
ONE-VALUED MAPPINGS OF GROUPS INTO FIELDS

KATSUHIKO MASUDA

The aim of this article is to investigate algebraic nature of systems of one-

valued mappings of given group into given field and to apply it to the theory

of Galois algebras and duality of compact TVgroups. The results obtained in

the following are those ,* factor systems of Galois algebras with finite Galois

groups are defined without any restrictions on the orders of Galois groups and

the coefficient fields, a necessary and sufficient condition for them to be as-

sociated with Galois fields is obtained, dualities of finite groups are obtained

very simply without any restrictions for coefficient field of representations, and

Tannaka's duality1* of compact TVgroups is proved without the use of the com-

pactness of Tannaka representation groups2> of representations of compact T -

groups and the use of Kampen's theorem.'3)

§ 1. One-valued mappings of a group into a field.

1. Let G be an arbitrary, not necessarily finite, group, Ω be an arbitrary

field. Let © denote the group ring G(Ω) of G over Ω, and W denote the ©-

module which consists of all one-valued mappings of G in i?, having the addition

and the operation of G defined by:

(1) f(σ)+g(σ)=f+g(σ), Γ(σ) =f(στ)

for /, g EΞ W and σ, τ Eί G. If we define a distributive multiplication in 'JJi to

make it an algebra, not necessarily associative, over Ω and if the operation

of G defined above for 30ΐ gives automorphisms of the thus obtained algebra, we

call it a Galois algebra over Ω with Galois group G. We call an algebra K, not

necessarily associative, over Ω with G as operator domain also Galois algebra

over Ω with Galois group G, if and only if there exists at least a G-permiεsible

ring-isomorphic mapping on K from one of Galois algebras obtained from 9JΪ.

When G is finite, this definition is clearly equivalent with T. Nakayama's.1
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42 KATSUHIKO MASUDA

We denote different Galois algebras obtained from the same 9ft with different

multiplications by different symbols. The ordinary multiplication as functions,

defined by

(2) Aσ)g(σ) =fg(σ)

i a EΞ GO, satisfies clearly the above conditions, and makes 9Jΐ a certain

Galois algebra. We denote it by 6. Let D be an arbitrary representation of

G by regular matrices in Ω of degree /. D(a) denote the matrix corresponding

to a by the representation D. The //-element of the representing matrix is

naturally a one-valued mapping dij of G in Ω, and we denote by d\j the element

of 3)ί which maps each σE:G to dij{a~ι), by D1 the matrix (dij)ij.

2. As ($ is clearly associative and commutative, we can apply the theory

of determinants to the matrices in (£, and obtain

LEMMA 1. Considered as a matrix in (£ of degree /, Df is regular.

Proof. The determinant \D'\ of the matrix / ) ' is the mapping of G in Ω

which maps each element a of G on the determinant I D{a~ι) I of the regular

matrix Diσ'1) in Ω of degree /, and is clearly a regular element of (£.

From Lemma 1 we obtain easily the following Lemma 2 and its corollary,

which are fundamental in the theory of Galois algebras.

LEMMA 2. Let A be an arbitrary square matrix in Tl of degree /, such that

(3) Λσ = D(σ)A for each J G G .

Then there exists one and only one, not necessarily regular, square matrix C

in Ω of degree /, such that

(4) A = D'C.

Proof. As (5 is as ©-module 9JI itself, v/e can consider A as a matrix in @*.

The assertion follows then easily from Lemma 1.

COROLLARY. Let B be an arbitrary square matrix of degree / in an arbitrary

Galois algebra K over Ω with Galois group G, such that

(δ) B°^D(σ)B for each (JGG.

Then there exists one and only one matrix C in Ω such that

(6) B

where μ denotes an isomorphic mapping on K of a certain Galois algebra ob-

tained from Έί.

3. From now on we suppose always that there exist sufficiently many

representations of G with regular matrices in Ω, that is, for each pair of different
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ONE-VALUED MAΓPINGS OF GROUPS INTO FIELDS 43

elements a, τ of G there exists at least a representation D of G with regular
matrices in Ω such that D(σ) * D(τ). We call a system {Dλ; 7^X} of re-
presentations of G with regular matrices in Ω a basic system of representa-
tions of G in Ω, when for each two representation D,. D., in the system there
exists at least a regular matrix P,~tt,f in Ω of degree /.-/<, such that

(7) Ps Φ for each

where Dχ.(.3,ψ/s are representations of G in the system, and arbitrary two re-
presentations in the system with different suffices are inequivalent.

Now ]et Γ denote a basic system {/)*; ZEίX} of representations of G in
Ω. From Corollary to Lemma 2 follows easily that for each two representations
D^ Dι of Γ there exists one and only one matrix C?.* in i? of degree fj\,
such that

(8)
vvy)

' ? , « V ••

We call the system {C?,α,; f? ψ£ΞX) a factor s.vεtem associated with /<*in re-
ference to Γ. From the existence of such matrices Cv-,,/s in Ω follows that the
module Qκ generated in K over Ω by all the coefficients of matrices D'λ's with
DEΞΓ is a (^-permissible εubalgebra of /f, and from Corollary to Lemma 2
follows that ΦA- is determined uniquely by Γ, independent of the choice of the
isomorphism μ.

§ 2. Galois algebras with finite Galois groups.

4. We suppose throughout § 2 that G is a finite group, accordingly our
Galois algebra K over Ω with Galois group G is of finite rank over Ω9 and that
Γ'= {Dχ ZεX} consists of ail distinct indecomposable constituents of the regular
representation of G over i?.0) Then ©A- coincides with K itself. For, if we
decompose K into a direct sum of indecomposable (5>-submodules? then by the
Corollary to Lemma 2 any basis of such a (S-submodule of K lies in TV and

(9) # = Φχ.

So the multiplication of a Galois algebra ϋί of finite rank is uniquely de-
termined, if a factor system associated with in reference to Γ is given. Now

7}) Cf. M. Osima, Note on the Kronecker product of representations of group, Proc. Acad.
Japan 17 (1941).
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we set to each pair of elements <f, ψ of X arbitrary square matrix C9,Ψ in Ω
of degree Λ/.j.. It is easy to see that the thus constructed system {C?,ψ; f,
ψ&X) is a factor system, if and only if for every matrix Mχ in Ω of degree/"/,
satisfying

(9) Spur(DχMχ)=O

holds

(11) Sρur(D/.(tf) x ^ W " Cχ,ψ MχX£/ψ) =0 for each ^eJY",

each (jGG,

where we denote by £/ψ the unit matrix in Ω of degree / ψ .

5. We can obtain conditions for factor systems to be associated with as-
sociative, commutative, associative and commutative, or associative, commutative
and absolutely semisimple6) Galois algebras and the condition for two factor
systems to be equivalent, that is, to be associated with isomorphic Galois algebras
over Ω with Galois group G, like in H. Hasse's article "Invariante Kennzeichnung
Galoisscher Korper mit vorgegebener Galoisgruppe7)" (quoted as H. I. in the
following). Here we diεcuεs only the condition for commutative and associative
factor systems to be associated with semisimple Galois algebras. We define
"spur" of an element of Galois algebra K of finite rank by

(12) S(ιv) =*Σwa for each wE:K.

Discriminants, constructed with reference to above defined "spur," of a commuta-
tive Galois algebra clearly becomes 0, if it has radical. The converse follows
from the fact that an associative, commutative and semisimple Galois algebra
is a direct sum of separable Galois fields8) and each discriminant of it has dis-
criminants of component separable Galois fields as its components. If a factor
system is given, discriminants defined above can be calculated from

(13)

6 ) An associative, commutative, and semisimple Galois algebra is necessarily absolutely
semisimple cf. H. I.

7 i H. Hasse, J. reine angew. Math. 187 (1950).
^ Cf. 6 ;.
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- P"1

where 1 denotes the unit character of G in Ω.
Though the above considerations lead to most general results, it does not

yet enable us to find independent parameters of the manifold of all factor systems
of G in Ω nor to formulate above conditions explicitly in reference to them.
When absolutely irreducible representations of G are obtained in Ω, T. Naka-
yama's results in his article "On construction and characterization of Galois
algebras with given Galois groups9)?? (quoted as N. O.), obtained in full use of
the theory of modular regular representations, afford a complete answer to it.

6. Let H be a subgroup of G. We say that a factor system {Cφ,*; ψ,
ψE:X) of G in Ω associated with Galois algebra K, defined in reference to the
basic system Γ in Ω by

(14) _ p-1

:iί?» '

Pφ.

has decomposition with reference to H, if and only if the following conditions
are satisfied; there exist a basic system J = {Fη; ^EΞF} of representations of
H in Ω consisting of all distinct indecomposable constituents of the regular
representation of H over Ω and a factor system„{B\t ζ\ ς ,Cε7} of Hin Ω such
that for each representation Dx with Z G l restricted on H holds

(15) DΛτ) = for

where F^(X)'s are representations belonging to Δ and with reference to the so
determined correspondences wC/Ys between X and Y holds

(16) -» ηπ-l

• 9,ψ — I 9, φ

91 T. Nakayama, J. reine angew. Math. 189 (1951).
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where suffices are taken lexicographically, and T<?, * is a transposition matrix

having 0 and 1 as its elements such that

Fτ,{9)(τ) xFr )Ί

( r e jar).

When the order of G is not divisible by the characteristic of Ω and absolutely

irreducible representations of H are obtained in Ω, the condition for a system

of matrices to be a factor system, stated in §1, becomes trivial and above

definition of decomposition coincides with that in my former article "Direct

decompositions of Galois algebras10)" (quoted as M. D.).

We obtain in like way as in M. D. the following theorems which generalize

the main results in M. D..

THEOREM 1. A Galois algebra K over Ω ivith Galois group G has a decom-

position with reference to H, if and only if there exists a factor system associated

ivith K which has a decompositio?ι with reference to H.

THEOREM 2. Galois algebra K over Ω with Galois group G is a field if and

only if there exists no factor system associated with K having a decomposition

with reference to a proper subgroup of G.

§ 3. Centralizer of G in the group of all automorphisms of a Galois algebra.

7. Let G be again an arbitrary, not necessarily finite, group and $ be an

arbitrary Galois algebra obtained from 9Jΐ. Let p denote an automorphism of

the subalgebra Φ® on itself, which is commutative with all automorphisms of

Φβ induced by the Galois group G of $. Then by Lemma 1 there exists for

each Z3χ one and only one matrix C% of degree f% in Ω such that

K i t ) XΛc = iΛw

and each Cx is, as easily seen, regular. Conversely, if an ^-permissible auto-

morphism p of the subalgebra Φ® maps each D'% to DXCX? where each Cχ is a

matrix in Ω, then p is commutative with every automorphism of Φ® induced by

the Galois group G. The correspondence

(18) D't->D',Cχ

induces an i?-permissible automorphism of D$ on itself, if and only if the follow-

10) K. Masuda, Tόhoku Math. J. 4 (1952).
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ing two couditions are satisfied.

(19)

l!?, ψ)

P9, *Cφ, φ for each φ,ψ&X, (i)

where {C9f * φ,ψGX} is the factor system associated with @ in reference to
Γ;

(20) Spur(I>ίCχAfx)=0 (ZGI) (ii)

for a matrix M% in J2 of degree / x, if and only if

(21) Spur(ZXMχ)=0.

Let Gr, cc9fψ; 9,ψet} denote the set of all systems of matrices which satisfy the
above conditions (i) and (ii). We define the product of two such systems {Cχ}

}, (C!<2); /feZ} of GίUc^ ^ e o by

(22) {Cx

υ; Ze-y>{Cχ8); Z e l } = {CχυCx

f)

x

Then clearly Gr, {9t * ,©, *e=r> becomes a group, which we call the representation
group of the basic system Γ of representations of G in i2 in reference to the factor
system {C?fψ; φ,ψ<EzX} of G in i2. It is clearly isomorphic to the centralizer
of the group of automorphisms of %$ induced by Galois group G, which is iso-
morphic to G, in the group of all ^-permissible automorphisms of the subalgebra
Φ® of $, {E/φ/y ψ, Φ^ΞLX) is clearly a factor system associated with @, where
Ef?fy denotes the unit matrix in Ω of degree f~f* - For each aEiG {D A(o)\
ύE:X) satisfies the above conditions (i) and (ii) in reference to {2?/9/ψ ψ,ψE:X},
and we denote it by σΓ. The totality of crΓ?s with <τGG forms a subgroup GΓ

of Gr,(κy/ψ; 9fα,e.γ}. GΓ is clearly isomorphic to G. We denote G*t{F.f.?flS\ ?1 .VΞI}
by Gf.

Now let ®G denote the group of all one-to-one mappings of G on G itself,
ar resp. </ for each ίGG denote the mapping of G on G itself which maps each
τ(~G to to resp. <7r, and Gr resp. G* denote the subgroup of Sr; consisting of
all σr's resp. ί7/?s (<J£G). AS is well known, the centralizer of Gr in β G is Gι,
and vice versa.

8. <BG may be seen as the group of all ^-permissible automorphisms of 6.
The group of automorphisms of © induced by the Galois group G of 6 is Gr.

When G is a finite group, %κ coincides with K itself, so we obtain from
the above considerations the following duality for finite groups.

THEOREM 3. Let G be a finite group, {CJf *; <f, ψ^X} be a factor system
of G in Ω associated with a commutative, associative and semisimple Galois algebra
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K, H devote a minimal subgroup of G with reference to ivhich K has a direct
decomposition. Then the representation group of the basic system Γ of repre-
sentations of G in Ω in reference to the factor system {C?, * φ, ψEiX) of G in
Ω is isomorphic to the centralizer of H in G. Indeed, ifthe factor system {C?,.ψ;
<f, ψ EΞ X) itself has a decomposition for our Ht then the representation group of
Γ in reference to it consists of all {Ac(r) ϊ ZG-X*} with τ belonging to the cen-
tralizer QHH) of H in G.

Proof We prove the last part of the theorem, from which the first part
follows readily. Suppose that the factor system {C7, φ ; <f,ψE:X} has a decom-
position with reference to H. Then from the fact that the centralizer of Gr in
ΘG is G" follows that the representation group Gf,{cφ * ; φ, φex> of Γ with reference
to iCφ, ψ φ, ίί>Gl} is obtained in GΓ, from the fact that K is the direct sum of
Galois algebras having the conjugates of Hin G as their Galois groups follows that
£*> cr?,φ ;?,*£!) is contained in the normalizer of if in GΓ, where HΓ denotes the
group consisting of all rΓ's with τ&H, and from the fact that the component
Galois algebras are really separable Galois fields follows that Gr,<c?,ψ; ?,̂ <n ^s

contained in the centralizer of ΉΓ in GΓ, Then follows easily that it coincides
with the centralizer of If in GΓ.

If H is the trivial subgroup consisting only of the unit element, then C?,*
= E/,.fy and we can take in place of the condition (ii) the following weaker

condition (ii)' that Cx=^0 (X&X) and whenever

(23) Spur(DtMx)=O

with a matrix M% in Ω,

(24) Spur(C-χMj=O.

It follows from the fact that the correspondence

(25) Dί->Cχ

induces an ^-permissible homomorphism of © in Ω if and only if CVs (ZGλ7)
satisfy the condition (i) and (ii)'.11>

The thus obtained duality for finite groups in reference to {E/v/* \ ψ,ψE:X}
is closely related to the duality obtained by T. Nakayama in his article N. O..
Certain independent parameters of the linear enveloping algebra over Ω of the
value matrices of representations of G are obtained there with tools of the theory
of modular regular representations under the restriction that absolutely irreducible
representations of G are obtained in Ω, and the duality for finite groups is
formulated in reference to the parameters, while in the present article we deal
with no such independent parameters and formulate it in reference to the value

u> This remark is due to S. Takahasi.
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matrices of representations of G in Ω without any restrictions on Ω, applying

the condition (ii)'.

§ 4. Tannaka's duality for compact TVgroups.

9. Let, throughout § 4, G be a compact TVgroup, Ω be the field of all com-
plex numbers, and Γ={D%;, Z e Z } be a unitary continuous irreducible basic
system of representations of G, that is, a basic system of representation of G'
consisting of continuous unitary irreducible representations.of G. Let ~ denote
either the operation to take conjugate complex numbers or an operation induced
canonically by that operation. We call the subgroup G*, U of Gr consisting of
all systems {Cx; XELX) in Gr with unitary C>:, the unitary representation
group of the unitary continuous irreducible basic system Γ of G. Then

(26) Gi.cr

where U% denotes the group of all unitary matrices of degree /* and Π lh denotes

the direct product group of Z7x's. We denote the elements of G*. u by α*, r'! etc.,

and topologize G*,u by the usual product topology of ΏU%.12) As the mapping
xe.v

σ->{Dχ(σ) ZeZ} gives an homeomorphism of GΓ on G we identify GΓ and G
for brevity, that is, we denote σΓ = {DA(α) Z e l > merely by α. From the con-
struction of Gr, u we obtain for each 1&.X a continuous unitary representation
D* of Gr, u, if we map each {Cx i Z E Z > of G*, cr on Cx . It is clear that DJΛ<J)

= £>x(<y) for each crGG and each Z E l SO each D* C/GX) is an irreducible
representation of G*.v and D*^D*{<f9 ψ&X), if and only if ? = ψ. Then {D*
Z E l } is clearly a unitary continuous irreducible basic system of representations
of G*, c,1?" which we denote by Γ*. We define 6* and S)* for G?, t- in reference
to Γ* like 6 and © for G in reference to Γ, and denote by 31* the closure of Ί)*
in 6* in the sense of uniform convergence of functions on Gr, u, that is, we define
21* so as / * e S * belongs to 91* if and only if for each given positive number

ε>0 there exists at least a linear aggregate Σ/%vΣ#/,i, kd}jλk oί finite number

of Λ*x's such that

(27) !/*(</*)-Σ/χ,.Σβ' ,;,^Γfc(tf*) !<ε for each /
j

where/,;,, is the degree of Dy, and α,;,jt k are constants. It is clear from the
definition of ί̂* that each /*e2fί' is a continuous almost periodic function on
Gf.c, that 21* contains constants, that 21* has sufficiently many functions

12^ We do not use the compactness of either GX r or IT C/χ.
13^ 7" resp. .Γ* becomes then by Kampeh's theorem a complete representative system of all

conjugate classes of irreducible unitary continuous representations of G resp. Gy υ. But
in the present article we do not use that fact.
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on Gp,u, that is, for each different two elements a*, τ* €Ξ G*, u there exists /*€=3l*
such that

(28) /*(**) */*(r*) ,

and that if /*e9l*, then /^eSl*. So we obtain the following two lemmas.

LEMMA 3. If /*Ξs3l* maps every element of G onto 0, then it maps every
element of G*, u onto 0.

jRroo/. If/*Gs2l*? then clearly, from the definition of 31*,/* is a bounded
in fXir

function on G* u and so for each positive ε>0 there exists

such that

(29) I (/*(**))2 -

As

<e for each

/ | TO /Xfc (2v TO /Xfc

(30) Mean ,Σ/χfc Σ ^ . y ^ ^ U * ) ) = Σ Σ l β U * ! 1 ,

we have

(31)

From (29) and the assumption that / * = 0 on G follows
I in fXk [2

(32) ίΣΛ*Σa/,/.**?•*(</) ^e for each <reG.

As it is clear that

( ' w» ff Tc 2 χ TO /Xfc

ίΣ/χ,Σα/,Λ/,^ω ) = Σ Σl«, .y.*lf,
we have from (32)

nt f%ic

(34)

whence

(35)

Letting e tend to 0, we obtain

(36) Mean (!/*(**) 1 2 )=0,

which implies

/*(</*)=<) for every / e G : k , q.e.d.
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We denote by 5ί the subring of 6 which consists of all mappings of G into

Ω given by f* G SI*.1 lJ Then

LEMMA 4. Every proper ideal $ of 9ί has zero, that is, there exists σ&G

such that

(37) f(σ)=Q

for a l l / e φ .

Proof. Suppose that an ideal 3̂ does not possess a zero. Since G is com-

pact, there exists then a finite set of elements/i. A . . . , / r G $ and a positive

number ε>0 such that

(38) *Σfi(σ)Mό)^e>0 for each OELG.

i = l

From the definition of 2f, there exist / * , / * , . . . , / * such that

(39) f*(σ)=Mσ) for every <7GΞG.
r

Then Σ/f/f is a non-negative real function on G*, u and indeed

(40) Σ/*(tf)/*U)^e>0 for every
* = 1

Put

(41) F*(σ*) = Max ( Σ / f ( / ) y r ΰ Λ ) , ).

r

Then cr(d*) can be approximated by polynomials of Σ/f/ f lo) So

ί - 1

(42) ^eϊί*.

As

(43) ?*(<;*) ̂  4 - > ° f o r e v e r y tf*eG?> f,

1/f*((?*) is a continuous function and can be approximated by polynomials of

Ϋ*{σ*)™ whence 1/f*(<;*) eSl*. So we have

(44) l/^eSί,

1 4 ) We do not explicitly deal with the totality of continuous almost periodic functions of either

G*t ιτ or G, though 91* resp. 9ί coincides really that of G^ v resp. G,
1 5 ) Here we need apply only classical Weierstrass approximation theorem to concretely defined

two real functions of a real variable. But we need apply Neumann's generalized one and

Urysohn's existence theorem of continuous functions to prove the existence of sufficiently

many unitary continuous representations of G, which we supposed in the present article

already in § 1, No. 3.
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where we denote by 1/ψ the mapping of G into Ω induced by 1/φ* restricted
on G. Then, as clearly

r

(45) l/ψM^ΣlMσ)fϊ(σ)=l for every
1

which proves the lemma.

From the above Lemmas Tannaka's duality follows:
Theorem (Tannaka).

(46) Gί,u = GΓ.

Proof. Suppose G*, ί/i?GΓ. We take a* such that

(47) σϊϊΞGlu, </0**Gr.

Let φ* be the maximal ideal of 31* consisting of all functions of "31* with 0 as
their value at of, and % be the ideal of 91 consisting of all mappings of G into
Ω given by the elements of φ*. Then clearly

(48) Ψlψ-zΩ

and it follows from Lemma 3 that

(49) Ψ^%, 3ί7$*^?I/$( ̂ £ ) .

By Lemma 4 $ has a zero in G. This contradicts the fact that 51* contains
sufficiently many functions on G*,υ. So we must have
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