https://doi.org/10.1017/jfm.2023.200 Published online by Cambridge University Press

J. Fluid Mech. (2023), vol. 960, A37, doi:10.1017/jfm.2023.200

F liad?

7~y On u._ﬂ-':?,&
/9 . ':I" v

A linear-elastic-nonlinear-swelling theory
for hydrogels. Part 1. Modelling of
super-absorbent gels

Joseph J. Webber'> and M. Grae Worster!

'Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
Wilberforce Road, Cambridge CB3 OWA, UK

(Received 6 September 2022; revised 3 February 2023; accepted 7 March 2023)

We introduce a new approach for modelling the swelling, drying and elastic behaviour
of hydrogels, which leverages the tractability of classical linear-elastic theory whilst
incorporating nonlinearities arising from large swelling strains. Relative to a reference
state of a fully swollen gel, in which the polymer scaffold may only comprise less than
1 % of the total volume, a constitutive model for the Cauchy stress tensor is presented,
which linearises around small deviatoric strains corresponding to shearing deformations
of the material whilst allowing for a nonlinear relation between stress and isotropic strains.
Such isotropic strains are considered only to be a consequence of losses and gains of water,
while the hydrogel is taken to be instantaneously incompressible. The dynamics governing
swelling and drying are described by coupling the interstitial flow of the water through
the porous gel with the elastic response of the gel. This approach allows for a complete
description of gel behaviour using only three macroscopic polymer-fraction-dependent
parameters: an osmotic modulus, a shear modulus and a permeability. It is shown how
these three material parameters can, in principle, be determined experimentally using a
simple rheometry experiment in which a gel is compressed between two plates surrounded
by water and the total force on the top plate is measured. To illustrate our approach, we
solve for the swelling of a gel under horizontal confinement and for a partially dried
hydrogel bead placed in water.
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1. Introduction

Hydrogels are an important class of materials composed of a hydrophilic polymer scaffold
surrounded by adsorbed water molecules. The interstitial water is nevertheless free to flow
through the matrix formed by the polymer chains, which create a structure that can be
treated as a porous medium (Doi 2009; MacMinn, Dufresne & Wettlaufer 2016; Punter,
Wyss & Mulder 2020). In recent years, there has been much interest in super-absorbent
polymers (SAPs), which can swell to several hundred times their dry volume when placed
in water (Bertrand et al. 2016), owing to the extremely hydrophilic nature of the polymer
constituting the scaffold.

Perhaps the most recognisable consumer application of hydrogels over the last decade
has been the children’s toy Orbeez™, illustrated in figure 1, which has achieved
widespread international popularity (Forrester 2019). Domestically, such gels have found
increasing use as water-retention beads for potted plants (Chang et al. 2021; Souza et al.
2016) and the absorbent material used in nappies (Al-Jabari, Ghyadah & Alokely 2019).
Aside from this, hydrogels are an increasingly important class of materials with a range
of applications in the life sciences: from biocompatible contact lenses (Wichterle & Lim
1960; Moreddu, Vigolo & Yetisen 2019) and cancer treatment (Li e al. 2022) to wound
dressings (Op ’t Veld et al. 2020); in agriculture (Guilherme et al. 2015); as a fire-retardant
coating in areas prone to wildfires (Toreki 2005); and to control flow in porous rock during
enhanced oil recovery (Pu er al. 2017). Alongside these newer applications, the ability of
hydrogels to take up water and swell to many hundreds of times their initial volume has
led to a number of established uses in the field of personal care as well as in construction,
as a concrete additive to reduce chemical shrinkage during curing and alter the rheology
of sprayed concrete (Jensen & Hansen 2002; Jensen 2013), and in other industrial fields
(Zohuriaan-Mehr et al. 2010). It has also been suggested by some authors, including
Zwieniecki, Melcher & Holbrook (2001), that naturally occurring hydrogels have a role
to play in the flow of water through the xylem conduits of vascular plants.

In this paper, there are two key gel behaviours that we wish to capture: the large-swelling
nature that characterises super-absorbent hydrogels, and the fact that the interstitial fluid
is able to flow through the gel matrix, which behaves as a poroelastic medium. However,
whereas many authors conceptualise the matrix and fluid separately, we take the view that
the hydrogel (matrix plus fluid) is the material that we describe. In particular, we work in
terms of the elasticity of the whole material, the gel, rather than the elasticity of the matrix
as a property independent of the interstitial fluid. We also reserve the term elastic response
to mean the instantaneous response of the gel to an applied load, i.e. on timescales much
shorter than the scale for redistribution of water within the gel. Thus, we treat the gel as
incompressible even though the matrix is compressible (Doi 2009). In general, a hydrogel
is an inhomogeneous material, with material properties that depend on the local polymer
fraction, as we shall describe.

The dynamics of hydrogels is closely related to poromechanics (Coussy 2004), the
existing modelling of which can be classed into two broad groups, which we refer to
as fully linear and fully nonlinear. Fully linear models, such as those described by Biot
(1941) and detailed by Doi (2009), build on the approach introduced by Terzaghi (1925)
in soil mechanics, considering the liquid phase and the solid phase separately and seeking
a constitutive relation for the effective stress of the matrix, a polymer-fraction-weighted
stress tensor with contributions from each of the two phases. These models apply a
linear-elastic constitutive relation (Landau & Lifshitz 1986) for this effective stress tensor
and describe the dynamics of the hydrogel swelling and drying using Darcy’s law
to govern the interstitial flow. Though this captures the characteristic of hydrogels as
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Figure 1. An illustration of different stages of swelling of a super-absorbent gel sold as the children’s toy
Orbeez™, showing the state in equilibrium with typical indoor conditions on the left and the fully swollen
state after immersion in water for some hours on the right.

poroelastic media through which water can flow (Punter et al. 2020), such descriptions
do not adequately explain the large-swelling behaviour seen in super-absorbent hydrogels.
Linear-elastic theories require linearisation with respect to small strains relative to some
pre-ordained reference state. These strains should be smaller than around 10 % (Landau
& Lifshitz 1986) for the predictions to be considered accurate, corresponding, in three
dimensions, to volumetric changes of less than about 30 %.

It is for this reason that many authors, including Bertrand et al. (2016), Chester &
Anand (2011), Hong et al. (2008) and Butler & Montenegro-Johnson (2022) invoke
fully nonlinear descriptions of gels. Many such approaches are based on the work
of Flory & Rehner (1943a,b), who derive a free-energy density function W that is
separated into contributions from mixing of water and polymer components W, and
stretching of polymer chains Weren,. Expressions for these two functions are generally
sought from a microscopic understanding of the molecules involved, with Flory—Huggins
theory (Flory 1953) giving W,,ix (a summed contribution of entropy and enthalpy of
mixing) and, traditionally, a Gaussian—Chain model used for Wgecn to describe the
elasticity of individual long polymer molecules (Flory & Rehner 1943a). Other authors,
including Drozdov et al. (2016) and Hennessy, Miinch & Wagner (2020), use more general
Neo—Hookean constitutive relations for the strain-energy density. A review of such models
is given by Boyce & Arruda (2000). Principal stresses can be found from such energy
densities, and it is then possible to separate the contributions from pore pressure and an
effective stress in a similar approach to Terzaghi (1925), as shown by Bertrand et al. (2016),
for example. Although it is noted that such descriptions reduce to standard poroelasticity
when mixing contributions are negligible, the complicated nature of the function ¥V and
the reliance on a full understanding of small-scale electrostatic effects means that the
physical intuition into gel behaviour that can be gained from using this approach is more
difficult than with the fully linear case.

In an alternative approach to describing large strains in soft porous materials, MacMinn
et al. (2016) develop a model employing large-deformation poroelasticity to describe the
mechanical response of the matrix. Here, the approach found in the fully linear Biot model
of poroelasticity is augmented with a nonlinear elastic constitutive relation. However,
the use of large-deformation elastic models, in this case Hencky elasticity, introduces
nonlinearities into the constitutive relation which render the elastic deformation difficult
to solve for analytically. Furthermore, it becomes a matter of discussion as to which
hyperelastic constitutive model should be employed to describe a hydrogel: the choice
by MacMinn et al. (2016) of Hencky elasticity is purely used as a demonstration, with an
array of other such models in existence (Marckmann & Verron 2006).

Our approach is intermediate between the fully linear and fully nonlinear models. We
start by noting that, in many practical situations, the very large deformations associated
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with swelling or shrinkage are dominated by locally isotropic strains that are not associated
with macroscopic stresses. In each of the stages of swelling, shown in figure 1, for
example, the beads, considered as bulk materials, are elastically unstressed; although
there are stresses in the matrix due to stretching of polymer chains, these are exactly
balanced by pressures in the fluid. At any stage of swelling, each bead can be subjected
to deviatoric stresses (e.g. by pressing between thumb and forefinger) that can give rise
to small deviatoric strains that can be described using linear elasticity with respect to
the isotropically swollen state. Alternatively, deviatoric strains can be induced internally
by differential swelling, but in many cases can remain small relative to this same
(locally) isotropic swelling state. The linear-elastic-nonlinear-swelling (LENS) theoretical
framework we develop in this paper is founded on the consideration of hydrogels
as instantaneously incompressible poroelastic media that can undergo arbitrarily large,
locally isotropic, strains by swelling in response to fluid flow, while behaving linearly
elastically with respect to deviatoric strains and stresses. This approach gives rise to a
system of governing equations for the elasticity that are significantly more tractable than
fully nonlinear models, whilst retaining nonlinearities in equations governing the swelling.
It allows us to make continuum-mechanical predictions of gel behaviour, including many
situations with large deformations, given just three readily measurable material parameters
with analogues in classical linear poroelasticity.

We start in § 2 by separating isotropic and deviatoric strains and relating the former to
the polymer fraction field in the gel. A constitutive relation that allows for nonlinearity only
in the swelling is then introduced in § 3 before we find an expression for the interstitial fluid
velocity in § 4. Conservation of momentum, when combined with our constitutive relation
and Darcy’s law, allows us to link the elastic response to the interstitial fluid velocity and
gives a set of equations describing the evolution of polymer fraction ¢ in time. A simple
rheometer experiment is detailed in § 5 that, in principle, allows for the determination
of all three material parameters that describe a hydrogel: an osmotic modulus K(¢), an
elastic shear modulus us(¢) and a permeability k(¢), each a function of the polymer
volume fraction ¢. Finally, we apply this model to two basic gel swelling problems:
first, a gel swelling between horizontal confines (§ 6), illustrating the importance of the
deviatoric strains in setting equilibrium polymer fractions and the effective diffusivity of
the medium; secondly, a swelling bead similar to that considered by Bertrand et al. (2016)
and Punter er al. (2020) (§ 7), showing how, for particular choices of material parameters,
large isotropic strains can be attained while deviatoric strains remain small at all times.

In Part 2 (Webber, Etzold & Worster 2023), we extend our approach to the more general
case in which swelling is no longer confined to a single direction and differential swelling
leads to large-scale changes of shape. In such cases, polymer fractions and displacements
cannot be so straightforwardly related and new relations are needed to link the polymer
transport equation derived here with more complicated deformations.

2. Displacements and strains

In all elastic theories, deformations are described relative to some reference state that
must be defined carefully. It is not immediately apparent what the reference state for a
hydrogel should be. Some authors including Kang & Huang (2010) and Bertrand et al.
(2016), who focused on the elasticity of the polymer scaffold, use a fully dry polymer with
no water content as their reference state, reasoning that the polymer chains are completely
unstretched in this case. Others, such as Doi (2009) and Etzold, Linden & Worster (2021),
introduce the concept of a ‘fully swollen equilibrium’ state, a convention that we follow
here. This is defined to be the final state reached by a gel immersed in water and subject
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to no external forces, with all of the hydrogel swollen uniformly and in thermodynamic
equilibrium. An expression for the equilibrium polymer fraction can be found in principle
from an understanding of the microscopic structure of the gel (see, e.g., Appendix A),
depending on temperature and the number of cross-links per unit length in the polymer
chains. However, here we take a macroscopic view and will later show how the relevant
material properties can be determined experimentally.

We introduce coordinates X to denote the positions of gel elements in this equilibrium
state, and describe any kind of general deformation, be that an elastic deformation of the
gel behaving as a rubber-like material or a swelling or drying of the gel as water is taken
up or expelled, by a transformation into coordinates x(X, 7), each with respect to a fixed
(Eulerian) frame of reference. We define

F=Vxx ie. F,‘j = — (2.1)

as the deformation gradient tensor, or Jacobian matrix, for this transformation. The
Jacobian determinant J = det F represents the scale factor by which the volume of a gel
element increases under such a transformation.

We make the assumption that, macroscopically, the hydrogel is instantaneously
incompressible, so the only way that the volume of a gel element containing a fixed
quantity of polymer can change is by the flow of water either into or out of the element,
hence changing the volume fraction occupied by polymer. If we denote the polymer
volume fraction by ¢, with ¢g the equilibrium polymer fraction, it is readily understood

that
_ %
o)

at each point in the gel. We now separate the deformation gradient tensor into isotropic
and deviatoric parts by writing

J (2.2)

F=FI+f. (2.3)

Here, F represents the isotropic part of the tensor and f is the deviatoric part, where,
in n spatial dimensions, F = tr F/n and tr f = 0, with I the n x n identity matrix. This
separates deformation due to swelling and drying (the isotropic part) from deformation
due to shearing (the deviatoric part). Writing F in this manner allows us to encode
our assumption that strains due to swelling may be large while linear elasticity applies
for deviatoric deformations provided that f is small (i.e. | f;| < 1 for all i, j). Such an
assumption can be expected to hold in many cases of practical importance, the only
exceptions being cases in which gradients in polymer fraction V¢ are large, in a sense to
be defined formally later, such as in the phase-separation behaviour discussed by Hennessy
et al. (2020), where the liquid and polymer phases separate into distinct regions, with |V ¢|
large at the boundary between these regions.

Using the Taylor series expansion for the determinant of a matrix close to the identity
(Petersen & Pedersen 2012),

det(I+€A)=1+etr A+ O(e?), (2.4)

where € is a small scalar, we can compute the determinant of F in terms of F to first order
in the small deviatoric strain,

J = det (FI+ f) = F" det (l n f*1f> = F" [1 + 7 w4 0(f2)]
= F" + 0(f%). (2.5)
960 A37-5
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Therefore, to leading order, / = F" and the deformation gradient tensor of (2.3) can be

rewritten
d’ —1/n
F = (¢_0) I+ (2.6)

2.1. The Cauchy strain tensor

Our model, as mentioned previously, is linear-elastic relative to a reference state of
isotropic swelling, with all nonlinearities encapsulated by the swelling and drying state
of the material. There are a number of strain measures used in finite-strain elasticity,
incorporating nonlinear effects and generalising the Cauchy strain tensor of linear
elasticity to capture the influence of potentially large displacements. Many theories simply
use the deformation gradient tensor F or the Cauchy—Green deformation tensors FF! and
FTF. The choice of strain measure is largely arbitrary, and is usually made to simplify
the constitutive relation for the stress. Our model requires a linear relationship between
stresses arising from deviatoric strains and these deviatoric strains themselves, and we
therefore use the Cauchy strain tensor of linear elasticity. We show in Appendix B that,
even starting from a fully hyperelastic model, once the assumption of small deviatoric
strain is applied, the stress can be written in terms of the deviatoric Cauchy strain in
addition to a nonlinear isotropic part.

When defining our strain tensor it is also important to consider carefully whether the
quantities under consideration are Lagrangian or Eulerian. In linear elasticity, this is
less important because the small deformations are the same to leading order in both
descriptions of the problem whilst here, with potentially large total strains, this is no longer
the case. We start by defining the displacement § = x — X. The Cauchy strain tensor is
then defined by

e=1[ViE+ (Vib)], 2.7)

where V denotes a gradient taken with respect to the deformed, Eulerian, coordinates.
Even though, for large deformations, it may appear that a Lagrangian description of the
gel would be more tractable when dealing with swelling problems, it is noted by MacMinn
et al. (2016) that an Eulerian description often tends to be preferable for poroelastic
problems, since the equations governing the fluid flow tend to be stated in an Eulerian
framework. Coupling is easier if one consistently uses the same description. We can
calculate the value of V£ in terms of F using the chain rule because

Vb =VyxE -V X =[Vyx—1]-V, X
=FF ! —F!
=I1—F (2.8)

Again working only to first order in the small deviatoric strain, we use the expansion of
the inverse of a matrix around the identity (Petersen & Pedersen 2012),

I+ €A =1—cA+0(?), 2.9)
to show that

if + 0(f). (2.10)

Fl=—/—
F P
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This gives an expression for the Cauchy strain tensor, split into an isotropic strain and a
deviatoric strain € with tre = 0,

1/n 2/n
e=|:1—(q;£0) :|l+e wheree:%(%) (f+fT). (2.11)

3. A constitutive relation for the stress tensor

In order to understand the deformation behaviour of a hydrogel, it is necessary to relate
strains on the gel to stresses. In our model, we describe stresses using the Cauchy stress
tensor o, where the force per unit area on a surface with normal (unit) vector n is given
by o - n. As was the case for the strain tensor, we start by separating the stress tensor into
its isotropic and deviatoric components because the key assumption of our approach is to
allow for nonlinearity in isotropic components alone.

3.1. Pressure

We start by considering the bulk pressure of an N-component colloidal mixture, which is
defined thermodynamically by the relation

oUu
P=—-|— , (3.1)
v S.M12,...N)
where U, V and § are the internal energy, volume and entropy of the mixture, respectively,
and M; (i =1, ..., N) is the mass of the ith component. In the case of a hydrogel, there

are only two such components, the polymer and the water. However, and more usefully
for our purposes, the bulk pressure can also be defined mechanically, as the total isotropic
force per unit area exerted on the mixture. Note that no reference is made as to the source
of this pressure in terms of the microstructural properties of the hydrogel. Recalling the
definition of the Cauchy stress tensor, we write

o0 =—Pl+04, WwWithP = —% tro, 3.2)
where o 4., 1s the stress deviator tensor, with zero trace.

This bulk pressure can be further separated into a pervadic pressure p and a generalised
osmotic pressure I1, which we henceforth refer to simply as the osmotic pressure. This
separation is discussed by Peppin, Elliott & Worster (2005), where it is seen that the
pervadic pressure can be linked to the chemical potential p often used in discussions
of colloidal mixtures. The pervadic pressure is defined as the pressure measured by a
transducer separated from the gel by a semipermeable membrane that allows only water
to pass through. This pressure can be identified with the pore pressure of the liquid
component of a gel in some existing poroelastic models (Hewitt et al. 2016), and it is
gradients in p, which is also referred to as the Darcy pressure (Peppin 2009), that drive
flow through the matrix.

The osmotic pressure I1 = P — p is the difference between the bulk and pervadic
pressures. It has contributions on the micro scale both from elastic stresses in the
polymer scaffold and from the intermolecular interactions between the water and polymer
molecules. However, we do not consider these explicitly in our continuum model, merely
concerning ourselves with the resultant macroscopic effect from a combination of these
many physical factors. We expect the osmotic pressure to be positive when ¢ > ¢ and
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negative for ¢ < ¢o, by the definition of the equilibrium polymer fraction. We also expect
this pressure to be a function of polymer fraction alone; not only does the osmotic
pressure depend solely on the state of swelling or drying, it is also reasonable to assume
that isotropic stresses should depend only on isotropic strains, which can be written as
a function of polymer fraction ¢ using (2.11). Combining this with all that has been
discussed previously, the Cauchy stress tensor (3.2) can be written in the form

o =—[p+0@)]I+0dn (33)

3.1.1. The osmotic modulus

Authors including Doi (2009) and Etzold ef al. (2021) introduce an osmotic modulus K,
defined as an analogue of the bulk modulus « in linear elasticity (Landau & Lifshitz 1986;
Chung 2007). Under linear elasticity, in which all strains are considered small, « is defined
by —V dP/dV, where V is the volume of the elastic material, and thus an incompressible
material has an infinite value of k. The osmotic modulus is defined in an analogous manner
with respect to the osmotic pressure, as opposed to the bulk pressure, so that

dr1
K=-V—. 3.4
dv
This reflects the fact that, for an incompressible elastic hydrogel such as those that we
are modelling, volume changes only result from osmotic effects (swelling and drying)
and not from bulk elastic ones. In this case, because the volume of a gel is constant and
proportional to 1/¢, we define the osmotic modulus K(¢) by the expression

oIl
9
In the fully linear limit (Doi 2009; Etzold et al. 2021), K/¢ is taken as constant,

linearising around the fully swollen state ¢ = ¢o such that the osmotic pressure is linear

in ¢,

K(¢)=¢ (3.5)

(3.6)

¢ — o
I1(¢) = Ko ,
%o
with osmotic modulus K(¢) = Ko¢p/¢po. More generally than this, using our definition
above, it is possible to linearise around any polymer fraction ¢ = ¢* and find that, close

to this value,

¢ — "
¢*

The difference between these two linearising approximations to I7 is illustrated in figure 2,

showing how linearising around a given value of ¢ gives a much better approximation in

the neighbourhood of ¢* than assuming an entirely linear form for I7(¢).

(¢) — M (¢") = K(¢") (3.7

3.2. Deviatoric stresses
Recall that we treat the gel, swollen to any polymer fraction, as instantaneously
incompressible and linear-elastic in nature. Further, we expect that isotropic strains lead to

isotropic stress and that deviatoric strains lead only to deviatoric stresses, which suggests
that o 4., should only depend on €. Assuming linearity and local isotropy of the material,

the founding assumptions of most linear-elastic theories, we write ¢ 4., = C : €, where C
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Figure 2. An illustration of a representative nonlinear osmotic pressure I7(¢) in black, taken to be of the
form (¢ /¢o) In(¢p/po) (Appendix B) alongside the linear approximation used by Doi (2009) in red. Our model
allows for linearisation around any given polymer fraction ¢*, an example of which is shown in blue. The
osmotic modulus K (¢) = ¢I1'(¢).

is a fourth-rank isotropic tensor and [A : b]; = Ajjiby. By the traceless nature of €, this
reduces to

O dev = 2l4g€, 3.8)

where the constant i, is chosen to agree with the definition of the shear modulus in linear
elasticity (Landau & Lifshitz 1986; Chung 2007).

However, because we expect the material properties of the gel to depend on the water
content, or equivalently the polymer fraction ¢, we allow us to be a function of this
polymer fraction, resulting in the constitutive relation for o,

o =—[p+ @]+ 2usPe. (3.9)

Equation (3.9) has the form of the fully linear model presented by Doi (2009), but this
linear-elastic-nonlinear-swelling relation captures linearity in the small deviatoric strains
€ whilst also allowing for arbitrarily large isotropic swelling strains. This is achieved
by allowing both IT and ps, the two material parameters, to depend nonlinearly on
polymer fraction ¢. It is possible to relate these two material parameters to existing
nonlinear theories including the aforementioned Gaussian-chain/Flory—Huggins approach
to finite-strain poroelasticity (see Appendices A and B for examples of this). The utility of
this constitutive model is that it is relatively tractable and it describes the behaviour of the
gel solely in terms of these two macroscopically measurable parameters.

Given this equation, we can use the Cauchy momentum equation to balance the forces
on a gel element and describe its dynamics. For a body force fp, which may be a function
of space,

Vio+f=0 (3.10)

is the equation governing momentum balance if the acceleration of gel elements is
neglected. In the majority of problems considered henceforth, the body force will be taken
to be zero for simplicity.

3.3. Comparison with linear poroelasticity

As an aside, we show here how our formulation relates to classical linear poroelasticity,
building on the effective-stress framework (Terzaghi 1925; Biot 1941), and used in a
number of existing investigations into the behaviour of two-phase systems, for example
Hewitt, Neufeld & Balmforth (2015). In a two-phase system, both the solid and the liquid
components contribute to the overall stress of the system, and Terzaghi (1925) assumed
the total [Cauchy] stress tensor o to be a volume-fraction weighted average of the stresses
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due to the solid phase and the liquid phase, such that
o =¢c" +(1—-¢)0?. (3.11)
As is familiar in fluid mechanics, the liquid stress
o = —pl+1, (3.12)

where t is the deviatoric fluid stress (equal to 2u;e in the case of a Newtonian rheology,
where ; is the dynamic viscosity and € is the rate-of-strain tensor). Terzaghi quantified
the excess in stress due to the elasticity of the matrix over and above the isotropic pore
pressure by writing

o=09—pl+(1—-¢)r, (3.13)

where 0© = ¢(c® + pl) is the effective stress tensor (Wang 2000). However, in
hydrogels, we neglect the effect of viscous stress on the total stress tensor, dropping the
final term in this relation to give

=09 —pl (3.14)

This is not without precedent: Hewitt ez al. (2016) neglected viscous stresses, expecting the
elastic response to be more important over the timescales we aim to model, and we provide
a post-hoc scaling justification for this assumption in Appendix C. By comparing (3.14)
with (3.9), we see that the pervadic pressure is equal to the pore pressure as understood
by Terzaghi and Biot, and that our (generalised) osmotic pressure is the isotropic part of
Terzaghi’s effective stress (@,

In linear poroelastic models, a linear-elastic constitutive relation is specified for @,
(Detournay & Cheng 1993) which separates Terzaghi’s effective stress into an isotropic
part related to the bulk modulus « and a deviatoric part related to the shear modulus p.
Through this, we can draw analogues between a bulk modulus for the matrix and the
osmotic modulus, and also note that the shear modulus in our formulation plays exactly
the same role as the shear modulus in linear poroelasticity.

4. Gel dynamics

Equations for the time evolution of polymer fraction ¢ in the absence of any body forces
can be found by combining polymer conservation with Cauchy’s momentum equation.
The latter of these implies that V - ¢ = 0 and therefore, using (3.9), an expression for the
pervadic pressure gradient (Peppin et al. 2005) can be found, namely

Vp=—VII(¢) +2V - [us(P)e]. (4.1)

Note that the gradient of the pervadic (pore) pressure, which drives flow through the
polymer network, has contributions from gradients in polymer concentration, relating to
gradients in osmotic pressure, and also divergences in the deviatoric stresses. Darcy’s law
gives an expression for the volumetric flux of fluid throughout the gel in terms of this
pressure gradient,

1 1

TV¢ =2V - [us(@)e]

where k(¢) is the permeability of the gel, which we expect to depend on polymer fraction.
For example, Etzold et al. (2021) derive a theoretical relationship k(¢) ¢~/ for a
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hydrogel but other, empirically determined, relationships can be used. Indeed, fully linear
models use a constant value of permeability k.

As both the polymer and the water are separately incompressible, polymer and water
conservation give the equations

ad d

a—d; +V. (¢up) =0 and Y A=)+ V- -[(1—-¢)u] =0, (4.3a,b)
where u, and u; are the mean polymer and water velocities, respectively. It is important to
note that the water velocity u; is different from the Darcy flux u of interstitial fluid, which
is the volume flux per unit area of water relative to the polymer scaffold and is defined by

u=(1-9¢) (w—up). 4.4)

Equations (4.3a,b) when summed imply that the quantity g = ¢u, + (1 — ¢p)uy, the
phase-averaged material flux, is divergence-free. This quantity is analogous to the total
material flux vector g introduced by Schulze & Worster (2005) in the formulation of
Galilean-invariant mushy layer equations. Then, rewriting ¢u,, in terms of u and ¢,

V. (pup) =q-Vo—V-(¢u). 4.5)

This can be substituted into the polymer conservation equation (4.3a,b) to give the
Galilean-invariant transport equation

%—@Jr v) =V (4.6)
o S5 T2V )e=V-@w, :

extending what was found in one dimension by Etzold er al. (2021). Of course, this
equation requires knowledge of one of either the solid or liquid velocities alongside u in
order to determine ¢, but in one-dimensional swelling problems such as those considered
by Etzold et al. (2021), g is set by considering the boundary conditions on polymer and
liquid velocities because V . ¢ = 0 implies that its value is spatially constant. Equation
(4.2) allows us to determine u in terms of the material properties, polymer fraction and the
deviatoric strain, such that

D k
DA’) _v. [@ (K($)V$ — 20V - [us(qb)e]}} . @.7)
t i

The left-hand side of this equation represents the changing of polymer fraction in time,
with an advective term due to reconfiguration of the gel as it swells or dries. On the
right-hand side, the separate contributions from the osmotic effects on swelling and
drying and the effect of shear (arising from the small deviatoric strains) are made clear.
Equation (4.7) provides a very general evolution equation describing SAPs within our
linear-elastic-nonlinear-swelling model.

4.1. Rewriting the transport equation in terms of polymer fraction alone

In one dimension, € = 0 and (4.7) is expressed solely in terms of ¢, and alone provides
a general equation to describe nonlinear swelling. In higher dimensions, it is desirable to
eliminate deviatoric strain from this transport equation so that an explicit knowledge of the
displacements £ is not needed to explain how the polymer fraction evolves. We can do this
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to leading order in the small deviatoric strains €, starting by combining (2.7) and (2.11) to

give
1 T ¢\
3 [VE+ VT =|1- (%) I+e. (4.8)

The trace of this equation shows that

¢ 1/n
V-’§:n|:1—(%> } 49)
and its divergence gives

1 ¢ 1/n
V-e:E[V.V§+V(V-E)]—V[1—<¢—O> }

_1 5 n ¢ 1/n
_Evg+<1—§)v(%) . (4.10)

The fact that deformation is, to leading order, isotropic in our model, combined with (4.8),
indicates that

& 1/n o\
VE = {1 - (—) } I+0(s) thus V& = —V (—) +0(/L), (411
(o) ®o

where ¢ = max; ; |€;| and L is a length scale for the problem. Therefore, combining this
result with (4.10) shows that

1/n
\% ((,%) =0(¢/L) so V¢ =0(e/L), (4.12)
0

or that gradients in ¢ are of the same order as gradients in the deviatoric strain and are
therefore in this sense ‘small’ when the deviatoric strain is small. Hence, for any given
functions g and & of ¢,

V-[g@)e]=g@)V-e and V-[(p)V-€]l=h(@)V-V-e (4.13a,b)

to leading order in the small parameter ¢. For example,

V - (Qk@)V - [15(@)el) = ph(@)ps(@)V - V - € + O(e* /L)

1/n
= pk(P)us(¢) (1 — n) V2 (%) +0(2/0),  (4.14)

taking the divergence of (4.10). This can be rewritten as a divergence, also using (4.13a,b),
because

1/n 1/n
Pk(P)115(¢) (1 — n) V2 (%) =V. [(1 — n)Pk(P)15()V (%) } + 0(£%/L).

(4.15)
960 A37-12
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Using this result, neglecting terms of second order and above in the deviatoric strain, the
governing equation for polymer transport can be written, in conservation form, as

N 1/n
Pt _y. [k("” {K(¢>+2(” D @) (3> }w]. (“.16)
Dt n n o

This equation shows that the polymer fraction satisfies a nonlinear advection—diffusion
equation with a diffusivity made up of both generalised osmotic effects and bulk elastic
effects. Note that this equation makes no assumptions regarding the properties of the
hydrogel being investigated other than small deviatoric strains; the constitutive relations
for the macroscopic material parameters K(¢), s(¢) and k(¢) are to be determined.

4.2. Comparison with existing models

We have already seen how the transport equation for polymer of (4.7) compares with the
model used by Etzold et al. (2021) in the one-dimensional (n = 1) case, with an absence
of deviatoric strains. In this limit, (4.16) becomes

Dy¢p v. [k(¢)K(¢)
Dr i

with the nonlinear diffusivity D(¢) = k(¢)K(¢)/ ;. It is equivalent to that for a colloid
with solid particle fraction ¢ (Doi 2009; Hewitt et al. 2016; Worster, Peppin & Wettlaufer
2021), because K(¢p) = ¢dI1/9¢, and is also referred to as the poroelastic diffusivity.
Now consider the case where we would expect linear elasticity to hold both in deviatoric
and isotropic strains, and linearise around the equilibrium state ¢ = ¢o. If material
parameters are assumed constant, (4.16) becomes
d¢

k 2
—+q-Vo=—[K+2(1—1/n) ] V?¢. (4.18)
ot Ki

V¢] (4.17)

Doi (2009), for example, considers the special case in which n = 3 and ¢ = 0 and finds
this same result: a linear diffusion equation with diffusion coefficient k(K + 4u5/3)/ 4.

5. A simple rheometer

Given the transport equation (4.16) for polymer fraction ¢, it is possible to describe
the time evolution of the polymer fraction of a gel once constitutive relations for the
material properties I1(¢) (equivalently, K(¢)), us(¢) and k(¢) are known. Though
it may be possible to deduce expressions for these parameters theoretically using an
understanding of the small-scale structure of such hydrogels (as illustrated in Appendix A),
for practical purposes it is likely that they must be determined empirically using
macroscopic experiments. Here we describe such an experiment involving instantaneous
compression and then subsequent relaxation of a layer of gel. For simplicity, we consider
a two-dimensional experiment, but can straightforwardly extend the analysis to three
dimensions.

Consider a fully swollen gel (uniform polymer fraction ¢p) on an impermeable
horizontal base, surrounded by water. This situation is illustrated in the first panel of
figure 3. If another horizontal impermeable plate is brought into contact with the top
surface of the gel and its height reduced, we expect the gel to deform instantaneously as
an incompressible, linear-elastic material, exerting a force on this top plate, as illustrated
in figure 3(b). On both top and bottom surfaces, we take free-slip boundary conditions,
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(a) (b)
-
a, +—> 4
¢=¢0 i 06
p=P=0 0 b =, hy
P=p=2pn,

Figure 3. (a) The initial configuration of a fully swollen hydrogel placed on an impermeable surface, with
height Ao and horizontal extent —ag < x < ag. (b) This is then instantaneously compressed to a new height
h1 = ho(1 — ¢), with the gel incompressible on such short timescales, so the horizontal extent correspondingly
increases to ,% <x < u6 where h1a6 = hoagp. (c) As time progresses, water is expelled from the gel and it
contracts back, with a higher polymer fraction.

t

Figure 4. Plot to show the force relaxation behaviour on the top plate of the rheometer as it is compressed
three successive times, with an initial peak in the force slowly decaying to a final steady-state value. The height
of the initial peak depends on the shear modulus, with the steady state dependent on the osmotic modulus and
the timescale for transition between the two dependent on the permeability.

ignoring any shear stresses between plate and gel. Fixing the top plate into position, the
force that the plate would, in turn, exert on the hydrogel serves to drive water out of the
gel scaffold until it reaches a steady-state uniform polymer fraction ¢ > ¢, with the
force exerted on the top plate relaxing accordingly. Such an experiment, with the same
characteristic force relaxation, was carried out by Li ef al. (2012), who showed that this is
indeed the behaviour seen experimentally, and is familiar from the field of biomechanics,
where ‘unconfined compression’ experiments are used to determine the material properties
of the solid matrix in a biphasic material (Armstrong, Lai & Mow 1984).

The force on the top plate immediately after compression depends solely on the shear
modulus, which governs the incompressible elastic behaviour of the hydrogel. The final
steady state, reached by the expulsion of water, has a force that depends solely on the
osmotic pressure in the gel. The transient state is driven by interstitial flow through
the hydrogel, dependent on the permeability. In principle, therefore, measurements
taken throughout this experiment can be used to give values for all three material
properties required to characterise the gel dynamics. Furthermore, because the final
state of the experiment has a uniform polymer fraction, it is possible to repeat the
compression to determine these three parameters at a new polymer fraction. If the height
is stepped down sufficiently slowly, producing a series of steady-state polymer fractions
Po < 1 < ¢2 < ---, we can linearise around the polymer fraction in each experiment to
give a series of values for I7(¢;), us(¢;) and k(¢;) and therefore constitutive relations for
these three parameters. This ‘stepping’ behaviour is illustrated in figure 4.

We analyse this further by considering the nth step of such a rheometry experiment,
in which the gel has initial height %, and uniform polymer fraction ¢,. Before it is
compressed further, the gel occupies the region —a, < x < a,, and it remains symmetric
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around x = 0 throughout. In the subsequent evolution, the polymer fraction is dependent
only on horizontal position x, and Cauchy’s momentum equation gives that doy,/dx = 0.
In order to analyse this, and other, problems involving gels, it is necessary to consider the
boundary conditions at water—gel interfaces. Here, we follow the extensive literature (for
example, Doi 2009) in imposing continuity of pervadic pressure p (analogous to continuity
of chemical potential in some models) and continuity of normal stress o - n. We discuss
these conditions in more detail in Part 2.

We have already shown that oy, is constant in the horizontal direction, and so o, = 0
everywhere in the gel as a result of this boundary condition. Therefore,

oxx = —(IT(¢) +p) + 21u5(d)ex =0, (5.1a)
while

0z = —(I1(P) + p) + 21u5(P)ez, (5.1b)

assuming that the plate does not exert a horizontal stress on the gel. The force exerted per
unit length by the gel on the top plate is equal to —o, because it is equal to ¢ - n with the
normal vector pointing into the gel.

5.1. Finding the osmotic modulus: the steady state

Once the system has reached equilibrium at any step n, when the height of the gel is 4, and
its radial extent is a,, there are no gradients in pervadic pressure. Given that p = 0 at the
water—gel interface by continuity of pervadic pressure, p = 0 throughout the gel. Adding
(5.1a) and (5.1b) and using the fact that €, + €,; = 0, we find that the steady-state force
exerted per unit length on the plate, oy, is given by

of = 2I1(¢,) = 211y, (5.2)
where ¢, is the steady-state polymer fraction. This polymer fraction can be deduced from

polymer conservation, with ¢ohoag = ¢,hna,. Note also that [T is, by definition, zero
when ¢ = ¢p.

5.2. Finding the shear modulus: the initial force

If the height of the gel is then stepped down from £, to h,+1 = h,(1 —¢), for ¢ K 1,
there is no immediate redistribution of water and the polymer fraction therefore remains
equal to ¢,. In order to conserve polymer, therefore, the horizontal extent increases to
—a, < x < a,, where a, = ayhy/hy+1. Working to first order in the small parameter &,

and letting K, = K(¢n), sn = s(¢p) and k, = k(¢py),

¢ 1/2
€;; = €, + (—) -1, (5.3)
o
from (2.11). Given that the total vertical strain relative to the swollen state ¢ = ¢ is e,; =
hp+1/ho — 1, we find that
hn—H ¢n 172
€ ™ + <¢0) 2. 5.4)

Now subtracting (5.1a) from (5.15) and again using €, + €,; = 0, we find that the stress
exerted on the top plate immediately after compression is given by

N h, S\ 112
oi = 4iugn |:2 - % (I—-¢)— (QTO) :| ) (5.5
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allowing us to use a stress measurement to deduce the value of ug, because all of the other
parameters here are already known.

5.3. Finding the permeability: the transient evolution

It is the permeability of the gel that dictates the rate at which fluid can either flow into
or out of the porous polymer scaffold, through the transport equation (4.16). Start by
considering the volume-averaged flux g, which only has a horizontal component ¢, given
our conceptual framework. Therefore, V - ¢ = 0 reduces to dg/dx = 0, and symmetry
dictates that ¢ = 0 at x = 0. Thus, g = 0 through the gel.

As discussed previously, the gel will relax back to a uniform state with ¢ = ¢4 as
water is expelled. This value of ¢, is set by considering the boundary condition oy, =
p = 0 at x = a(r), which, using (5.1a) and (5.1b), shows that

H (Ppr1) = 25(Pni1)€z. (5.6)

Using (5.4) for the vertical deviatoric strain and remarking that, for a sufficiently small
incremental step, IT(¢p+1) = I, + (Kn/dn) (Pntr1 — ¢n),

Kn hn 1 ¢n 172 ¢n+l_¢n
(Pt — Gn) =20 | e — = () | =0, 5.7
5 (Bt = d) = 20 [hos 2(¢0) 0 (5.7)

providing an implicit expression for the steady-state polymer fraction ¢, 1.
We linearise around the mean state ¢ = (¢, + ¢»+1)/2, with constant mean material

parameters K = (K, + Kn11)/2, @By = (on + tsur1))/2 and k = (ky + ky41)/2. Thus
(4.16) becomes a linear diffusion equation

0o _ & AR
~ =K+ = 0 | —. 5.8
3t [L[ +<¢0> /"LS axz ( )

The horizontal extent of the gel at time ¢, a(?), is set by polymer conservation

a(t)
hpt1 ¢ dx = hpaydy. (5.9
0

The boundary conditions are given by symmetry at x = 0, imposing d¢/dx =0 atx =0
and by requiring o, = p = 0 at x = a(#). This latter condition is the same as that applied
throughout the entire gel in § 5.1, and so sets the interfacial polymer fraction ¢ to equal the
steady-state polymer fraction ¢, by equating IT(¢) with 4u(¢p)e.,, a condition which
arises from subtracting (5.1b) from (5.1a), as illustrated in (5.7).

The initial conditions are simply ¢ = ¢, with a(0) = a,, = a,(1 +¢) + O(¢?). This
system of equations can be solved to find the evolution of the polymer fraction in time,
and, therefore, also the frontal position a(f) and the force per unit area on the top plate
using (5.4), as shown in the following.
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5.3.1. Non-dimensional system
In order to solve this problem, we first define non-dimensional variables and parameters

an AN 172
kK t
an ®n doagiL $o K an
(5.10a—e)
that reduce the diffusion equation (5.8) to
AP G
— =1 —. 5.11
aT 1+ M X2 1)
This is to be solved with the boundary conditions and initial conditions
0P
9 patx=0 and &=t at X = A(T),
aX O (5.12)
dX,00=1 and AW0) =1+c¢,
whereas the horizontal extent A(T) is determined from
A(T)
/ ®dX =1+c¢. (5.13)
0

We can differentiate this expression with respect to time and substitute in the expression
for 9@ /dT in (5.11) to find the explicit evolution equation for A(T),

1 9A 0
= (M) .
¢n OT 0X |y_acr)

We solved this problem numerically, as detailed in Appendix D and illustrated in figure 4,
to determine characteristic behaviour that agrees qualitatively with experiments carried
out by Li et al. (2012). The stress on the top plate is seen to ‘spike’ initially under the
incompressible deformation, and then to relax in time to a constant value as water is
expelled. Fitting the theoretical results obtained to experimental observations allows us
to deduce a value for k because all of the other parameters for the problem are known.

Repeating the experiment described previously, reducing the separation distance #,
incrementally from an original value of hg, it is possible to determine constitutive
relations for each of the three required material parameters I1(¢), ps(¢) and k(¢). The
two-dimensional rheometer described here needs elaboration for a three-dimensional
realisation, but the principles illustrated are that p, is determined from short-time
mechanical responses, I7 is determined from long-time equilibria and & is determined from
transient responses. Importantly, constitutive relationships for all three material parameters
can be determined from macroscopic measurements.

(5.14)

6. Confined one-dimensional swelling

It was seen with the rheometer that the interfacial polymer fraction, and, by extension, the
steady-state polymer fraction, reached by the gel was not equal to the equilibrium polymer
fraction ¢y, as one might expect when a hydrogel is adjacent to bulk water. Confining the
hydrogel in the rheometer between the two plates gives a vertical strain, and a horizontal
strain must also result from incompressibility. The requirement of no horizontal stresses
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then implies that the gel needs non-zero osmotic contributions to balance the elastic
stresses arising from these horizontal strains.

Perhaps the clearest way to see this effect is to consider a semi-infinite block of hydrogel
in two dimensions with uniform polymer fraction ¢* > ¢ occupying the half-space z < 0.
Such a state can be achieved by equilibrating the gel in a closed container of saturated
air, with a fixed total water content. Note that the pervadic pressure p of the gel is
negative p = —A with A > 0, arising from disjoining forces within a surface film on
the gel, analogous to the pre-melted films on the surface of some solids close to their
melting points (Wettlaufer & Worster 2006). Mechanical force equilibrium gives o, = 0
throughout the hydrogel, which implies that

I1(¢™) = A. (6.1)

The late-time polymer fraction approached by the gel as it swells is not equal to ¢g, but
is determined as follows. In the initial state, the Cauchy strain tensor relative to the fully

swollen state ¢y is given by
#\ 1/2
e= |:1 — (%) :| I (6.2)
0

The gel is suddenly brought into contact with bulk water occupying the half-space z > 0
but is confined horizontally such that the horizontal strain e, remains constant throughout,
equal to its initial value 1 — (¢* /d)o)l/ 2 as illustrated in figure 5. We seek both the
evolution of polymer fraction in the gel as it swells, and also the frontal position z = a(r)
with a(0) = 0. The assumption of horizontal uniformity is also made: strains and polymer
fractions are functions of z and ¢ alone, arising from the free-slip boundary conditions
on the confining walls, so edge effects are unimportant. In a two-dimensional case such
as this, it is straightforward to see the effect of horizontal confinement on the deviatoric
strains in the gel, and how modifying this confinement therefore affects the equilibrium
polymer fractions. The horizontal deviatoric strain is

¢ 1/2 <¢>1/2 <¢*)1/2
xx — Exx - —1={-— -\ 0, 6.3
‘ S <¢o> %o o) - (©)

and €;; = —e€,y, which allows the interfacial polymer fraction to be found, again from
the conditions of no normal stress o, and p = 0 at the interface z = a(#). This polymer
fraction ¢ satisfies the implicit relation

w172 12
T1(¢1) = 215(91) {(%) - (z—;) } . (6.4)

In addition, we expect ¢ — ¢* as 7 — —oo0.

For the assumptions of our model to hold, we require the deviatoric strains €, and €.,
to be small at all times, and therefore (6.3) shows that ¢; must be close to ¢*. The implicit
definition of ¢ above therefore requires that

I1(¢1)
2us(P1)

This is achieved straightforwardly if ¢ — ¢p < ¢™ — ¢pg < 1, but can also be achieved
even when ¢™ — ¢ is not small provided that ps(¢*) > IT(¢™).
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(@) (b)

Figure 5. (a) The initial configuration of the confined swelling problem, where the lower half-plane is
occupied by gel with uniform polymer fraction ¢* > ¢g. (b) The swelling planar front at z = a(¢) and a
representative polymer fraction profile, after the gel has been allowed to swell for some time.

6.1. Time evolution of the system

The swelling of the gel is driven by the flow of interstitial water through the hydrogel
matrix, governed by gradients in pervadic pressure. As with the rheometer, this swelling
behaviour is described by (4.16) with n = 2, ¢ = 0 and only derivatives in the z direction,

giving
o0 _ 0 | k@) @\ 29
EFWh{M[“@+M@%%> }&} (6.6)

This equation describes the most general time evolution of such a swelling problem
irrespective of the constitutive relations for k(¢), K(¢) and ().
The position of the swelling front z = a(¢) is determined by polymer conservation

a(t)
/ (¢ — ¢*)dz+ ¢p*a(r) = 0. (6.7)

—00

6.2. Linearisation

In order for € to remain small throughout the swelling process, ¢ must be close to ¢* at
all times and everywhere in the gel. Therefore, we linearise around the state ¢ = ¢* and
(6.6) becomes a simple linear diffusion equation with diffusion coefficient D given by

(" wn 1/2
D = @") {K(df‘) + pg(@™) (—) } . (6.8)
i ®o

The interfacial polymer fraction is set explicitly by linearising the condition (6.4), using

I1(¢) ~ I1(¢*) + K(¢*) (¢ — ¢*)/d,

(%) ]* .
=11- =(1-=-7P (6.9)
4 [ K@) + m@n @ jon2)? TP

with the non-dimensional parameter P introduced for brevity, and defined to be IT/[K +
s (@* /o) 1/2], evaluated at ¢ = ¢*. This definition implies that0 < P < 1 since ¢; must
take a positive value less than ¢*. Furthermore, requiring IT/us < 1 for the assumption
of small deviatoric strains to hold enforces 0 < P « 1. Differentiating the polymer
conservation condition (6.7) with respect to time to find an evolution equation for the
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Figure 6. The growth rate A for the linearised planar growth problem, as defined by the implicit relation (6.12),
showing how the position of the hydrogel front a(f) grows more rapidly for larger values of P. The small-P
limit is illustrated with a dashed black line.

frontal condition then gives the full set of equations

o9 Da2¢ ith ¢ o* (6.10a)
—=D—— wi — as z — —oo .
Y 922 ‘ a
and
p=¢1=(1-P)¢p* atz=a() (6.10b)
which evolves as
d 0
¢1—a =-D —d) . (6.10¢)
dr 0z 2=a(t)

This set of equations is entirely analogous to the Stefan problem considering the
solidification of a pure melt at a boundary (see, for example, Langer 1980; Worster 2000;
Davis 2001). The solution to this swelling problem is

erfc (—n) z
(z,1) = ¢* |:1 - —:| where n = ——, (6.11)
¢ ¢ erfc (—A4) 7 2/ Dt
and a(t) = 24~/ Dt, with the parameter A set implicitly by
P
Vet erfe (—1) = 5 (6.12)

Figure 6 shows how the parameter A depends on the value of P, showing zero growth
when P = 0, corresponding to ¢™ = ¢, whilst growth rates increase to infinity as P — 1
and the gel swells to an ever greater degree (i.e. ¢ decreases). Of course, P must remain
small to satisfy the assumption of small deviatoric strains, and in this case (6.12) can be
approximated by 1 ~ (P//m)[1 + (1 — 2/7)P + ...], as illustrated in figure 6.

7. Swelling of spherical gels

Perhaps the most common quasi-one-dimensional swelling problem considered in the
literature is that of a swelling spherical bead of gel, initially held at some uniform polymer
fraction ¢™ > ¢y, before being placed into bulk water and allowed to expand. It is this
problem that was treated linearly by Tanaka & Fillmore (1979) and in fully nonlinear
models by Tomari & Doi (1995), Bertrand et al. (2016) and Butler & Montenegro-Johnson
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(2022). On the assumption that the swelling bead is at all times spherically symmetric, and
therefore all displacements are in the radial direction, both polymer and water velocities
can be assumed to be purely radial. In this case, therefore, we consider (4.16) with n = 3
and all derivatives in the radial direction only,

9 10 {er(¢) [K(¢)+4us(¢) <£>1/3}%}_ (7.1)

a rrar| w 3\ ar

Yet again, this equation is obtained by finding that g = 0 everywhere, because u; and u,
are zero at the origin, vary only radially and ¢ is divergence-free. The displacement vector
field is described in this spherically symmetric case by § = £7.

At the swelling front of the gel r = a(), we apply continuity of normal stress (imposing
o = 0) and continuity of pervadic pressure (imposing p = 0) for the same reasons as
discussed previously in the rheometer problem. Therefore,

I1(p1) = 2us(P1)€rr

3 1/3
= 2us(b1) {a_i — 1+ (%) } on r = a(f). (7.2)

For a gel of fully swollen radius ag, the displacement at r = a(¢) is equal to a(t) — agp, and
the expression for the Cauchy strain tensor (2.11) implies that

1/3
§:3|:1—<£> }—5 (73)
ar b0 r

which is substituted into the boundary condition (7.2) to give

1/3
T($) = A1) [% - (%) } . (7.4)

Note that, unlike the boundary condition of (6.4) which prescribes a constant value of ¢
throughout the evolution of the polymer fraction field, this interfacial boundary condition
prescribes a polymer fraction at the interface that changes as the bead swells. Instead of the
surface of the bead instantaneously swelling to ¢ = ¢y, it slowly reaches this value as the
radius increases, with the concentration of polymer changing such that osmotic stresses
balance the deviatoric stresses arising from incomplete swelling.

Symmetry implies that d¢/dr = 0 at the origin, and polymer conservation is used to set
the radius of the bead,

a(t) 4 3
4 / P dr = MTWO (1.5)
0

To compute some results for the swelling of the bead analytically, we consider the case
of constant parameters /s and k and an osmotic pressure that is linear in ¢, but retain the
nonlinear kinematic equation and boundary conditions (7.1) and (7.4), a regime referred
to in MacMinn et al. (2016) as ‘intermediate ko’: effectively a linear-elastic constitutive
relation with linear poroelasticity but nonlinear dynamics. For a linear osmotic pressure,
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as in Etzold et al. (2021), we take

@) = k2 =%, 76)
®0

where K(¢), the osmotic modulus, is equal to Ko¢/¢o. We introduce dimensionless
variables,

kK ‘
R="'. o=%. r_ Sl M= am = a® (77a—e)
ao b0 api Ko ao

noting that the timescale here, * = a(z),ul /kKy, is of the same form as that derived first
in Tanaka, Hocker & Benedek (1973) and later used in the analysis of swelling beads by
Tanaka & Fillmore (1979) and MacMinn et al. (2016). However, we show in the following
that the diffusive timescale is modified by deviatoric stresses proportional to M. Equations
(7.1) and (7.4), alongside the polymer conservation constraint (7.5) become

oo ch—[cp 4 <p/], 7.8
aT R28R{ oR P M } (7.8a)
with @ = @, at R = A(T), where @, — 1 = 4M [A(T)_l — ¢11/3] , (7.8b)
9
— =0atR=0 (7.8¢)
R
and
A(T)
/ R*®dR = 1, (7.84)
0

to be solved with the initial conditions @ = @* and A = (@*)~!/3. Note, importantly, the

additional term 4 M !/3 due to the deviatoric stresses present throughout the swelling.

Considering (7.8b), we can see straightforward solutions for the interfacial polymer
fraction @1 in two distinguished limits. In the case M — 0 there is no resistance in the gel
to deviatoric stresses, and so the outer layer will instantaneously swell fully, with @; — 1.
Conversely, in the limit M — oo, the gel resists deviatoric strains and an evolution with
uniform isotropic swelling is achieved with @ = ®; — A(T) .

As the gel swells, we consider the value of @; as given by (7.8b), and as plotted in
figure 7. Noting that the initial uniformly swollen @* state corresponds to a position on

the M — oo curve where @; = A(0) >, the interfacial value of @ drops instantaneously
as the swelling begins, and decreases further as the bead radius increases. Note that the
shear modulus resists differential swelling and reduces gradients in @. Figure 7 shows
one such sample trajectory, with the interfacial polymer fraction decreasing slowly as the
radius increases, up to a final steady-state value @; = 1.

This gradual swelling process is best illustrated in figure 8 which shows how the outer
surface swells to a lower polymer fraction before this diffuses into the bulk of the sphere
and the interfacial polymer fraction continues to drop during swelling. The effect of the
deviatoric strains is also illustrated in figure 8 because increasing M increases the value
of @ and thus slows the diffusive growth of the bead.

7.1. Post-hoc justification of small deviatoric strains

Our model assumes from the outset that deviatoric strains remain small at all times, and
we can linearise around a state of isotropic swelling. It is straightforward to find conditions
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10 T

M =0

1 1 1
0 0.2 0.4 0.6 0.8 1.0
A (T)

Figure 7. Value of the interfacial polymer fraction @; at bead radius A(7) for different swelling states, showing
how the presence of changing deviatoric stresses leads to a changing interfacial value. In the limit M — 0,
where there are only isotropic stresses, the outer surface of the sphere instantaneously swells to @ = 1, but
otherwise this growth is tempered by resistance to shear. A sample trajectory for a bead initially of uniform
polymer fraction @1 = 8 is plotted in black.

(@)
T=10* =103 T=102 T=10"! T=1
-------------- 8
¢ Oi
............... 1
(b) T=0.01 T=0.1 T=0.5
8F 8 8
~~
6 < 6 6
N
D 4 4 4
0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
R R R

Figure 8. (a) Contour plots of the polymer fraction as a bead swells from initial polymer fraction @* = 8 with
M = 40. The original and final radius are shown as dashed circles and plots are produced at different times to
show the differential swelling in the early stages. (b) Plots of the polymer fraction against radius when M = 1
(solid curve), 10 (dashed curve) and 100 (dotted curve), showing how an increased shear modulus acts against
diffusive growth of the sphere.

on the parameters of the model described by (7.8) under which these strains will indeed
remain small, and to check whether our assumption that large isotropic volume changes
can occur without ever introducing significant deviatoric strains is borne out in reality. As
this model is one-dimensional, it is straightforward to solve for the radial displacement,
which must satisfy

s\ 13
% 2% _ 1_<¢7> and E=0 atr=0, (7.9)
0

from which we can calculate the three components of e,
%. ¢ 1/3 g ¢ 1/3
=2|1->—|— : = == — . 7.10a,b
€r r "\ o0 = =1 g (710a.0)
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Figure 9. The deviatoric strain €, (the component of e with the largest magnitude) plotted against
non-dimensional radius at various times 0 < 7 < 1 when @* = 8 and M = 40; in this case, the initial
deviatoric strains are shown in black. In spite of the gel swelling to eight times its initial volume, deviatoric
strains stay below 10 % in magnitude throughout, the approximate threshold quoted by Landau & Lifshitz
(1986) for linear theory to hold.

The plots in figure 9 show that the deviatoric strain is greatest at the interface and,
therefore, the deviatoric strains are small in our non-dimensional model provided that

_ (f1/¢0) — 1
2(an~ =) <1 or S (7.11)
! 215/ Ko
through the use of the expression (7.8b) for the interfacial polymer fraction. We see the
traditional linear case arises when @; — 1 < 1, but note here that our approach is still
valid with @; — 1 finite provided that M = u,/Kj is large.

8. Conclusion

The study of super-absorbent hydrogels presents various difficulties, with existing
models relying on highly nonlinear methodologies with parameters to determine from
a microscopic understanding of the hydrogel. We have developed a model that has the
tractability of fully linear approaches whilst admitting strong nonlinearities in isotropic
strains, which we refer to as a linear-elastic-nonlinear-swelling approach. It is able to
describe a variety of swelling processes observed in experiments, whilst also giving insight
into the physical processes controlling the rates of swelling and drying.

Our theory involves three macroscopic material properties: the osmotic pressure I7(¢),
the shear modulus ps(¢) and the permeability k(¢). Existing modelling is able to
determine material parameters from experimental measurements but starts from the
framework of a fully nonlinear micro-scale model (Drozdov & Christiansen 2013).
We have introduced a conceptually simple experiment that allows these constitutive
parameters to be determined with no need to understand the microscopic-scale behaviour
of polymer chains and their interactions with the interstitial fluid currently used to describe
gels (Flory & Rehner 1943a,b). In doing this, we have brought the study of such gels in
line with other continuum-mechanical modelling that is only concerned with macroscopic
measurements, with a model for gel behaviour that is macroscopic the whole way from
conception to practice.

Our approach allows us to distinguish the contributions from osmotic pressures driving
flow into or out of gels and those of the deviatoric stresses that result from differential
swelling or drying. We have illustrated these principles by considering the confined
swelling of a gel and the radial swelling of a hydrogel bead, where the balance between
osmotic and deviatoric stresses sets the interfacial boundary value of polymer fraction.
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The water then diffuses into the bulk of the gel in time following a nonlinear diffusion
equation, with deviatoric stresses clearly augmenting the diffusion rate.

So far, we have only considered uniaxial swelling processes, in which we can relate
the interstitial fluid flow u to the polymer velocity u, and therefore straightforwardly link
the elastic response to the flow using the conservation equations for polymer and water.
In these cases, we can use the divergence-free nature of the phase-averaged flux vector
q to find the value of ¢ everywhere in the gel and simplify the transport equation (4.16).
Furthermore, it is straightforward in such cases to express the deviatoric strains € solely
in terms of polymer fraction ¢, allowing the contributions of deviatoric stresses to be
fully understood without resorting to a consideration of displacements. Where differential
swelling occurs in more than one spatial dimension, more effort is required to determine
the elastic deformation of the gel. This is the subject of Part 2 (Webber et al. 2023), which
also introduces a more general approach for finding the shape of a gel as it swells or dries.
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Appendix A. Relating our model parameters to nonlinear theories

Traditionally, large-swelling hydrogel behaviour is modelled using a Gaussian-chain
model for the elasticity of the polymer network and Flory—Huggins theory to describe the
mixing behaviour of the two phases which comprise these gels (Flory & Rehner 1943a,b;
Flory 1953). As discussed in the introduction, both of these factors contribute to the overall
free energy density YV of a hydrogel, which can then be used to derive an expression for
the stress tensor (Doi 2009; Cai & Suo 2012). Following the approach set out by Cai &
Suo (2012), the effective stress tensor (i.e. ¢ + pl) is given by

() ow
0. =¢—Fj, Al
ij d’ dF i jk ( )
where F is the deformation gradient tensor of (2.3). As stated previously, the energy
density function can be separated into contributions from mixing of water and polymer
Wi and from stretching of the polymer chains Wercn, With

kT,
Wi = == [ (¢7' = 1) In(1 = 9) + x(D)(1 = 9) | (A2a)
Witrerch = NkZBT [qbo‘ *PFupFap —3+21n ¢] : (A2b)

where a Gaussian-chain constitutive model is assumed for the stretching contribution,
kg ~ 1.38 x 10723 J K~! is the Boltzmann constant, T is the absolute temperature and
x(T) is the so-called Flory—Huggins interaction parameter, measuring the strength of
interaction between water and polymer. Furthermore, N is the number of polymer chains
per unit volume and £2 is the volume of a solvent (i.e. water) molecule. For simplicity,
effects due to orientation-dependent interactions such as hydrogen bonds are neglected
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here, though many models include this as a further consideration (Cai & Suo 2012). Note
that

d
¢£ = SaF and, therefore, 8T¢ = —¢F;;l, (A3)
0 € ik

using the expression for the derivative of a matrix determinant with respect to the matrix
(Petersen & Pedersen 2012). Then,

8vaix _ kBT =2 - - d)
o —7[ 00— 9) 9~ —x (D] 7=
— [ —o o+ 2] 7! (Ada)

and

OWstretch _ NksT 2¢72/3 Fi+ 20122 1 09
0F ik 2 0F ik

— NkgT [¢ ey~ F ] (Adb)
Now, note that
FolFi = 5 (A5a)
and
FicFjx = ($/00) "7 8+ (@/¢0) ' (£ + £ii) + O(F)
= ($/P0) " 8 +2(d/do) " €+ O(e?) (ASb)
using (2.6). Therefore, (A1) becomes

© _ kT 1/3

oy =" [In (1= )+ &+ x(T¢> + N2 (72 = )| 85+ 20, *NesTey. (A6)

From here, we can read off expressions for the osmotic pressure I71(¢) = —(1/3) tr (@)
and the shear modulus w(¢),

(¢) = [st (¢ ¢‘/3) —In(1 =) — ¢ — x(D)e? ], (A7a)
¢1/3

Note that the osmotic pressure (A7a) has contributions from both W,,;, and Wyeren, Whilst
the shear modulus (A7b) only has contributions from the (linear) Wgyyercn, €xplaining why
it is found to be independent of ¢. Furthermore, setting I1(¢) = 0 allows us to deduce a
value of the equilibrium polymer fraction ¢ in terms of material properties. Assuming

P < 1,
1 /1 —3/3
P ~ [m (5 - X(T)>i| . (A8)

It can be seen in the two expressions of (A7a), (A7b) that the material properties I7(¢)
and p are dependent on microscopic properties (x (7), N, §2) as well as the temperature.
Although these microscopic parameters could be determined, in principle, by fitting
expressions (A7) to data obtained from the rheometer described in § 5, there is no certainly
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that these functional forms are appropriate over large variations in ¢. For example, it seems
unlikely that the shear modulus is independent of polymer fraction, as suggested by (A7b);
indeed, results in the literature (Subramani et al. 2020; Li et al. 2022) suggest that this is
not the case. It therefore seems more direct to determine constitutive relationships for
the macroscopic material properties, which also have clear mechanical interpretations for
the bulk material and feed directly into a continuum-mechanical description of swelling
hydrogels.

Appendix B. Material parameters for a given hyperelastic model

Some fully nonlinear models do not describe hydrogels by deriving an energy density
function as discussed in the preceding appendix, but instead in a poroelastic framework
with an effective stress o (©) arising from finite-strain elasticity. We show in this appendix
that such approaches can be reconciled with our model, provided that deviatoric strains are
small, and provide forms for I7(¢) and 114(¢) in terms of the parameters of the constitutive
relation chosen.

There are a number of different models used to describe large-deformation elastic
materials (Marckmann & Verron 2006), but for the sake of comparison we consider the
specific example of Hencky elasticity discussed by MacMinn et al. (2016). In this model,
the effective stress (of the matrix) is

0@ = A(¢/¢o) tr(H) I+ (M — A)(@/po) H where H=LIn(FFT).  (B1)

This is a commonly used constitutive model for finite-strain elasticity and plasticity which
reduces to linear elasticity in the limit of small deformations, with the material parameters
M =k + (4/3)n and A =k — (2/3)u in this limit, where « is the elastic bulk modulus
of the matrix and p the familiar shear modulus. Using the expression for F in (2.6) and
working to leading order in the small deviatoric strains, it is found that

1 -1/3
H=——M<£>I+(£> . B2)
3 \¢o $o
where (2.11) gives € in terms of f and we are working in three dimensions, n = 3.
Therefore,
2/3
6@ = %1 (£> I+2u (ﬂ) €. (B3)
¢ \¢o o)
This leads to the form
o = —(p+ @)1 +2u1(d)e, (B4)
as in (3.9), where
2/3
n@)=xf4n(f) and m@0=u(f) . (B5ab)
(o) %o o

Note that IT = 0 and g = p at ¢ = ¢o, with both IT and p increasing as ¢ increases, as
would be expected.

Appendix C. Scaling arguments for neglecting viscous stress contributions

It is common in gel-swelling poroelastic models to neglect viscous contributions to
the overall stress on the material (Doi 2009; Hewitt er al. 2016; Punter et al. 2020).
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For example, if we assume a Newtonian rheology for the water in the interstices of the
porous gel, the viscous term in o V) is equal to 2j1;e, with € the rate-of-strain tensor, which
scales like €/t*, for t* a timescale for deformation. Hence,

viscous i

~ (ChH

(shear) elastic  jugt*’

Li et al. (2012) quote values for s, in the range of 10* Pa for soft hydrogels, whilst
the dynamic viscosity of water is 1073 Pa s. Therefore, we expect viscous stresses to
be dominated by elastic stresses over all timescales * > 1077 s, so for all reasonable
timescales that we may wish to model. Note that this does not amount to neglecting
all viscous contributions: there is a viscous stress exerted by the interstitial fluid on the
polymer matrix, which is accounted for by the permeability in Darcy’s equation, it merely
amounts to neglecting viscous dissipation within the fluid phase alone.

Appendix D. Numerical solutions on a changing domain

Many of the transient solutions considered in these uniaxial swelling or drying examples
are analogous to that of the rheometer experiment of § 5, and are amenable to numerical
solutions using the same general approach. All such cases, be it the rheometer experiment
or a swelling sphere, involve a nonlinear diffusion equation for polymer fraction with a
Neumann boundary condition at one end of the domain and a Dirichlet boundary condition
at the other. The extent of the domain is set by an integral constraint arising from polymer
conservation.

For simplicity, consider the linearised non-dimensional problem summarised in (5.11).
This diffusion equation is solved over the domain 0 < X < A(T) with a Dirichlet boundary
condition on @ at X = A(T) and a Neumann condition at X = 0. We introduce the
transformed spatial variable Y = X/A(T) such that the problem is solved on a fixed spatial
domain Y € [0, 1] and (5.11) becomes

® YAdD 1 2p

T At e Y
where A = dA/dT. This can then be solved using a standard Euler scheme, for example,
with the value of A updated at each timestep using the equation

A gy 1t MR )

oT Onr1 A Y |y
and boundary conditions applied at ¥ =0 and Y = 1. In our calculations, we used a
Neumann condition 0®/9Y = 0 at Y = 0 and a Dirichlet condition setting @ = ¢,,1/¢»,
at ¥ =1, and solved the equation with a forward Euler scheme written explicitly in
MATLAB.
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