
P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

Oskar Kellner Symposium 2011 organised by the Leibniz Institute for Farm Animal Biology jointly with the Nutrition Society

was held at Hotel Neptun, Warnemünde, Germany on 9–11 September 2011

Symposium on ‘Metabolic flexibility in animal and human nutrition’
Session I: Early nutrition programming, life performance

and cognitive function

Adipose tissue development during early life: novel insights into
energy balance from small and large mammals

Michael E. Symonds*, Mark Pope and Helen Budge
The Early Life Nutrition Research Unit, Academic Child Health, School of Clinical Sciences,

University Hospital, Nottingham NG7 2UH, UK

Since the rediscovery of brown adipose tissue (BAT) in adult human subjects in 2007, there has
been a dramatic resurgence in research interest in its role in heat production and energy balance.
This has coincided with a reassessment of the origins of BAT and the suggestion that brown
preadipocytes could share a common lineage with skeletal myoblasts. In precocial newborns, such
as sheep, the onset of non-shivering thermogenesis through activation of the BAT-specific
uncoupling protein 1 (UCP1) is essential for effective adaptation to the cold exposure of the extra-
uterine environment. This is mediated by a combination of endocrine adaptations which accom-
pany normal parturition at birth and further endocrine stimulation from the mother’s milk. Three
distinct adipose depots have been identified in all species studied to date. These contain either
primarily white, primarily brown or a mix of brown and white adipocytes. The latter tissue type is
present, at least, in the fetus and, thereafter, appears to take on the characteristics of white adipose
tissue during postnatal development. It is becoming apparent that a range of organ-specific
mechanisms can promote UCP1 expression. They include the liver, heart and skeletal muscle, and
involve unique endocrine systems that are stimulated by cold exposure and/or exercise. These
multiple pathways that promote BAT function vary with age and between species that may
determine the potential to be manipulated in early life. Such interventions could modify, or
reverse, the normal ontogenic pathway by which BAT disappears after birth, thereby facilitating
BAT thermogenesis through the life cycle.

Adipose tissue: Development: Feeding: Prolactin: Thermoregulation

Following the ‘rediscovery’ of brown adipose tissue (BAT)
in 2007(1) there has been a substantial amount of innovative
research into the assessment of both its function and regula-
tion(2). This work has largely been undertaken in human
adults with little consideration of its developmental
aspects(3). The majority of animal studies have utilised
rodent models as these have the advantages of offering gene
deletion approaches, have a short duration and can be con-
strained within a closely controlled and confined environ-
ment(4). However, as will be considered in more detail

later, there are fundamental differences in early life devel-
opment between small (i.e. rodents) and large (i.e. sheep)
mammals, which could have a pronounced impact on our
understanding of BAT function throughout the life cycle.

In adult human subjects, BAT is primarily sited in the
supraclavicular regions where it is present across a wide
range of ages(5–7). This is not unexpected given that this
is one of the main sites of BAT originally identified(8)

and more recently confirmed(9) in infants. The initiation of
non-shivering thermogenesis in both human subjects and
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large mammals, such as sheep, is one critical factor in
determining metabolic adaptation to the cold challenge of
the extra-uterine environment(10).
The substantial potential of BAT to contribute to energy

balance is not limited to the period immediately after birth
because its maximal rate of heat production through the
life cycle is in the order of 300W/kg compared with
1W/kg in all other tissues(11,12). In the 1980s it was cal-
culated that in adult human subjects, only 40–50 g of BAT
would be required for it to be able to contribute 20% of
daily energy expenditure(13,14), an estimation that has now
been confirmed(15). Surprisingly, despite the important role
of the early life nutritional environment on adipose tissue
development, especially in large mammals such as sheep,
there has been only a limited amount of research into its
impact on BAT(3). However, in rodents, at least, there have
now been three specific sub-types of adipose tissue identi-
fied:

(1) ‘Classical’ BAT located within the interscapular
region that possesses large amounts of the BAT-
specific uncoupling protein 1 (UCP1)(16) and arises
from a mfy5, muscle-like cell lineage(17).

(2) White adipose tissue located in a large number of
different locations throughout the body.

(3) Brown adipose in white tissue depots that are not
derived from a myf5-positive lineage(18).

The extent to which comparable classifications can be
made for adipose tissue development in large mammals
remains to be established but, as this review will go on to
highlight, it is likely that a different relationship could be
present. Extensive studies are now required to explore the
complexity of the multiple pathways involved in BAT
regulation, and the differential effects of short- and long-
term challenges. These will need to be undertaken across a
range of different species in order to realise transferable
interventions designed to promote BAT function and, thus,
prevent excess body fat accumulation. At present, how-
ever, the majority of rodent studies have investigated the
effects of a ‘high-fat’ dietary challenge(4) conducted in a
thermoneutral environment resulting in variable outcomes
within BAT(19).

Metabolic adaptation to the extra-uterine environment

BAT is maximally recruited at birth when the rapid
appearance of UCP1 initiates non-shivering thermogen-
esis(20). It coincides with maximal heat production which is
rarely matched again at any other stage of life. This pro-
cess is highly dependent on the degree of maturation at
birth and, in altricial species such as the rat, this maturation
is delayed until around 7 d after birth when the hypotha-
lamic–pituitary axis becomes fully functional(21). If this
maturation process is inhibited, hypothermia and death
rapidly result, although in some genetic manipulations of
imprinted genes, there are still a small number of survi-
vors(22). Interestingly, surviving offspring that were gen-
erated to lack the imprinted delta-like homologue 1/
preadipocyte factor, and iodothyronine deiodinase type 3,
fail to adapt effectively to the change in diet at weaning
and were subsequently unable to maintain UCP1 longer

than 11 d after birth. The extent to which a comparable
developmental window is apparent in precocial mammals
remains to be demonstrated.

Differences in BAT development are mediated, in part, by
changes in thyroid function that has been established in
both small(23) and large(24) mammals to be critical for the
onset of BAT thermogenesis. Thus, the latter is influenced
by the ability of triiodothyronine to serve as a bipotential
mediator of mitochondrial biogenesis(25). In addition to the
effects of triiodothyronine, the rapid increase in UCP1
around the time of birth in large mammals (as summarised
in Fig. 1) is also dependent on the rapid appearance of a range
of other endocrine stimulatory factors including cortisol,
prolactin, leptin and catecholamines(26). Their secretion in
the fetus/newborn is dependent on the stress of the normal
birth process which results in intense activation of the
central nervous system(20). The magnitude of response is,
however, dependent on exposure of the offspring to the cool
temperature challenge of the extra-uterine environment(10).
To date, the effect of this stimulus has only been studied in
the perirenal–abdominal depot of the sheep. This depot,
which represents about 80% of all adipose tissue in the
newborn sheep, is characterised by the rapid loss of its UCP1
expression(27) and its subsequent apparent morphological
conversion to white adipose tissue, coincident with a greatly
increased leptin synthetic capacity (Fig. 1).

In rodents, it has been suggested that the conversion
of myf5 myogenic progenitors to brown adipocytes is
regulated by bone morphogenetic protein 7 acting through
PRDM16 (PRD1-BF1-RIZ1 homologous domain contain-
ing 16)(17,31). The optimum marker for brown adipose in
white adipocytes, however, appears to be homeobox C9(30)

and exhibits a similar ontogeny to leptin (Fig. 1). The
extent to which brown adipose in white characteristics can
be manipulated in early life remains to be established;
although, in the adult mouse gene expression for homeo-
box C9 is unaffected by cold exposure(30).

Milk composition and brown adipose tissue
thermogenesis

Feeding also appears to be vital in switching on BAT
function in rodents(32) in which fat composition of milk
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Fig. 1. Summary of the changes in gene expression for markers of

brown (i.e. uncoupling protein 1 (UCP1))(28), white (i.e. leptin)(29)

and brown adipocytes in white (i.e. homeobox C9 (HOXC9)(30)) in

perirenal–abdominal adipose tissue between fetal and postnatal life

(term = 145 d gestation (gd)) in the sheep.
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peaks at birth and then declines up to 1 week after birth(33).
Then even after this stage of lactation, the fat content
remains around three times higher than that of either
sheep(34) or human subjects(35). Protein concentrations are
also elevated in rodents but, while these remain unchanged
through lactation in the rat(33) they fall dramatically over
the first 4 d of lactation in human breast milk(35). This
primarily reflects the very different composition of colos-
trum in human (and sheep) milk(36) compared with that of
rodents and which is necessary for providing immune
protection immediately after birth. Human milk is also
characterised as having a high cortisol content(37) although
the extent to which this could further promote UCP1
synthesis in the newborn, as demonstrated in the fetus(38),
has yet to be investigated. Therefore, milk composition
between small and large mammals (including human sub-
jects) is very different (as summarised in Table 1). The
impact of alterations in milk composition resulting from
pre or postnatal changes in maternal diet within species has
been largely overlooked.
Human milk also has a high prolactin(42) content which

is implicated in promoting BAT development and ensuring
BAT thermogenesis is maintained through postnatal
development(43). This could result in enhanced BAT
activity during later life, preventing excess adipose tissue
deposition around central organs and increasing BAT sen-
sitivity to thermogenic challenges. At the same time,
diurnal variation in prolactin uptake within the human
breast(42) may further regulate BAT function in the infant.
Prolactin is known to have a rapid thermogenic effect in
neonatal sheep(44), at least when administered intrave-
nously, but whether this response is present when prolactin
is ingested enterally or is modulated between BAT depots
has yet to be examined. It appears that not only is prolactin
an important potential regulator of UCP1 in the perinatal
period(7), newly identified depots of BAT in the sternal and
clavicular regions of juvenile sheep(3) may be highly sen-
sitive to prolactin as gene expression for UCP1 across
these depots is highly positively correlated with that for
the long form of the prolactin receptor (PRLR) (r2 0.95;
P<0.01).
There is also increasing evidence of differences in

feeding behaviour(45), preferences(46) and growth trajec-
tory(47) between breast and bottle-fed infants. It is, there-
fore, possible that the absence of BAT activating endocrine
factors within formula milk differentially resets energy
regulation between breast- and formula-fed infants.

One factor that has restricted our ability to assess BAT
thermogenesis in larger cohorts of human subjects has been
the limitations of methods available to assess BAT activ-
ity: positron emission tomography with F-18 fluorodeox-
yglucose; single photon emission tomography scanning
with tracers such as I-123-meta-iodobenzylguanidine or
Tc-99m-tetrofosmin; and tissue biopsy(48–50). These inva-
sive techniques have substantial disadvantages relating to
the administration of comparatively large amounts of
radiopharmaceuticals to healthy individuals, the use of
single substrates to identify uptake into BAT, together
with the static information they reveal and their relatively
high costs. We have now developed the use of thermal
imaging as a rapid, safe, and acceptable technique for use
in human subjects, confirming previous findings in both
rodents(51) and human subjects(52) of the rapidity with
which BAT thermogenesis is initiated and showing that
there is a pronounced reduction in activity of BAT with
age(53).

Using thermal imaging(53), we are now investigating the
potential thermogenic effects of individual food ingre-
dients. This has demonstrated a significant thermogenic
effect of drinking milk in young children (Fig. 2), which
results in up to 0.7�C rise in BAT temperature, thus indi-
cating a role in dietary-induced thermogenesis. It is likely
that the macronutrient composition determines the magni-
tude of response(54) that has been shown in adults to be
promoted by protein and reduced by fat(55).

The prolactin receptor and brown adipose
tissue development

PRLR are one potential mediator by which the maternal
nutritional environment can alter adipose tissue composi-
tion. PRLR are highly expressed in fetal adipose tissue(56)

where they are more responsive to external challenges
than in the fetal liver(57), for example. The increased amount
of fetal BAT deposited when maternal food intake is raised
is accompanied by an increased PRLR abundance(58),
whereas sub-optimal maternal food intake has the opposite
effect(56). In adults, it is known that the plasma concentration
of prolactin is inversely related to the abundance of its
receptor(59) and could be important in explaining seasonal
differences in BAT function in adult human subjects(60). To
date, studies on the direct effects of prolactin on fetal adipose
tissue have not been undertaken. This results, in part, from
the potential confounding influence of placental lactogen
on adipose tissue development as, potentially, it can also
bind to the PRLR. The relative binding of placental lactogen,
as compared to prolactin, to the PRLR varies markedly
between tissues and a 100–1000 times greater molar con-
centration of placental lactogen is required to achieve the
same binding as prolactin in both the liver and ovary(61). In
contrast, in fibroblasts, placental lactogen binding to the
PRLR is 250-fold greater than that of prolactin(62). To date,
comparable studies have not been undertaken in adipocytes;
although it is notable that placental lactogen only has a
very limited lipolytic effect(63,64) suggesting a low affinity of
placental lactogen for the PRLR in adipose tissue. Moreover,
in the newborn sheep, direct stimulation of the PRLR

Table 1. Comparison of the milk composition between the rat,

sheep and human subjects

Macronutrient

(g/100ml)

Stage of

lactation

Species

Rat Sheep Human

Fat Early 18.0(33) 9.5(39) 2.3(40)

Late 10.0(33) 6.0(34) 3.8(41)

Protein Early 6.5(33) 10.8(39) 5.8(35)

Late 8.3(33) 5.4(34) 1.9(35)

Lactose Early 2.7(33) 3.0(39) 2.0(35)

Late 3.7(33) 5.1(34) 5.0(35)
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promotes BAT thermogenesis(44). These results have been
confirmed in a mouse PRLR knockout model which
demonstrated that BAT growth and development were
severely impaired, as was the expression of a number of
brown adipogenic genes including UCP1(65).

Given the important role prolactin has in establishing
and maintaining pregnancy, it is perhaps surprising that its
exact role in fetal development is still uncertain(66). In
sheep, although maternal plasma prolactin is decreased
100-fold by short day length and offspring circulating

BA

C D

Fig. 2. (Colour online) Comparison of the change in temperature of brown adipose tissue located within the supraclavicular region of an

8-year-old child in the fed state before (A) and after (B) placing one hand in cold water for 5 min (A, B) or before (C) and after (D) drinking

100ml warm (about 70�C) semi-skimmed milk (adapted from Symonds et al.(53)). Each challenge was accompanied with a mean increase in

temperature of the supraclavicular region of about 0.7�C.

Birth
Squeezing through the birth canal 

during delivery causes intense 
stimulation of the HPA axis 
→ ↑ Prolactin and cortisol

Cold exposure 
↑ Thyroid hormones and 

sympathetic nervous 
activity

↑  Hepatic function
↑ Fibroblast Growth Factor 21

Milk intake
↑ Prolactin and cortisol

↑  Muscular activity
↑ Irisin

↑  Cardiac function
↑ Ventricular naturetic peptide

Fig. 3. Summary of the primary factors that can activate non-shivering thermogenesis in brown adipose

tissue of the neonatal sheep. HPA, hypothalamic–pituitary–adrenal; ›, increase.
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prolactin and progesterone concentrations also decrease,
there are few obvious consequences for pregnancy, birth
weight or postnatal growth(67).
PRLR are also expressed in white adipose tissue and

have been implicated in the regulation of adult fat mass.
Two recent genome-wide association studies have identi-
fied a variant, rs4712652, adjacent to the prolactin gene
that is associated with excess body weight(68,69). Further-
more, as may be expected for a gene that is closely
involved in reproductive function, this relationship is gen-
der specific with the risk A allele of rs4712652 strongly
correlated with BMI and fat mass in males but not
females(69). Previous clinical studies have demonstrated
that correction of hyperprolactinaemia in human subjects
improves body weight; although it has a much greater
effect on reducing body weight in males compared
to females. However, obese females with a normal pro-
lactin profile, have a short-term body weight reduction,
associated with a lowering in prolactin following admin-
istration of the dopamine D2 receptor agonist bromo-
criptine(70). Clearly, further studies are needed to explore
this relationship further especially from a developmental
perspective.

External factors stimulating brown adipose tissue
thermogenesis

There is now increasing evidence in rodents that a number
of other tissues and endocrine factors can promote BAT
function in rodents. One important example is the liver as,
in rats, the postnatal maturation of BAT has been shown to
relate to the onset of feeding and initiation of hepatic
function, mediated by the release of fibroblast growth fac-
tor 21, which can also promote BAT function(71). This
factor has also been shown to have a physiological role in
adipose tissue of adult mice in which gene expression
within adipose tissue is raised by chronic cold exposure,
whereas it is depressed in the liver(72). Fibroblast growth
factor 21 also appears to promote the ‘browning’ of some
white adipose tissue depots where it acts in an autocrine/
paracrine manner to enhance the abundance of the nuclear
receptor coactivator PPARa 1a. It may, however, have
only a modest role in energy balance as deletion of the
fibroblast growth factor 21 gene does not impair BAT gene
expression and the normal diurnal variation in body tem-
perature is maintained with cold exposure. This is accom-
panied by a small (but non-significant) reduction in
temperature which may be linked to increased recruitment
of shivering thermogenesis. However, as fibroblast growth
factor 21 can have widespread metabolic effects and
results in skeletal fragility(73), it is unlikely to have
immediate therapeutic potential.
An important link between muscle and BAT develop-

ment has been highlighted from studies focused on the
heart(74) and skeletal muscle(75). The heart, acting
through cardiac natriuretic peptides, can regulate BAT
thermogenesis in adult mice(76). This response appears to
be mediated by ventricular, or cardiac B-type, natriuretic
peptide, which promotes UCP1 expression; although this
effect is potentially greater in inguinal white fat, compared

to interscapular BAT. Given the relatively high expression
of UCP1 in both human(77), ovine(3) and mouse(30) epi-
cardial fat, it will interesting to see whether this, and other
depots, respond in a similar manner(78).

Skeletal muscle also has a potential role in regulating
BAT function. Exercise in adult mice and human subjects
results in increased secretion of a new hormone, irisin,
which promotes energy expenditure in mice(75). Irisin is a
membrane protein that is cleaved from FNDC5 (fibronectin
type III domain containing 5) and promotes the expression
of UCP1 in white adipose tissue, but not BAT. The mag-
nitude of response differs across white fat depots in mice
and is greatest within inguinal fat. This study also
demonstrated some fascinating differences in the gene
response of muscle to exercise between mice and human
subjects with leucine-rich a-2-glycoprotein, a novel
member of GTPase-activating proteins(79), showing the
greatest response in human subjects, but being unrespon-
sive to exercise in mice(75). Intriguingly, leucine-rich a-2-
glycoprotein has previously been linked to cell growth and
cancer(80,81) and animal studies have shown cancer per se
can promote BAT function(82).

Birth could be considered to represent a period of rapid
muscular activity and is associated with a dramatic rise in
muscle oxygenation(83). In precocial mammals such as
sheep, birth is also accompanied by an increase in volun-
tary muscular activity, and with the onset of shivering
thermogenesis which is, in turn, dependent both on BAT
function(84) and on the magnitude of thermal challenge(85).
The process of adaptation at birth may, therefore, provide
further insights into the cross-talk between different mus-
cle and fat depots, together with their ability of other
organs to promote BAT function in early life as sum-
marised in Fig. 3.

In conclusion, multiple pathways can be recruited to
promote BAT function. These may also promote the
‘browning’ of white adipose tissue and, thus, reverse the
normal ontogenic pathway by which BAT disappears from
some depots after birth. An increased understanding of
these interactions and especially the role of feeding in
further activating BAT in the postnatal period could result
in novel interventions aimed at enhancing BAT thermo-
genesis throughout the life cycle.
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