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CONVEX SETS 

H. GROEMER 

Let K be a three-dimensional convex body. I t has been conjectured (cf. 3) 
that one can always find a plane H such that the intersection K C\ H is, in a 
certain sense, fairly circular. Instead of the plane section K C\ H one can also 
consider the orthogonal projection of K onto H. Our aim in this paper is to 
prove some results concerning this type of problems. It appears that John has 
found similar theorems (cf. the remarks of Behrend, 1, p. 717). His proof of the 
first inequality of our Theorem 1 has been published (6). It is based on a 
property of the ellipse of inertia which will not be used in the present paper. 

A non-empty compact convex set 5 which is contained in some plane of 
euclidean three-dimensional space Ez will be called a convex domain. Since 5 
can be considered as a subset of a two-dimensional space we can define the 
radius R(S) of the (smallest) circumscribed circle, the radius r(S) of a 
(largest) inscribed circle, the diameter D (S) (maximal width) and the thickness 
d(S) (minimal width) of S. As a measure for the circular deviation of 5 we 
use the quotient 

(1) P(S) - ±&-

which attains its maximum 1 if and only if 5 is a circle. The quotient 

(2) B(S) = H 

will also be used, but it is actually a measure for the deviation of S from a 
domain of constant width, since 6(5) ^ 1 for any 5 and d(S) = 1 characterizes 
domains of constant width. A single point is considered to be a circle; in this 
case we define p(5) = ô(S) = 1. Of course, many expressions similar to (1) 
and (2) which may also involve the area and the perimeter of 5 could be used. 
For some of these expressions, our method, together with known estimates of 
Behrend (1; 2), could be used to prove results similar to the inequalities for 
p(5) and ô(S) which are stated in the following theorem. 

We write M * H for the orthogonal projection of a subset M of E3 onto a 
plane H. 

Received May 31, 1968 and in revised form, September 5, 1968. This research was supported 
by National Science Foundation Research Grant GP-6531. 

1331 

https://doi.org/10.4153/CJM-1969-146-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-146-9


1332 H. GROEMER 

THEOREM 1. Let K be a non-empty compact convex subset of E3. There are 
planes G\, G2 with projections K * Gi, K * G2 such that 

(3) P ( # * G I ) ^ 1/2, 

(4) ô(K*G2) ^ 1/V2. 

If p is an interior point of K, there are planes Hi, H2 which contain p and have 
the property that 

(5) p C K n t f x ) è 1/2, 

(6) ô(Kr\H2) è 1/V2. 

For each one of the inequalities (3), (4), (5), (6) there are three-dimensional 
compact convex sets K such that the equality sign is necessary. 

The assumption that p is an interior point of K, and hence, that K has 
non-empty interior is easily seen to be essential for the validity of (5) and (6). 

UK has the point p as centre, the projections and sections of Theorem 1 are 
also centrally symmetric. Since for any centrally symmetric domain T one 
has obviously D(T) = 2R(T), d(T) = 2r(T), and therefore p(T) = 6(T), it 
follows from (4) that (3) can be replaced by 

(7) p(K*G2) ^ 1/V2 

and from (6), if p is an interior point of K, that (5) can be replaced by 

(8) p(KC\H2) ^ 1/V2. 

The examples which will be given to prove that (4) and (6) are best possible 
show also that (7) and (8) are best possible for the class of compact convex 
sets with an interior point as centre. 

The second theorem which will be proved shows that the only properties 
of the sections and projections of K which are essential for the existence of 
the planes of Theorem 1 are the convexity and the continuous dependence of 
these domains on the planes which contain them. 

We denote by Hp the class of all planes which contain a given point p. Let 
us assume that each H of Hp contains a convex domain C(H). We say that 
C(H) depends continuously on H if the convergence of a sequence {Hi} of 
planes Ht Ç Hp to some H in Hp implies the convergence of {C(Hi)} to C(H). 
Convergence of a sequence {Xt} of compact convex sets toX, denoted by Xt—>X, 
means convergence of n(Xu X) to 0, where JJL is the Hausdorff-Blaschke metric 
for compact convex sets of £ 3 . (fi(X, Y) is defined as the greatest lower bound 
of the set of all numbers x with the property that X Q Y + xS, Y CZ X + xS. 
S is the unit ball in £3 .) Convergence of a sequence {L*} of straight lines 
which pass through a given point p means convergence of the corresponding 
pair of points on the unit sphere with p as centre. Convergence of a sequence 
of planes H{ Ç Hp is defined as convergence of the sequence of lines which 
are orthogonal to Ht and contain p. 
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THEOREM 2. Let Hp be the class of all planes which contain a given point p and 
assume that each plane H of Hp contains a convex domain C{H) which depends 
continuously on H. Then, there are planes Hi, H2 in Hp such that 

(9) p(C(ffi)) ê 1/2, 

(10) Ô{C(H2)) è 1/V2. 

The constants 1/2 and 1/V2 in (9) and (10) are best possible. 

As in Theorem 1, the functionals p and 5 are defined by (1) and (2). Again, 
if all the domains C(H) are centrally symmetric, (9) can be replaced by 
P(C(H2)) 2= 1/V2._ 

Since Theorem 1 is a simple consequence of Theorem 2, we present first the 
proof of Theorem 2. For this purpose we need the following three lemmas. 
The essential part of our first lemma states that the major axis of an ellipse L, 
i.e. the line segment in L of length D(L), depends continuously on L, pro
vided that L is not a circle. By an ellipse we mean an affine image of a closed 
circular disc in E3. This includes the case where the ellipse degenerates to a 
line segment or a point. Note that here, as well as in Lemma 3, the ellipses 
may be contained in different planes of E3; this causes a considerable com
plication of the corresponding proofs. 

LEMMA 1. Let {Lt} be a sequence of ellipses which converges to a convex domain 
L. Then L is an ellipse and if none of the ellipses Lu L is a circle, the sequence of 
the major axis of Lt converges to the major axis of L. 

Proof. If \Çi) is a sequence of affine transformations of E3, we say that 
{fij is bounded or that {Çf} converges if for any system of basis vectors 
b\, b2, bz of E3 the sequences {Çibi), { f ^ } , {^63} are bounded or converge, 
respectively. Now, let U be a fixed unit circle (closed circular unit disc) in E3, 
To every Lt one can find an affine transformation X* such that Lt = \i(U). 
Since L is bounded, {Li} is bounded. I t follows that {A*} can be assumed to 
be bounded. Then {A*} has a subsequence {\ik} which converges to some 
affine transformation A and Lik = \ik(U) converges to A(£7). Because of 
Lik-^ L we get L = \(U) which proves that L is an ellipse. Let us denote 
by At and A the major axes of Lt and L, respectively. If {̂ 4̂ } does not con
verge to A, one can find (by Blaschke's selection theorem) a subsequence 
{Aim} of At which converges to some line segment A' in L, but not to A. 
Because of the continuity of the diameter D(X) as a function of a compact 
set X, one has 

D(A') = lim D(Atm) = lim D{Lim) = D(L), 
m->co m->co 

and therefore D(Af) = D(A). This shows that A' — A because the ellipse L 
contains only one line segment of maximal length since it is not a circle. 
Hence, we have Ai—^A, which completes the proof of Lemma 1. 

https://doi.org/10.4153/CJM-1969-146-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-146-9


1334 H. GROEMER 

For proofs of the next lemma we refer to Behrend (1 ; 2) ; Danzer, Laugwitz, 
and Lenz (4); Leichtweiss (8); and Zaguskin (9). 

LEMMA 2. Let F be a convex domain contained in some plane H of Ez. There 
is a unique ellipse L(F) in H which contains F and has least possible area (and 
minimal diameter if F has dimension 0 or 1). Let us denote by Lf (F) and L*(F) 
the ellipses which are obtained from L(F) by shrinking L(F) with respect to its 
centre in the ratio 1/2 and 1/V2, respectively. Then L'(F) C F and, if F is 
centrally symmetric, we have L*(F) C F. 

L(F) will be called the minimal ellipse of F. If L is an ellipse, but not a 
circle, we denote by I(L) the straight line which contains the major axis of L. 
Recall that a single point is considered to be a circle. Instead of I(L(F)) we 
write simply 1(F). Our third lemma states that 1(F) depends continuously 
on F. I t is worth mentioning that the minimal ellipse L(F) does not, in general, 
depend continuously on F. 

LEMMA 3. Let {Fn\ be a sequence of convex domains in Ez with Fn —» F. 
Assume that all the ellipses L(Fn), L(F) are different from a circle, but have a 
common centre. Then I(Fn) —* 1(F). 

Proof. F is either a line segment or two-dimensional. Let us first assume 
that F is a line segment. If {I(Fn)} does not converge to 1(F) one can find 
(by Blaschke's selection theorem and Lemma 1) a subsequence {Fni} of {Fn} 
such that there are a line segment 70 and an ellipse L0 with I(Fni) —•> I0, 
L(Fni) —>L0 and 

(11) h * 1(F). 

Since F is a line segment, one has for the area a(F) of F that a(F) = 0 and 
therefore l im^œ a(Fni) = 0. Using the notation of Lemma 2 this implies 
that l im^^ a(L'(Fni)) = 0. Because of Lemma 2 we can deduce that 
a(L0) = l im^ œ a(L(Fni)) = 0. Hence, L0 is also a line segment and L0 

contains F since L(Fni) —> L0 and Fni C L(Fni). I t follows that I(L0) = 1(F) 
and together with Lemma 1 we obtain I0 = I(L0) = 1(F). This shows that 
(11) is not possible and I(Fn) —> 1(F) must hold. 

Let us now assume that F is a two-dimensional convex domain. Because of 
Lemma 1 it is certainly sufficient to prove that in this case L(F) depends 
continuously on F. We prove first the following statement: 

If {Ai} is a sequence of convex domains which converges to some A and if {a^ 
is a sequence of affine transformations which converges to the identity transforma
tion, we have a^Ai—^- A. 

Since ^(atAi, A) ^ n(<JiAu <JiA) + n(<TiA,A) and obviously 

l i m ^ ^ A t ^ ^ , ^ ) = 0, 

it is sufficient to show that l im^ œ ju(cr^z-, <rtA) = 0. This is easy to see since 
for any e > 0 and sufficiently large indices i, A t C A + eS implies 

*iAi C *iA + at(eS) C ( M + 2eS, 
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and A C. At + eS implies cr̂ 4 C <*iAi + er^eS) C o'iAi + 2eS, so that 
/x(<7tAi} atA) < 2e if jit(̂ 4, At) < e. Recall that /x denotes the Hausdorff-
Blaschke metric and S the closed unit ball in E3. 

Now, if Fn-+ F and {L(Fn)\ does not converge to L(F), one can find (by 
Blaschke's selection theorem) a subsequence {Fni\ of {Fn) such that 
L(Fni) —> L0, where (by Lemma 1) L0 is an ellipse and 

(12) U * L(F). 

L0 is two-dimensional since a(F) > 0 implies, certainly, that a(L0) > 0. 
Since the application of a non-singular fixed affine transformation to F and 
every Fn does not change the problem of proving L(Fn) —>L(F), we may 
assume that L(F) is a unit circle. To any Fni one can obviously find an affine 
transformation rt such that L(Fni) = T^LO, where {T*}, and therefore also 
{r*"1}, converges to the identity transformation. If we write A t = Tt~

lFni, 
we have 

(13) L(Ai) = Lo 

and, by the above remarks about A u 

(14) Ai^F. 

From (13) one obtains A t C L0 and therefore F C L0 which shows that 

(15) a(L(F)) ^ a ( L o ) . 

Consider the plane which contains L0; because of (13) it contains also every A t. 
Denote by U the unit circle of this plane. (14) shows that for any e > 0 and 
all sufficiently large indices i, A t C F + e U, and therefore 

Lo = L(Ai) CL(F+ eU) = L(F) + eU 

(recall that L(F) is a circle). This is only possible if 

(16) LoCL(F). 

(15) and (16) clearly imply L0 = L(F), in contradiction to (12). Hence, from 
Fn—+ F follows L(Fn) —> L(F) and this, as we already remarked, completes 
the proof of the lemma. 

Proof of Theorem 2. If X is a subset of E3, we denote by X+ the set obtained 
by central symmetrization of X, i.e. the set of all points of the form | ( x — y) 
with x G X, y G X. X+ has the origin 0 of Ez as a centre. If X has already a 
centre q, the effect of central symmetrization is a translation of X which 
moves q into 0. Since for the class of compact convex sets Minkowski addition 
and reflection in 0 are obviously continuous set transformations, X+ depends 
continuously on X. 

Without any loss of generality we can always assume that HP = H 0 . 
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Let us now make the assumption that none of the ellipses L(C(H)) = L(H) 
is a circle. Then we can associate with each L(H) the line 1(H) = I((L(H))+) 
of Lemma 3. Because of the continuity assumptions of Theorem 2 we get 
from Lemma 3 that 1(H) depends continuously on H. To each line / through 0 
corresponds the plane H through 0 which is orthogonal to J. With H we can 
associate 1(H) which is a line in H that contains 0. This way we obtain a 
continuous mapping of the set of lines through 0 into itself, or, expressed 
differently, of the projective plane into itself. Such a mapping is known to 
have a fixed point (see, e.g., Fenchel (5) for an elementary proof). How
ever, our mapping cannot have a fixed point since the line / and its image 
/ are orthogonal to each other. This shows that the assumption that no L(H) 
is a circle leads to a contradiction. Hence, there is an Hi £ H 0 such that the 
minimal ellipse L(Hi) of C(H\) is a circle. Because of Lemma 2 we have 

L'^H,)) CC(HX) CL(iJi) 

and this yields immediately (9). 
If we use the same method of proof for the centrally symmetric domains 

(C(H))+ = C+(H) instead of C(H) we obtain the existence of a plane H2 G H 0 

with the property that L(H2) is a circle and 

L*(C(H2)) C C+(H2) C L(H2). 

This, together with the definition of L*, shows that 

(17) r(C+(H2)) è (1/V2)R(C+(H2)). 

From the symmetry of C+(H2) follows 

(18) r(C+(H2)) = ±d(C+(H2)) = ^d(C(H2)), 

(19) R(C+(H2)) = ±D(C+(H2)) = %D(C(H2)). 

(17), (18), and (19) show that (10) holds. 
That (9) and (10) are best possible follows from the examples which are 

presented in connection with the proof of Theorem 1. 

Proof of Theorem 1. I t is well known and easy to prove that under the 
assumptions of Theorem 1, K * H and K C\ H depend continuously on H. 
This remark shows that the inequalities (3), (4), (5), and (6) are an immediate 
consequence of Theorem 2 if we put C(H) = K * H and C(H) = K C\ H, 
respectively. 

I t remains to be shown that the constants 1/2 and 1/V2 in Theorem 1 are 
best possible. Let T be a pyramid of height e with a regular triangle of side-
length 1 as base and the other three sides of equal length. If € is sufficiently 
small, the projections of T are either triangles or quadrangles Q with 
p(Q) = r(Q)/R(Q) < 1/2. This proves that (3) is best possible. Using instead 
of T a right pyramid with a square base and of height e, one sees easily that 
(4) is best possible if e is small enough. T+ has the same property and is 
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centrally symmetric. To construct an example which shows that (5) cannot be 
improved, denote by Z a right cylinder of height 1 and as base a regular 
triangle of side-length e. Let p be the centroid of Z. The intersection / of Z 
with a plane through p is either a triangle or a polygon with p(7) < 1/2 if e is 
small enough. Taking instead of Z a cylinder with a small square base we find 
that (6) is best possible. 
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