DIFFERENTIAL COMPLETIONS AND DIFFERENTIALLY SIMPLE ALGEBRAS

BY

PETER SEIBT

ABSTRACT. Differentially simple local noetherian Q-algebras are shown to be always (a certain type of) subrings of formal power series rings. The result is established as an illustration of a general theory of differential filtrations and differential completions.

Introduction. The present paper takes up a theme which appears first in a paper of R. Hart: Are differentially simple local noetherian Q-algebras always subrings of formal power series rings; and what sort of subrings do thus occur? The answer to the first question is affirmative, and a first-step characterization of the relevant type of subrings is given. As a natural way towards the result we choose the approach via differential filtrations and differential completions, which we first discuss in full (that is characteristic-free) generality.

1. Differential filtrations and differential completions. Recall first the basic facts about differential filtrations (cf. [3]). Let *R* be an arbitrary unital commutative ring, and fix a set **D** of derivations on *R*. (*R*, **D**), or simply *R*, is called a differential ring. Every localization $S^{-1}R$ of *R* will be tacitly considered as a differential ring, namely $(S^{-1}R, S^{-1}\mathbf{D})$, where $S^{-1}\mathbf{D}$ is the set of extensions of elements of **D** to $S^{-1}R$. We shall write (*R*, *d*) for (*R*, {*d*}). For an ideal *I* of *R* define $D(I) = \{f \in I : df \in I \text{ for all } d \in$ **D**}. Then D(I) is an ideal of *R* such that, for every $n \ge 1, I^{n+1} \subseteq D(I^n) \subseteq I^n$. Furthermore, the operation *D* commutes with arbitrary intersections of ideals. Note that we can reduce certain considerations to the case of one single derivation: Let $\mathbf{D} = \bigcup \mathbf{D}_{\nu}$ and set $\mathbf{D}_{\nu}(I) = \{f \in I : df \in I \text{ for all } d \in \mathbf{D}_{\nu}\}$. Then $D(I) = \cap \mathbf{D}_{\nu}(I)$. For $f \in R, \mathbf{D}$ as above, and $k \ge 1$ we set $\mathbf{D}^k f = \{(d_1 \circ \cdots \circ d_k)f : d_i \in \mathbf{D}, 1 \le i \le k\}$. We define $D^0I = I, D^nI = D(D^{n-1}I), n \ge 1$. Then $D^nI = \{f \in I : \mathbf{D}^k f \subseteq I \text{ for } 1 \le k \le n\}$, as is easily seen by induction on *n*.

DEFINITION 1.1. Let (R, \mathbf{D}) be a differential ring, I an ideal of R. Define $I_{(0)} = R$, $I_{(n)} = D^{n-1}I$, $n \ge 1$.

PROPOSITION 1.2. $(I_{(n)})_{n\geq 0}$ is a multiplicative filtration of R. More precisely, we have $I_{(n)}I_{(m)} \subseteq I_{(n+m)}$ for all $n, m \geq 0$.

Received by the editors September 25, 1987 and, in revised form, May 25, 1988 Subject Classification: Primary 13N05; Secondary 13B35.

[©] Canadian Mathematical Society 1988.

PROOF. First observe that for $f, g \in R$, and derivations d_1, \ldots, d_r of $R, r \ge 2$, the following formula holds: $(*)(d_1 \circ \ldots \circ d_r)(fg) = f(d_1 \circ \ldots \circ d_r)(g) + (d_1 \circ \ldots \circ d_r)(f)g$

+
$$\sum_{k=1}^{r-1} \sum_{\substack{i_1 < \ldots < i_k \ j_1 < \ldots < j_{r-k}}} (d_{i_1} \circ \ldots \circ d_{i_k})(f)(d_{j_1} \circ \ldots \circ d_{j_{r-k}})(g)$$

(where the *j*-indexing is complementary to the *i*-indexing). Let now $n \ge 0$ be fixed. We have to show, by induction on $m \ge 0$, that $D^n(I)D^m(I) \subseteq D^{n+m+1}(I)$. Look first at m = 0: Choose $f \in D^n(I), g \in D^0(I) = I$. We have to show that $fg \in D^{n+1}(I)$, that is that $fg \in I$, $\mathbf{D}(fg) \subseteq I, \ldots, \mathbf{D}^{n+1}(fg) \subseteq I$. First, since $f, g \in I$, we get $\mathbf{D}(fg) \subseteq I$, by the derivation property, and in the case when n = 0 the proof is complete. Let us pick up now $d_1, \ldots, d_r, 2 \le r \le n+1$. Then our formula (*) shows that $(d_1 \circ \ldots \circ d_r)(fg) \in I$, by hypothesis on f and g. This gives finally what we want: $fg \in D^{n+1}(I)$. As to the inductive step, suppose that $D^n(I)D^m(I) \subseteq D^{n+m+1}(I)$. We have to make sure that $D^n(I)D^{m+1}(I) \subseteq D^{n+m+2}(I)$. Take $f \in D^n(I), g \in D^{m+1}(I)$. By the inductive hypothesis we get immediately $fg \in D^{n+m+1}(I)$. We need only show that $\mathbf{D}^{n+m+2}(fg) \subseteq I$. Look once more at (*), with $d_1, \ldots, d_{n+m+2} \in \mathbf{D}$, that is with r = n + m + 2. For $k \le n$ we have $(d_{i_1} \circ \ldots \circ d_{i_k})(f) \in I$, and for k > n we have $n + m + 2 - k \le m + 1$, that is $(d_{j_1} \circ \ldots \circ d_{j_{r-k}})(g) \in I$, which shows finally our claim.

Define $\Delta(I) = \bigcap_{n\geq 1} D^n(I)$. Then $\Delta(I)$ is obviously the greatest **D**-stable ideal contained in *I*, and the operation Δ commutes with arbitrary intersections of ideals. The most interesting elementary observation (see [3]) is that for a primary ideal *Q* of *R*, *D*(*Q*) is also primary. Hence, for a prime ideal *P* of *R*, the filtration $(P_{(n)})_{n\geq 0}$ consists of *P*-primary ideals (for $n \geq 1$).

REMARK 1.3. Let P be a prime ideal of R. Then for all $n \ge 1$ we have $P^{(n)} \subseteq P_{(n)}$.

PROOF. It is easily seen that for every localization $R \to S^{-1}R$ we have $D(S^{-1}I) = S^{-1}DS(I)$ (where S(I) means S-saturation). In particular, if Q is primary, we get $D(S^{-1}Q) = S^{-1}D(Q)$. An easy induction shows that if $Q \cap S = \phi$, we obtain (with $\varphi : R \to S^{-1}R$ the localizing homomorphism) $D^nQ = \varphi^{-1}D^nS^{-1}Q$ for all $n \ge 0$. Now take $S = R \setminus P, \varphi : R \to R_p$, and put $M = S^{-1}P = PR_p$. Since $M^n \subseteq D^{n-1}M$ for all $n \ge 1$, we get $P^{(n)} = \varphi^{-1}M^n \subseteq \varphi^{-1}D^{n-1}M = D^{n-1}P = P_{(n)}$, as claimed.

For a prime ideal *P* of *R*, and any localization $R \to S^{-1}R$ such that $P \cap S = \phi$, inspection of the proof 1.3 shows that the $P_{(n)}$ – filtration on *R* is the trace of the $(S^{-1}P)_{(n)}$ – filtration on $S^{-1}R$. Furthermore, $P_{(n)} = P^{(n)}$ if and only if $(S^{-1}P)_{(n)} = (S^{-1}P)^{(n)}$. As another complement, we see that for a primary ideal *Q* of *R* and for every localization $\varphi : R \to S^{-1}R$ such that $Q \cap S = \emptyset$, we have $\Delta(Q) = \varphi^{-1}\Delta(S^{-1}Q)$. Thus *Q* is **D**-stable if and only if $S^{-1}Q$ is S^{-1} **D**-stable.

DEFINITION 1.4. Let (R, \mathbf{D}) be a differential ring, and let $(I_n)_{n>0}$ be a decreasing sequence of ideals of R. We call the corresponding filtration \mathbf{D} -good whenever all $d \in \mathbf{D}$ are (uniformly) continuous in the uniform structure defined by $(I_n)_{n>0}$.

EXAMPLES 1.5. (1) Let $I \subseteq R$ be a fixed ideal, and consider $(I_n)_{n>0} = (I^n)_{n>0}$, that is the *I*-adic filtration on *R*. Since every derivation *d* of *R* satisfies $d(I^{n+1}) \subseteq I^n$, $n \ge 0$, an *I*-adic filtration on *R* is **D**-good for any set **D** of derivations on *R*.

(2) Let $I \subseteq R$ be a fixed ideal, as before, **D** a set of derivations on *R*. Let $(I^n)_{n>0} = (I_{(n)})_{n>0}$ be the differential filtration associated with **D** (and *I*); we shall call such a filtration a **D**-adic filtration. Then $(I_{(n)})_{n>0}$ is **D**°-good for every **D**° \subseteq **D**. We have only to observe that for $d \in$ **D** we have $dI_{(n+1)} \subseteq I_{(n)}, n \ge 0$. In order to see this, take $f \in I_{(n+1)}$; since $\mathbf{D}f \subseteq I, \mathbf{D}^2f \subseteq I, \dots, \mathbf{D}^nf \subseteq I$, we get in particular $df \in I, \mathbf{D} df \subseteq I, \dots, \mathbf{D}^{n-1} df \subseteq I$, which means precisely that $df \in I_{(n)}$.

REMARK 1.6. Let $(I_n)_{n>0}$ be a **D**-good filtration on R. $I_{\infty} = \bigcap_{n>0} I_n$ is **D**-stable. Thus, in the given situation, we may pass to $R^1 = R/I_{\infty}$, with the differential structure defined by the set of induced derivations \mathbf{D}^1 , say. We shall henceforth assume that all our filtrations are separated (that is $\bigcap_{n>0} I_n = 0$).

PROPOSITION 1.7. Let $(I_n)_{n>0}$ be a **D**-good separated filtration on R, and let R^* be the completion of R relative to this filtration. (1) Every $d \in \mathbf{D}$ has a unique prolongation d^* on R^* which is a derivation of R^* . Let \mathbf{D}^* be the set of these prolongations. (2) If **D** is finite, or if the topology on R is such that for every open ideal I of R, I^2 is also open, then the extension $(R, \mathbf{D}) \rightarrow (R^*, \mathbf{D}^*)$ of differential rings has the following property: For every open ideal I of R we have $D^*(I^*) = (D(I))^*$. (()* means closure in R^*, D^* has the obvious meaning relative to \mathbf{D}^*).

PROOF. (1) is immediate by the elementary properties of completions of rings. (2): Recall that the set of open ideals I of R and the set of open ideals J of R^* are in bijection via $J \rightarrow I = J \cap R$ and $I \rightarrow J = I^*$ (closure in R^*). Let I be an open ideal of R. Then, by our assumptions, $D(I), I^*$ and $D^*(I^*)$ must also be open, since $I^2 \subseteq D(I) = I \cap_{d \in D} d^{-1}I \subseteq I$, and $I^2 \subseteq I^{*2} \subseteq D^*(I^*) = I^* \cap_{d \in D} d^{*-1}I^* \cap I^*$. Note that $D^*(I^*)$ is closed, and thus contains $(I^2)^*$; if I^2 is open, $(I^2)^*$ is also open. We need only show that $D^*(I^*) \cap R = D(I)$. But this follows from the definitions.

COROLLARY 1.8. Under the conditions above, we have for every open ideal I of R, and all $n \ge 0$, $(I^*)_{(n)} = (I_{(n)})^*$, and thus $I_{(n)} = (I^*)_{(n)} \cap R$.

PROPOSITION 1.9. Let R be a noetherian ring, m an ideal of R such that R is a Zariski ring relative to its m-adic topology, and let \hat{R} be its m-adic completion. If **D** is a finite set of derivations on R, then for every ideal I of R we have $(D(I))^{\hat{}} = \hat{D}(\hat{I})$, and thus $\hat{I}_{(n)} = (I_{(n)})^{\hat{}}$ for all $n \ge 0$.

PROOF. Note that now closure equals extension, that is we may write $\hat{I} = I\hat{R}$ for every ideal *I* of *R*. Let us first consider the case of one single derivation, that is $\mathbf{D} = \{d\}$. Let E(R,R) be the idealization of *R*, that is $E(R,R) = R \oplus R$, with multiplication: (x, x')(y, y') = (xy, xy' + x'y). Let $\delta : R \to E(R,R)$ be the ring homomorphism given by $\delta(x) = (x, dx), x \in R$. Look first at E(R,R), considered as an R = module via δ. We have $r.(x, y) = \delta(r)(x, y) = (r, dr)(x, y) = (rx, ry + dr. x)$. Note that E(R, R) is generated by (1,0) and (0,1), also for its δ-structure: $(x, y) = x.(1,0) + (y - dx).(0,1), x, y \in R$. Consider now the $(m \oplus R)$ -adic filtration on E(R, R), which is given by the decreasing sequence of ideals $(E(m^n, m^{n-1}))_{n>0}$. We obtain the uniform structure of the direct *m*-adic sum, and for the δ-structure we get $m^k.E(m^n, m^{n-1}) \subseteq E(m^{n+k}, m^{n+k-1}), k, n ≥ 1$.

Now, $\delta : R \to E(R, R)$ is a homomorphism of filtered rings, which prolongs to the completions. More precisely, $\hat{\delta} : \hat{R} \to E(R, R)^{2} = E(\hat{R}, \hat{R})$ is given by $\hat{\delta}(\xi) = (\xi, \hat{d}\xi)$, where \hat{d} is the prolongation of d to \hat{R} .

For every ideal *I* of *R*, E(I, I) is an ideal of E(R, R), hence an *R*-submodule for the δ -structure. We have $\hat{R}. E(I, I) = E(\hat{I}, \hat{I})$, since $\xi. (x, y) = (\xi x, \xi y + \hat{d}\xi. x)$ for $\xi \in \hat{R}$ and $x, y \in I$, which gives, by [5, p. 266, Cor. 3], $(D(I))^{*} = \hat{R}(I \cap d^{-1}I) =$ $\hat{R}\delta^{-1}E(I, I) = \hat{\delta}^{-1}E(\hat{I}, \hat{I}) = \hat{I} \cap \hat{d}^{-1}\hat{I} = \hat{D}(\hat{I})$. Now, by [5, p. 266, Cor. 2], we have for $\mathbf{D} = \{d_1, \ldots, d_r\}$ the following equalities: $\hat{D}(\hat{I}) = \bigcap_{1 \le i \le r} \hat{D}_i(\hat{I}) = \bigcap_{1 \le i \le r} (D_i(I))^{*} = ((\bigcap_{1 \le i \le r} D_i(I))^{*})^{*})$.

This completes the proof.

We now look more closely at the relation between *I*-adic and **D**-adic completion. Let (R, \mathbf{D}) be a differential ring, *I* an ideal of R, \hat{R} the *I*-adic completion of *R*, and R^* the **D**-adic completion relative to the filtration $(I_{(n)})_{n>0}$, where $I_{(n+1)} =$ $\{ f \in I : \mathbf{D}f \subseteq I, ..., \mathbf{D}^n f \subseteq I \}, n \ge 1$. We suppose that $\bigcap_{n>0} I_{(n)} = 0$, hence a fortiori that $\bigcap_{n>0} I^n = 0$. We write $\hat{\mathbf{D}}$ for the set of prolongations of the elements of **D** to \hat{R} , and \mathbf{D}^* for the corresponding set of prolongations on R^* .

THEOREM 1.10. In the above situation we have a surjective ring homomorphism $\varphi: \hat{R} \to R^*$, which prolongs the identity on R. (1) Let I^* be the closure of I in R^* ; then the \mathbf{D}^* -filtration associated with I^* is separated. (2) Let \hat{I} be the closure of I in \hat{R} , and let $(I_{(n)})_{n>0}$ be the $\hat{\mathbf{D}}$ -filtration associated with \hat{I} in \hat{R} . Then $\varphi^{-1}I^*_{(n)} = \hat{I}_{(n)}$ for all $n \geq 0$. Thus Ker φ equals $\hat{\Delta}(\hat{I})$, the biggest $\hat{\mathbf{D}}$ -invariant ideal of \hat{R} contained in \hat{I} . (3) \mathbf{D}^* is the set of derivations induced by $\hat{\mathbf{D}}$ on $R^* = \hat{R}/\hat{\Delta}(\hat{I})$. (4) R^* is I-adically complete; hence, if R is noetherian, R^* is also I^* -adically complete.

PROOF. First, it is easy to see that $I^n \subseteq I_{(n)}$ for all $n \ge 0$. Hence the *I*-adic structure on *R* is finer than the **D**-adic structure (relative to *I*). Thus we obtain a prolongation of the identity on $R, \varphi : \hat{R} \to R^*$, say. R^* is separated, and $\varphi(\hat{R})$ is dense and complete in R^* , which gives the surjectivity of φ . (1) By definition of R^* we know that the filtration $((I_{(n)})^*)_{n>0}$ satisfies $\bigcap_{n>0}(I_{(n)})^* = 0$. We must verify that $(I_{(n)})^* = (I^*)_{(n)}$ for all $n \ge 0$. Note that this is not a consequence of 1.8. First, the equality is trivial for n = 0, 1. Assume that $(I_{(n)})^* = (I^*)_{(n)}$. We have to show that $(I_{(n+1)})^* = (D(I_{(n)}))^* = (I^*)_{(n+1)}$. By the inductive hypothesis this amounts to showing that $(D(I_{(n)}))^* = D^*(I_{(n)})^*$. Comparing with the proof of 1.7, this equality is trivial by definition. But $(D(I_{(n)}))^* \subseteq D^*(I_{(n)})^*$, which yields the result. (2) The equality

 $(I_{(n)}) \ = \ \hat{I}_{(n)}, n \ge 0$, follows from 1.8, since now we are dealing with an *I*-adic filtration. The continuity of φ gives immediately $\hat{I}_{(n)} \subseteq \varphi^{-1}I_{(n)}^*$ for all $n \ge 0$. Now, these are open ideals in \hat{R} ; we need only observe that $\varphi^{-1}(I_{(n)}^*) \cap R = \hat{I}_{(n)} \cap R = I_{(n)}$ for all $n \ge 0$, which follows from the fact that φ prolongs the identity on R. (3) For every $d \in \mathbf{D}$ we have that d^* , the prolongation of d on R^* , and \hat{d}' , the derivation induced by \hat{d} on R^* , coincide with d on R. This yields immediately the assertion. (4) R^* is *I*-adically complete, as a homomorphic image of \hat{R} . Suppose now R to be noetherian. Then the *I*-adic and the \hat{I} -adic structures on \hat{R} coincide, and we have $(I^n) = \hat{I}^n$ for all $n \ge 0$. But $\varphi(\hat{I}^n) = (I^*)^n, n \ge 0$, hence the *I*-adic and the I^* -adic structures on R^* are equal. This finishes the proof of our theorem.

EXAMPLE 1.11. The topological situation, as described by 1.10, is the following: Let *R* be noetherian. R^* is I^* -adically complete, but whenever $\hat{\Delta}(\hat{I}) \neq 0$, the induced *I*-adic topology on $R \subseteq R^*$ is not the given one (which, in this case, is strictly finer). R is I^* -adically dense in R^* . We should give an easy example in order to make the situation clear. Consider $R = k[x, y]_{(x,y)}$, the local ring of the affine k-plane at the origin, and assume char k = 0. Let $d = \partial/\partial x + (y - 1)\partial/\partial y$ be the k-derivation of R which maps x onto 1, and keeps (y - 1) fixed. R does not contain any nontrivial d-invariant ideal (see [4, (2.10)]); this is equivalent to the fact that $\Delta(m) = 0$, where $m = (x, y)_{(x,y)}$ is the maximal ideal of R. Consider now (\hat{R}, \hat{d}) , where $\hat{R} = k[[x, y]]$ is the formal power series ring in x and y over k. We have $\hat{\Delta}(\hat{m}) = \hat{R}f$, with $f = e^x - 1 + y$ (note that $\hat{d}f = f$, hence $\hat{R}f$ is \hat{d} -invariant; on the other hand, $\hat{R}f$ is a prime ideal of height one in \hat{R}, \hat{m} is not \hat{d} -invariant, and $\hat{\Delta}(\hat{m})$ must be a prime ideal, since in characteristic zero all associated prime ideals of a differential ideal need also be differential). We get $R^* = k[[x, 1 - e^x]] = k[[x]]$, with $d^* = \partial/\partial x$, the derivative relative to x. The embedding $R = k[x, y]_{(x,y)} \rightarrow R^* = k[[x]]$ is given by substitution of $1 - e^x$ for y. We have $m^* = R^*x$, and $m^{*n+1} \cap R = (\hat{m}^{n+1} + \hat{R}f) \cap R = (y + x + ... + 1/n!x^n) + m^{n+1}$, which shows that the *m*-adic structure on R is strictly finer than the induced m^* -adic structure.

2. Differentially simple local noetherian Q-algebras. In order to derive nontrivial consequences of our somehow too general (since characteristic-free) theory, we have to impose the standard Q-algebra condition (we are not working with higher rank derivations), together with noetherian assumptions.

LEMMA 2.1. Let (S, m, K) be a regular local m-adically complete Q -algebra (hence a formal power series ring in a finite number of variables over K), and let \mathbf{D} be a set of Q -derivations on S. Then S is \mathbf{D} -simple (that is $\Delta(m) = 0$) if and only if there is a $k \ge 1$ with $m_{(k+1)} = D^k(m) \subseteq m^2$.

PROOF. Assume first S to be **D**-simple; S is thus separated relative to the filtration $(m_{(n)})_{n>0}$. By a well-known theorem of Chevalley ([5, p. 270, theorem 13]) there is a function $\sigma : \mathcal{N} \to \mathcal{N}$, $\lim \sigma(n) = \infty$, such that $m_{(\sigma(n))} \subseteq m^n$ for all $n \ge 1$. In

particular, there is a $k \ge 1$ such that $m_{(k+1)} = D^k(m) \subseteq m^2$. Conversely, assume that $m_{(k+1)} = D^k(m) \subseteq m^2$ for some $k \ge 1$. This condition means explicitly that for every regular parameter $t \in m \setminus m^2$ there are $d_1, \ldots, d_2 \in \mathbf{D}, j \le k$, such that $(d_1 \circ \ldots \circ d_j)(t) \notin m$. Consider now $P = \Delta(m) = \bigcap_{n>0} m_{(n)}$, the maximal **D**-invariant (prime) ideal of *S*. We have to show that P = 0. Now, *S* is excellent, hence S' = S/Pis also excellent. But *S'* is **D'**-simple (where **D'** is the set of derivations on *S'* induced by the elements of **D**). Thus, by [1, Corollary to theorem 1], *S'* is regular. We get $P = (t_1, \ldots, t_i)$ for some regular system of parameters (t_1, \ldots, t_r) of *S*. For $i \ge 1$ the **D**-invariance of *P* is in contradiction to the above explicit formulation of our assumption. Thus P = 0, and we have finished our proof.

DEFINITION 2.2. Let (R, m) be a local ring, **D** a set of derivations on R. We call **D** exhaustive if and only if there is a $k \ge 1$ such that for every $t \in m \setminus m^2$ there are $d_1, \ldots, d_j \in \mathbf{D}, 1 \le k$, with $(d_1 \circ \ldots \circ d_j)(t) \notin m$ (every $t \in m \setminus m^2$ can be made invertible by iterated application of appropriate elements of **D**, in at most k steps).

THEOREM 2.3. A local noetherian Q-algebra (R, m, K) is differentially simple (for some set of Q-derivations on R) if and only if (1) R is a dense subalgebra of some power series ring $R^* = K[[T_1, ..., T_r]]$ (for its $(T_1, ..., T_r)$ -adic topology). (2) There is an exhaustive set \mathbf{D}^* of Q-derivations on R^* which leaves R invariant (that is we have $\mathbf{D}^*R \subseteq R$).

PROOF. One implication is an immediate consequence of 1.10, since R^* , the **D**-adic completion of R, is an excellent local **D**^{*}-simple Q - algebra, hence regular (by corollary to theorem 1 in [1]). The other implication follows from 2.1.

COMPLEMENT 2.4. There is a natural question arising in the context of 2.3: Let (R, m, K) be a noetherian local Q-algebra which is **D**-simple for some set **D** of Q-derivations on R. Is the following assertion true: R is regular if and only if R is excellent? One implication is a well-known result of R. Hart, the other implication would be in the spirit of a theorem of Mizutani (see [2, Theorem 10]).

References

1. R. Hart, Derivations on commutative rings, J. London Math. Soc. (2), 8 (1974), 171-175.

2. H. Matsumura, *Noetherian rings with many derivations, in*: Bass, H. et al. (eds.), Contributions to Algebra, Academic Press, New York 1977.

3. P. Seibt, Differential Filtrations and Symbolic Powers of Regular Primes, Math Z. 166 (1979), 159-164.

4. B. Singh, Maximally differential prime ideals in a complete local ring, J. Algebra 82 (1983), 331-339.

5. O. Zariski, and P. Samuel, *Commutative Algebra*, vol. II, Van Nostrand-Reinhold, Princeton, N.J., 1960.

C.N.R.S. Luminy C.P.T. Case 907 F-13288 Marseille Cedex 9