1 o Fve }
i az z 1-Z1- 1-%1-Z

bw
() ) () = 5(),

Thus, from Lemma 2.10, we obtain

[Xij(a,z),in(b, w)]
_ (az+w> (z+bw>< 1 6(1)+ 1 15(b:v>) X (0, 2)X (b, w):

az z 1—ab "az 11—

= 1_1_,11;5(—)5 (ei,2)E_(—€;, abz)E, (€, z)E+ (—¢€;, abz)
+2aZi15<bW)E (€j, w)E_(—¢€;j,abw)E, (€j, w)E,(—€j, abw)

st () -2 abo(2) +2 5(2) ()
Finally, we prove statement (iv) of the proposition. In this case we have, from
(2.3),
2= () (2w) - (7))

(57 () o0 ().

Thus, from this and Lemma 2.10, we obtain

[Xij(a7z),Xj,<(b, w)}
_ (“bw)z(%w) (D5)< ) :X;i(a, 2)Xji(b, w):

z

= 4(D6)(b7w) + 45(7) (26i(2) — 2¢j(az))
= 2(Xii(1,2) — X;;(1,w)) 5(%’”) + 4(D6)(b7w) .

This completes the proof of the proposition. ]
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Now we consider Case 2 for [X;;(a, z), Xu(b, w)], with i = j, k # L. The result will
be divided into three subcases.

Proposition 2.12 Let1 <i,k,j<wv,anda,b e C*.

(i) Ifi,k, j aredistinct, then [Xj;(a, z), Xi;(b, w)] = 0.
(ii) Ifi # j,and a = 1, then

[ Xii(a,2), X;;(b, w)] = zx,-j(b,m(a(g) _ 5(J1) ) .
(iii) Ifi # j, and a # 1, then

[Xii(a, 2), Xij(b, w)] = 2X,-j(ab,z)5(%> +2in(ab_1,bz)5(—g).

Proof Statement (i) of the proposition is clear. To prove (ii), we have
[Xii(a,z), Xij(b,w)]
= [4ei(2), X;;(b,w)]
= 4[ei(z), e(e;, ej)eﬁE,(e,-, w)E_(—¢j, bw)E, (¢, w)E, (—¢;, bw)]

= 4e(es, )6 TE_ (6, WE_ (¢, bW, (e, wE (—¢,bw) 3> (2

ne2z+1 N W
~ 25,0 (5(2) - o(-))

where we have used Lemma 2.3 in the second last identity. We now prove (iii). By
(2.3), Proposition 2.8, and Lemma 2.10, we have

[Xii(a,z), X;;(b,w)]

1+a .
=1 a5(6i7 €j) A% Xii(a,2)Xi(b, w):

1+a w w
= E(G,’,Gj)(l-l—f)(l—*)
l1—a az z

az

1 1 z az
| 2 X (@ 2K (b, w:

- 21+ 1— 2

= w1 2) (1-7)
{ ! 5<K)+ ! (s(—K)]:Xii(a,z)Xij(baW):

l+a \az 1+% z

= 2e(e;, €,)¢" " TE_(e;,2)E_(—€;, abz)E (e, 2)Eo(—¢;, “bz)é( a%)

— 2e(es, €)¢" - (1, ~az)E-(—¢;, ~b2)Ey (es, ~az)Er(—cj,~b2)d ( — =)
z

— oy YN _oxo(ba—! — _w

fZX,](ab,z)J(aZ> 2X;j(ba~", —az)5 Z)

= 2X;j(ab,2)6( =) + 2X;(ab~" b2)3 (=2 ) n
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Finally we consider Case 3, that is to compute [X;;(a, z), Xu(b, w)] with i = j =
k =1,and a,b € C*. From the definition of X;;(a, z), X;;(b, w), we may assume that

a#—1,b# 1.

Proposition 2.13 Letl <i<wvanda,be C*.
(i) Fora=b =1, we have

[Xi(L,2), X1, w)] = 4(00)(2) —0a)(-2)).
(ii) Fora=1,b # 1, then

[X:(1, 2), X (b, w)] :2Xi,»(b,w)(6(g> —5(—%) —5(%”) +6(—b7w))
2 (0(5) —o(-5) - 8(%) +o(-7)).
(iii) Ifa# 1,b# 1, and a # b,ab # 1, then

[ Xii(a, 2), Xii(b,w)]
= 2(Xulab2) + - 2Y5( V) 2 Xlab,b D) + 11:15,) 5(™)

1—ab az z
+ Z(Xi,-(ab_l, bz) + llii‘;l;j) 5(—%)

(iv) Ifa# 1,b# 1,andab = 1,a # b, then
[Xii(a,2), Xii(a™ ", w)]
- Z(Xi,'(l,z) —Xii(l,az)> 5(%) +4(D5)<a—";)

e Y ol ()

(v) Ifa#1,b# 1, and a = b,ab # 1, then

[ Xii(a,2), Xii(a, w)]
B P 1+ a? w PR 1+a? aw
=2(Xue 2+ 7=5) 8( ) — 2%t a2+ =) 6(T)

- z(x,-,«u,az) —X,-,-(l,z)) 5(—1;) — 4(D5)(—%) .

Proof Part (i) of the proposition is straightforward. To prove (ii), we have

[Xii(1,2), Xii(b,w)| =
+b

4[6i2), T B (e WE-(—6i, bW, i, wE: (—ci, bw)|.
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Then by Lemma 2.3, we have

[Xii(1,2), Xii(b, w)]
1+b
1-b

(5(2) -o(-2) ~o(2) ro(-2)
2ntom + A (2 -a(-) (%) eo(-2)).

Next, we prove (iii). Note that in this case, one has 1 # a=! # b # a~'b. Now, from
(2.3), Proposition 2.8, and Lemma 2.10, we have

[Xii(a,2), Xa(b, w)]
= :Xii(a, 2)X; (b, w) l1+a 1+b(az+w> (z—w> (az—bW) (z+bw>

=2

E_ (eia W)E, (_eiv bW)E+(€i7 W)E+(_Eia bW)

al—">b az z az z
( o1 1 1 o w W _bw g@)
I—2l+%1+2 1-Z1+21+E1-£

bw

S ()

( az
1 bw
[(l—ba)(1+a)(l+b)< ) (1—ab="H(Q+aH(Q+b- 1)5( )
(-

1+a1+b

= :X;i(a,2)X;;(b, W) al—b

1 5(— bw)
(l—ha—‘)(1+b)(1+a—1) ) (1—b"'a)1+b")(1+a) az}

= :Xii(a, 2)X;i(b, w):

[ ((G) —o()) 25 (o-5) ~o(-5)]

f2<Xl,(abz)+ +ab>6(—)72(xn(abb 2+ 1”‘22)5(%”)
+2(X1-,-(ab_1,bz)+711izl;71>6(—g>
~2(xtav 2+ ) o(-2)

Finally, we will prove part (v) of the proposition. The proof of part (iv) is similar
to that of this case, which we omit. From (2.3), Proposition 2.7, and Lemma 2.10,
one has

[Xii(a,2), Xii(a, w)]
_ :Xil-(a,z)Xii(mw):( 1+a)2(az+W) (z—w>2<z+aw>

l1—a az z z
= (me) e - e (20) 2]
1—7 1+% 1—% 1—“75 1+% 1—5
l+a\2/az+w z—
= :Xii(a, 2)Xii(a, w): ( - a) ( ) (

=) ()

az
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m‘s(ﬁ) MG +a—1)21(1 . a—z)é(%)
*m{@“(—%) +20(—7)]]

= :X;i(a,2)X;i(a, W) 2225((%;) _5(%))

z
— 2(¢i(az) — 61’(2))5(_7) - 4(D6)<_g>
(=

+ :Xji(a, 2)Xii(a, w): a=ar [2(“2;"’) z—w 2(Z+aw)

) ST ()
(=) (%) ) ) (D)

2

:2(Xii(a2,z)+%)6(a—t) —2<X,1(a a'z) + 1+22)5(ﬂ)

z

—2(Xi(1,a2) = Xi(1,2)) 6( —= ) —4(D0) (2 ). m

Remark 2.14  Itis easy to see that
8(2) — a*d(az)
1—
This gives the following identities
S(w/az) — a*b*6(bw/z)
1—ab

— (Dd)(z) +26(z) asa — 1.

— (Dd)(w/az) +26(w/az) asab — 1,
and
a*6(—w/z) — b*6(—bw/az)
a—>b

— a(D6)(—w/z) + 2a6(—w/z), asb — a.

In summary, from Propositions 2.11, 2.12, and 2.13, we can get the following
commutator relations.

Theorem 2.15 Forl <i,j, kI <vanda,be C*, onehas
[Xij(a,2), Xu(b, w)]

= 25jk(Xil(abaZ)+5il(1 Oab,1) lizl;)é(ﬁ)

1+ab bw
— 200 ( Xij(ab,b7'2) + 01 = b 7—7 ) (=)

z

+25,’k<X1j(ab_1,bZ)+5jl(1 ab) 1+ab 1)5( )

b

+ 40081 (D) ) — 46%6]-15@1,(136) ( -2).
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3 Representations of Unitary Lie Algebras

In this section we begin by recalling the unitary Lie algebra u, (R, =) associated with
a skew Laurent polynomial ring R, and an anti-involution =, which was first intro-
duced in [AF]. Using the commutator relation among the vertex operators developed
in Theorem 2.15, we find that M turns to a representation for a non-trivial central ex-
tension of the unitary Lie algebra u, (R, ~). Moreover, we determine the irreducible
decomposition of M explicitly.

Let G be an abelian group with a character o; that is, 0: G — C* is a group
homomorphism. Extend o to be an automorphism of the group algebra R associated
with G determined by o(e*) = o(a)e”, o € G. Then we can form the skew Laurent
polynomial ring R, = R[t+!, o] with basis t"e®, m € Z, o € G and multiplication
e“t" = (o(a))™t™e”. For simplicity, we denote o(«) by & in the following.

Let = be an anti-involution of R, defined by 7 = —¢, e® = ¢~ “. Then t"e® =
(—&)~™"e “fora € G,m € 7.

Define an operator on the v X v matrix algebra M, (R, ),

My (Ry) = My, (R,),
X=X

where X € M, (R,) and X' is the transpose of the matrix X. Then #(X) = —X*
induces an involution on the Lie algebra gl,(R,) = M, (R,)~. The fixed point sub-
algebra of 0 is called a unitary Lie algebra (see [AF, G2]):

0,(Ry, ™) = {X € M,(R,)|X* = =X}.
For convenience, we set
e,-j(m, o) = E,‘jl’mea - Ej,-t’”e“’,

where 1 < i,j < v,a € G,m € Z. Then ¢;j(m,a) = —(—a&) "ej;(m, —a) and
1, (Ry, ™) is spanned by e;;(m, o) forall 1 <i,j <v,m € Zand a € G.

We define a 1-dimensional central extension of gAlV(ﬂ%g) =gl,(R,)®Ccofgl,(R,)
with Lie bracket (see [G3,G4])

(3.1) [E,‘jtmea,Ekltneﬂ] = 5jkdnEi1tm+nea+‘H

2 +1 0+ ~
— 6B Exjt™"e™™” + mdid jxOmin 0045, 0" ¢,

where 1 <1i,j k,I<v,mmne€Zando,f €G.
Now we can get 11, (R,, ~) = 11,(R,, ~)®Cc from a central extension of 11, (R, =)

with Lie bracket as (3.1). Set ¢;j(a,2) = > eij(n,a)z ", for1 <i,j < v,a € G.
nerz
Then we have the following proposition.
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Proposition 3.1 Inu,(R,,™),
[eij(a,2), en(B,w)]

= dpeula+ B,2)6( 2= ) = duexj(a+ 8,325 ( %W)
* dierjla — B,Bz)é(—g) — djiei(a — B’Z)é(_ij)

w w
+20068,5,(00) ( == ) — 288, se(D0) (= ).
wherel <i,j, kIl <v,a,p€G.
Proof We have
[ > (Eijt"e® — Ejit™e¥)z ", Y (Et"e’® — Elk@)w_”}

mez nerz
= > 5jk(E,-1t'”e“t"e8 — EjteP tme®)z My "

mnel
— Z 61'1(Ekjt"eﬂtme“ — Ejkt’"e“t”eg)z*’”w*”
m,n€”l
+ Y Su(Ejtneltme® — Eytmect"e’)z M w "
mner
— Z 5]‘1(E,‘ktm€at”e’3 — Ekit”eﬂt’”ea’)z*mw*”
m,n€”l.
+ > 217’15]‘](5,‘155571(d)imczimwm - > 2m5ik5j15d’3c(—z)7mwm
merl mez
= > dpea(m+n,a+ )z " "(az)"w"
mmnerl
— Y Guej(m+n o+ B) (BT (Bw) "
m,n€l
+ 3 biejm+n,a— B)(Bz) " (—w) "
m,n€/
- Y Suer(m+n,a— Bz "(az)" (—pw) "
mmnerl
w w
+ 2010 5803,¢(D8) ( = ) = 2080, 5e(DO) (=2 )
as required. ]

Comparing Theorem 2.15 and Proposition 3.1, one can see that the following
result holds true.

Theorem 3.2 Let G be an abelian group with a character o. Then M is a vertex
operator representation for the unitary Lie algebra 1, (R, ™) with the action given by
1+a 1

—, CH— —,
1—a& 2

2e;j(m, ) = x;j(&, m) + 6;(1 — da1)

wherel <i,j <v,anda € G.
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Next, we are going to determine the irreducible decomposition of i1, (R, ~)-mod-
ule M. Let C[Q] be the subalgebra of C[T'] generated by e~“*,1 < j < v — 1
that has dimension 27!, Using the standard techniques developed in the vertex
representation of affine Lie algebras, it is easy to see that if U is an irreducible C[Q]-
submodule of C[T], then U ® 8(H{~) remains irreducible as a 1, (R,, ~)-module.
Therefore, we need to determine the irreducible components of C[T'] for detail. As a
by-product, we also give the irreducible decomposition of 11, (R, ~)-module M.

We observe that e“ie% + e%e = 20j3,1 < j, k < v. So, consider the Clifford
algebra Cl(v) with generators ¢;, 1 < j < v and relation

Vi + PP =265, 1 < j k<.

Since dim(C[T']) = dim(Cl(v)) = 2¥, C[T'] is isomorphic to Cl(v) as an associative
algebra. Then C[Q] is isomorphic to the subspace of CI(~’) spanned by products of
an even number of elements ¢;, j = 1,...,v.

By the classical representation theory for Clifford algebras, we see that C[Q] is
semisimple. Moreover, if v = 2d + 1, then C[Q] has a unique simple module S,
which has dimension 2¢. If v = 2d, then C[Q] has exactly two simple modules s+,
which have dimension 24,

Remark 3.3 It is well known that the subspace Cl,(v) of Cl(v) spanned by prod-
ucts of 2 different element v);,i = 1,...,v is closed under the Lie bracket and is
isomorphic to the simple orthogonal Lie algebra o(v). Fix bases in the root systems
of types D, and By as follows:

II(Dg) = {h — ha, ..., hg—1 — ha, ha—y — ha},
II(Bg) = {h1 — hy, ..., ha—y — hg, hg}.

Then S is the spinor representation of 0(2d + 1) with highest weight %(hl +--+ hy).

And S* are the semispinor representation of 0(2d) with highest weight 1 (h; + - - - +
ha—1 £ hy).

For p = +£1, let w2j_1(p) = 1+ /—1pe®~' and w,j(p) = 1 + pe®. For
D1y .-y py € {£1}, we put

w(pi, .., p0) = [T wilp)).
j=1

Then the cgllection of these elements {w(p1,...,p,) : p1,...,pp, = £1} form a
basis of C[I']. The construction of such basis elements are motivated by the work
[W]. It is easy to check the following lemma (or see [W, Lemma 4.1]).

Lemma 3.4 Forpy,...,p, € {£1} and1 < j < v, we have

V_lpjw(_ply"'a_pj7pj+17"'7pl/) ifjiSOdda

eEjW(le-wpu): Y
Piw(=p1s - =Pj=15 Pjis -5 Pv) if j is even.
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Thenforl < j < [%],we have

(32) T wW(pr, .y p0) = =V =1p2j1p2iwl(p, -, p0),
e WP, py) =
=V =1p2ip2iaW(p1, . -y P2j—1, —P2js —P2jt1> P2j425 - -+ » Pur)-

v

From (3.2), we see that the signs p1, p2jp2j41,1 < j < [5] and p, if v is even are
invariant under the action of C[Q)].

In the case v = 2d + 1, for any tuple v = (71, ..., Va11) € 23", 7, = {£1}, set
(3.3) V,(v) = spanc{w(p1, ..., p)|p1 = Y1, p2jpajsr = Yjr1, 1 < j < d}.

Then V() is a C[Q]-module with dimension 2%, hence is simple. So, we have shown
that

CTl= @ Vul(y),

yeZdH!

where each V,,(7y) is an irreducible C[Q]-module.
In the case v = 2d, for any tuple v = (71, ..., Va+1) € Z;’“, set

(3.4) V,(v) = spanc{w(p1, ..., p)|p1
=Y, 2ip2j41 = Vjr1, 1 < <d =1, p2g = Yar }-
Then V,,(7) is an irreducible C[Q]-module with

Crl= & V().

yezgt

In summary, we have obtained the following theorem.

Theorem 3.5 Thel,(R,,~)-module M is completely reducible. Moreover,
M= @ V:/(’Y) ®8(:}C7);

141

5
YEL)?

where each submodule V,, () @8(H ™) is irreducible as a 1, (R, =) -module, and V()
are defined in (3.3) and (3.4).

4 Application to Elementary Unitary Lie Algebras

Let G be an abelian group with a character o and |o| be the order of 0(G). Define the
set Ay = {(m, ) € (Z,G)|m € |0|Z, « € ker(0)}. Here, weset|o|Z = 0if |o]| = oo.
Then we have the following basic result about R, whose proof is straightforward.

Lemma 4.1 The derived algebra R, of R, has a basis consisting of monomials t™ e”
for (m,a) & A,, and the center Z, of R, has basis consisting of monomials t™e* for
(m,a) € A,. Therefore, we have R, = R, & Z,,.

The elementary unitary Lie algebra eu, (R,, ™) is the derived algebra of u, (R,, =),
which is generated by e;;(m,a) for 1 <i # j < wv,m € Zand o € G. By applying
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Lemma 4.1, one can see that

(R, = (R, D Y (T ea(n ).
(PN, Ni=l
In particular, we have that e;;(m, o) — ej;(m, @), e;;(n, B) € ew, (R, ™) for 1 < i #
j<v,mné€lZlapB e G and(nB) & A, Leteu,(R,, ) be the subalgebra of
1, (R,, ™) generated by e;j(m, o) for1 <i # j <v,m € Z,a € G. Then €1, (R,, ™)
is a one-dimensional nontrivial central extension of e, (R, ™).

Remark 4.2 Itis known that both e, (R,, ™) and ¢u, (R,, ~) are BC;-graded with
grading subalgebra o(v) (see [ABG] for details), where d = [5].

Next, we consider the unitarizability of M. For our purpose, we may assume that
all the elements in o(G) lie in the unity circle in the complex plane; that is, |a] =
1, Va € o(G). Define a conjugate linear map 7: 1, (R,, ™) — 1,(R,, ™) by letting

T(eij(m, ) = (1) Ve;;(—m, a), 7(c) =,

where1 <i,j<v,mée Zanda € G. Dueto |&| = 1, € G, one can get that 7 is
a conjugate anti-involution of i, (R, 7).
Define a Hermitian form (- | -) on H{~ by

(a(m) | B(n)) = %(a,mam,n, Y a(m), B(n) € H,

and extend this form to S(H ™) as usual:

m

(X1 X | Y1 yn) = Omn Do [T | yoti))-

OES, i=1

Next, we define (- |-) on C[T'] by

«

(€| ) =85, Va,BeT.
This gives a positive definite Hermitian form on M (see also [FK, (2.12)—(2.14)]
such that

(ei(m).w|v) = (w|e(—m).v), (5.w]|v)= (wle.v),

forl<i<v,me2Z+1,w,vE M.

Proposition 4.3  Suppose that all the elements in o(G) lie in the unity circle in the
complex plane, then the 1, (R, ~)-module M is unitary with respect to T.

Proof It is sufficient to show that
(Xij(a,2).w|v) = (w| —Xij(a,—z"").v),

for1 <i,j<v,aca(G),wve M.
By applying the fact that @ = a~!, one can get that

<$(a2)_m.w ‘ v> = <W ‘ —alem) (az_l)m.v>,

https://doi.org/10.4153/CJM-2014-010-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-010-1

Twisted Vertex Operators and Unitary Lie Algebras 593

and that
<Ei(6,-,az).w | v> = <w | E;(—6i7az_1).v> = <w | Ex (e, —az_l).v>

forl1 <i<v,acoG),wveM.
Hence, for i # j, we find that

(Xij(a,z).w|v)
= <w | E_(—€j, —az Y)E_(e;, —z_l)E+(—ej, —az Y)E, (e, —az_l)eaea.v>
= <W | —Xij(a, —z_l).v>.

The case fori = j,a = 1is clear. For the case i = j,a # 1, one only needs to note

that (1) = — e [}

1—a 1—a

51+l

By taking restriction, we know that each component V,,(v) ® S(H7),v € Zg
of M is an €11, (R,,, 7)-module.

Theorem 4.4 LetV,(v) ® S(H ™) be the 1, (R,, ~)-module described in Theorem

3.5.

(i) If|o| = coor|o| € 2N, then V,(v) @ S(H™) is irreducible as a é1,(R,,™)-
module.

(i) Iflo] = N € 2N+ 1, let H; be the subspace of H~ spanned by €;(m) —
ei(m),ei(n) for1 <i# j<v,mnéc —2N+1),n & NZ ThenV,(y) ®
S(Hy ) is an irreducible éu, (R, ~)-submodule of V,,(y) ® S(H ™). Moreover,
V,(7) ® S(H ™) is completely reducible as an én,(R,, ~)-module.

Proof First, we write
L= e/l\ly(jzaaf)a V= VV(V) by S(j{_)v Vo = VV(’Y) & S(H(;)a

for simplicity.

If [o| = oo or |o| € 2N, then ¢;;(m,0) € L,1 <i < v,m &€ 2Z+ 1, and hence V
remains irreducible as L-module.

Next, if |o| = N € 2N + 1, we observe that

E_(€,z)E_(—¢j,az) € End(V))[[z]],

for1 <i,j < wvanda € o(G). From the definition of vertex operators and the
fact that e;;(m,0) € L,m € 27 + 1 N NZ, we have obtained that the subspace Vj is
invariant under the action of L. For the usual reason, one can easily see that Vj is
irreducible as L-module.

Finally, we will prove that if |o| € 2N + 1, then V,(v) ® S(H ™) is completely
reducible as an €11, (R,, ~)-module. Let d be the degree derivation on R, such that
d.t"e® = mt™e” form € Z,o0 € G. Let L be the semi-direct product of the Lie
algebra L and the derivation d. Extend 7 to a conjugate anti-involution of L by setting
7(d) = d. Let dy be the degree operator on S(J{ ™) determined by dy.€;(m) = me;(m)
for1 <i <wv,m & —(2N + 1). Then, by letting the action of d as 1 ® dy, V can be
extended to an L-module and is unitary with respect to 7. One has a natural Z-graded
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structure on L and V with respect to the action of d:

For any submodule V' of V, write V/(m) = V(m) NV’ form € —Nso that V' =
@,, V'(m). Note that each graded subspace V (m) is finite dimensional. Therefore,
each L-submodule of V has an orthogonal compliment being unitary (in this case,
each a € o(G) is a root of unity so that V' is unitary by Proposition 4.3).

Let W be the sum of all irreducible L-submodules (which contain V) and let W’
be its orthogonal compliment. Let W/ = €D, ., W’ (m) with W’(n’) # 0 for some
n' € —N. Let U be the Ly-module generated by W/(n’), then U C V(n’) and is
finite dimensional. Notice that 7(Ly) = Ly, then U is a finite dimensional unitary Lo-
module and hence completely reducible. Let Uy be an irreducible component of Lo-
module U and consider the L-module U’ generated by Uy. Now, U’ is an irreducible
L-submodule of W’ as U’(n') = U, cannot split. But W is supposed to contain all
the irreducible L-submodules of V, a contradiction. Therefore, V.= W and V is
completely reducible as L-module (also as L-module). ]

In the rest of this paper, we will pay attention to the trivial case where G = {1}. In
this case, the elementary unitary Lie algebra €11, (R, ™) is isomorphic to the twisted
affine Kac—-Moody algebra of type A,(,le. Let A;,0 < j < d,d = [5] be the fun-
damental integral weight of A,(,zll. Following from Theorem 4.4 and the techniques

developed by Wakimoto (See [W, Theorem 4.2]) , we have the following corollary.

Corollary 4.5 M is a completely reducible representation for the affine Kac—Moody
algebra of type A(Vzll with the action given in Theorem 3.2. If v = 2d, then V;(v) ®
S(H; ),y € 73%" are the irreducible &1, (R, ,~)-modules with highest weight Ay_, if
Yoo Yan =—lorAgify .. yan = L Ifv =2d + 1, then Vyg (7) @ S(Hy ), v €
74+ are the irreducible €1, (R, =)-modules with highest weight A,.

Remark 4.6 The vertex operator representations C[Q] ® S(H, ) for affine Kac—
Moody algebra of type Af,zll have been studied in [W], where the author used a dif-
ferent two cocyclee( -, - ): Q — Qfrom ours. Explicitly, let IT = {a; = ¢;—¢€j31,1 <
i < v — 1} be the simple root system of type A, _;. Then the two-cocycle e( -, - ) is
determined by (o, ;)(1 < 4,7 < v — 1) and its bi-multiplicative property. The
Dynkin diagram of I with orientation corresponds to ¢ as follows:

1 if 8) — 8 or ¢ is not connected with o,
HOOD =N = jor 8

The orientation of the Dynkin diagram used in [W] was

ay @z as Qq Qs Q2d—3 Q2d—2 Qod—1
v=2d: O—0+—0—0+—0O ... O — O
ay a; Qas Qy Qs Qzd—2 Q2d—1 Qad
v=2d+1: O—0+—0—0+—0O ... O
while the orientation used in this paper is as follows:
ay a3 as Qq Qs Qy—3 Qy—2 Qy—1
O— OO0 — 0 — 0O —>0O ... O — O — O
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Remark 4.7 Let G = 7 and consider the subalgebra § of ¢u, (R,, ) generated by
the elements ¢;;(0,m),1 < i # j < v,m € Z. Then § is a fixed point subalgebra
of affine Kac—Moody algebra A" . But, G is not isomorphic to the (untwisted or
twisted) affine Kac-Moody algebra. The representation theory of G is little known so
far. It is interesting to see that 7(x) = —x forallx € Gif |[o(1)| = 1.
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