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DIFFERENTIAL COMPLETIONS AND DIFFERENTIALLY 
SIMPLE ALGEBRAS 

BY 

PETER SEIBT 

ABSTRACT. Differentially simple local noetherian Q -algebras are 
shown to be always (a certain type of) subrings of formal power series 
rings. The result is established as an illustration of a general theory of 
differential filtrations and differential completions. 

Introduction. The present paper takes up a theme which appears first in a paper 
of R. Hart: Are differentially simple local noetherian Q, -algebras always subrings of 
formal power series rings; and what sort of subrings do thus occur? The answer to 
the first question is affirmative, and a first-step characterization of the relevant type 
of subrings is given. As a natural way towards the result we choose the approach via 
differential filtrations and differential completions, which we first discuss in full (that 
is characteristic-free) generality. 

1. Differential filtrations and differential completions. Recall first the basic facts 
about differential filtrations (cf. [3]). Let R be an arbitrary unital commutative ring, 
and fix a set D of derivations on R. (/?, D), or simply R, is called a differential ring. 
Every localization S~lR of R will be tacitly considered as a differential ring, namely 
(S~lR,S~{D\ where S~lD is the set of extensions of elements of D to S~lR. We shall 
write (R, d) for (/?, {d}). For an ideal I of R define D(I) = {/ G / : df G / for all d G 
D}. Then D(I) is an ideal of R such that, for every n ^ l,/w+1 C D(In) C In. 
Furthermore, the operation D commutes with arbitrary intersections of ideals. Note that 
we can reduce certain considerations to the case of one single derivation: Let D = UD^ 
and set D„(/) = {/ G / : df G / for all d G D„}. Then D(I) = HD^/). For/ G R,D 
as above, and k ^ 1 we set D*/ = {(d\ o • • • o dk)f : dt G D, 1 ^ / ^ k). We define 
D°I = I,DnI = D(Dn-{I),n ^ 1. Then DnI = {/ G / : D*/ Ç / for 1 ^ k Û n}, as 
is easily seen by induction on n. 

DEFINITION 1.1. Let (/?,D) be a differential ring, I an ideal of R. Define 7(o) = 
R,Iin)=Dn-lI,n^ 1. 

PROPOSITION 1.2. (I(n))n^o ^ a multiplicative filtration ofR. More precisely, we have 
hn)hm) Q hn+m) M all It, m ^ 0. 
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PROOF. First observe that for/ ,g G R, and derivations d\,...,dr of R,r ^ 2, the 
following formula holds: (*)(d\ o . . . o dr){fg) = f(d\ o . . . o dr)(g) + (dj o . . . o dr)(f)g 

r-\ 

+ E E (4. ° • • • ° 4 )(/)K ° • • • ° 4v-« X* ) 
yi<...<yr_jt 

(where the j-indexing is complementary to the /-indexing). Let now n ^ 0 be fixed. 
We have to show, by induction o n m ^ O , that Dn(I)Dm(I) Ç Dn+m+l(I). Look first at 
m = 0 : Choose/ G £>n(/),g G D°(/) = /• We have to show that/g G Dn+l(I), that is 
that/* G /,D(/£).Ç / , . . . ,D" + 1 (/g) Ç /. First, since/,£ G /, we get D(fg) C / , by 
the derivation property, and in the case when n — 0 the proof is complete. Let us pick 
up now d\,..., dr, 2 ^ r è n+1. Then our formula (*) shows that (d\ o. ..odr)(fg) G / , 
by hypothesis o n / and g. This gives finally what we want: fg G Dn+l(I). As to the 
inductive step, suppose that Dn(l)Dm(I) C Dn+m+l(I). We have to make sure that 
Dn(I)Dm+l(I) Ç Dn+m+2(I). Take/ G Dn(I\g G £>m+1(/). By the inductive hypothesis 
we get immediately fg G Dn+m+l(I). We need only show that Dn+m+2(fg) Ç /. Look 
once more at (*), with d\,..., dn+m+2 G D, that is with r = n + m + 2. For /: ^ « we 
have (d/, o . . . o dtk)(f) G /, and for & > « we have « + m + 2 — /: ^ m+ 1, that is 
(d,, o . . . o djr_k)(g) G / , which shows finally our claim. 

Define A(7) = nn^\Dn(I). Then A (/) is obviously the greatest D-stable ideal 
contained in /, and the operation A commutes with arbitrary intersections of ideals. 
The most interesting elementary observation (see [3]) is that for a primary ideal Q 
of R,D(Q) is also primary. Hence, for a prime ideal P of R, the filtration (P(n))n^o 
consists of /*-primary ideals (for n ^ 1). 

REMARK 1.3. Let P be a prime ideal of R. Then for all n ^ 1 we have P(n) Ç P^n). 

PROOF. It is easily seen that for every localization R —* S~lR we have D(S~lI) = 
S~lDS(I) (where S(I) means S -saturation). In particular, if Q is primary, we get 
D(S~lQ) = S'lD(Q). An easy induction shows that if Q n 5 = (/>, we obtain (with 
<p : R -> S~lR the localizing homomorphism) D"g = ^ D ^ ^ g for all n ^ 0. 
Now take 5 = /?\F, <p :R-^RP, and put M = S"1? = PRp. Since M" Ç Dn~xM for 
all w ^ 1, we get P{n) = ip~xMn Ç ic-xDn'xM = DnXP = /%>, as claimed. D 

For a prime ideal P of /?, and any localization R —> S~lR such that P H S = </>, 
inspection of the proof 1.3 shows that the P(n)— filtration on R is the trace of the 
(S-lP\n)- filtration on S~lR. Furthermore, P(n) = P{n) if and only if (S'xP\n) = 
(S~lP)(n\ As another complement, we see that for a primary ideal Q of R and for 
every localization <p : R —> S~XR such that g H S = 0, we have A(g) = tp~xA(S~xQ). 
Thus g is D-stable if and only if S~xQ is S_ 1 D-stable. 

DEFINITION 1.4. L r̂ (#,D) be a differential ring, and let (In)n>o be a decreasing 
sequence of ideals of R. We call the corresponding filtration D-good whenever all 
d G D are (uniformly) continuous in the uniform structure defined by (In)n>o. 
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EXAMPLES 1.5. (1) Let / Ç R be a fixed ideal, and consider (In)n>o = Un)n>o, that 
is the 7-adic filtration on R. Since every derivation d of R satisfies d(In+l) CIn,n^0, 
an /-adic filtration on R is D-good for any set D of derivations on R. 

(2) Let / Ç R be a fixed ideal, as before, D a set of derivations on R. Let (In)n>o = 
(I(n))n>o be the differential filtration associated with D (and / ) ; we shall call such 
a filtration a D-adic filtration. Then U(n))n>o is D°-good for every D° Ç D. We 
have only to observe that for d G D we have dI(n+\) Ç I^n),n ^ 0. In order to 
see this, t ake / G I(n+\y, since Df Ç I,D2f Ç / , . . . ,D n f Ç / , we get in particular 
df G /, D df Ç / , . . . , Dn~ldf Ç / , which means precisely that df G /(„). 

REMARK 1.6. Let (In)n>o he a D-good filtration on /?. 1^ = Dn>oIn is D-stable. 
Thus, in the given situation, we may pass to Rl — R/Ioo, with the differential structure 
defined by the set of induced derivations D1, say. We shall henceforth assume that all 
our filtrations are separated (that is f\>o/« = 0). 

PROPOSITION 1.7. Let (In)n>o be a D-good separated filtration on R, and let R* be the 
completion of R relative to this filtration. (I) Every d G D has a unique prolongation 
d* on R* which is a derivation of R*. Let D* be the set of these prolongations. (2) 
If D is finite, or if the topology on R is such that for every open ideal I of R,I2 is 
also open, then the extension (R, D) —> (/?*, D*) of differential rings has the following 
property: For every open ideal I of R we have D*(I*) = (£>(/))*. (( )* means closure 
in R*,D* has the obvious meaning relative to D*). 

PROOF. (1) is immediate by the elementary properties of completions of rings. (2): 
Recall that the set of open ideals I of R and the set of open ideals / of R* are in 
bijection via / —> / = J D R and / —• / = /* (closure in R*). Let / be an open 
ideal of R. Then, by our assumptions, D(/),/* and D*(I*) must also be open, since 
I2 Ç D(I) = mdeD d'lI Ç / , and I2 Ç /*2 Ç £>*(/*) = mdeD d*-{I*m*. Note that 
D*(I*) is closed, and thus contains (72)*; if I2 is open, (72)* is also open. We need 
only show that D*(/*)n/? = £>(/)• But this follows from the definitions. 

COROLLARY 1.8. Under the conditions above, we have for every open ideal I of R, 
and all n ^ 0, (/*)(«> = (/(«))*, and thus /(w) = (/*)(«) r\R. 

PROPOSITION 1.9. Let R be a noetherian ring, m an ideal of R such that R is a 
Zariski ring relative to its m-adic topology, and let R be its m-adic completion. If D 
is a finite set of derivations on R, then for every ideal I of R we have (D(I))= D(I), 
and thus /(„) = (I(n)Tfor all n^ 0. 

PROOF. Note that now closure equals extension, that is we may write I — IR for 
every ideal / of R. Let us first consider the case of one single derivation, that is D = 
{d}. Let E(R,R) be the idealization of R, that is E(R,R) = R®R, with multiplication: 
(x,xf)(y,yf) — (xy,xy' +x'y). Let S : R —• E(R,R) be the ring homomorphism given 
by 6(x) = (x,dx),x G R. Look first at E(R,R), considered as an R = module via 
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6. We have r.(x,y) = ^(r)(x,j) = (r,dr)(x,y) = (rx,ry +dr.x). Note that E(R,R) 
is generated by (1,0) and (0,1), also for its ^-structure: (x,y) = JC. (1,0) + (y — 
Jx).(0, l),*,)7 G /?. Consider now the (m 0 7?)-adic filtration on E(R,R), which is 
given by the decreasing sequence of ideals (E(mn,mn~l))n>Q. We obtain the uniform 
structure of the direct ra-adic sum, and for the ^-structure we get mk.E(mn,mn~l) Ç 
E(mn+k,mn+k-l\k,n^ 1. 

Now, 6 : R —-> E(R,R) is a homomorphism of filtered rings, which prolongs to the 
completions. More precisely, 6 : /? —> E(R,R)~= E(R,R) is given by 5(C) = (£,*/£)» 
where d is the prolongation of d to R. 

For every ideal / of /?,£(/,/) is an ideal of £(/?,/?), hence an /?-submodule for 
the ^-structure. We have R.E(I,I) = £ ( / , / ) , since £.(x,v) = (£x, £y + d£t.x) for 
£ <E £ and x , j G /, which gives, by [5, p. 266, Cor. 3], (D(I))~= R(I nd~lI) = 
RS~lE(I,I) = è-lE(î,î) = înd~lî = /)(/). Now, by [5, p. 266, Cor. 2], we have for 
D = {di , . . . ,d r } the following equalities: D(I) = n ^ ^ r A ( / ) = ni^ r(D,-(/)) ~ = 
(n i^ r A(/ ) )^=(D( / ) )^ . 

This completes the proof. • 

We now look more closely at the relation between /-adic and D-adic comple
tion. Let (/?,D) be a differential ring, / an ideal of R,R the /-adic completion of /?, 
and R* the D-adic completion relative to the filtration (I(n))n>o> where I(n+\) = 
{ f € I : D/ Ç / , . . . , D y Ç /},w ^ 1. We suppose that f\>0/(„) = 0, hence a 
fortiori that n^x)/" = 0. We write D for the set of prolongations of the elements of 
D to R, and D* for the corresponding set of prolongations on R*. 

THEOREM 1.10. In the above situation we have a surjective ring homomorphism 
ip : R —• /?*, which prolongs the identity on R. (1) Let I* be the closure of I in R*; 
then the D* -filtration associated with /* is separated. (2) Let I be the closure of I in 
R, and let (I(n))n>o be the T)-filtration associated with I in R. Then (p~lI*n^ = /(„) for 
all n ^ 0. Thus Ker <p equals A(/), the biggest ^-invariant ideal of R contained in 
I. (3) D* is the set of derivations induced by D on R* = R/A(I). (4) R* is I-adically 
complete; hence, if R is noetherian, R* is also I*-adically complete. 

PROOF. First, it is easy to see that In Ç /(n) for all n ^ 0. Hence the /-adic 
structure on R is finer than the D-adic structure (relative to / ) . Thus we obtain a 
prolongation of the identity on R,(f : R —> R*, say. R* is separated, and (f(R) is 
dense and complete in R*, which gives the surjectivity of </?. (1) By definition of 
R* we know that the filtration ((I(n)T)n>o satisfies nn>o(/(W))* = 0. We must verify 
that (/(„))* = (/*)(«> for all n ^ 0. Note that this is not a consequence of 1.8. First, 
the equality is trivial for n — 0,1. Assume that (/(«))* = (/*)(«>. We have to show 
that (I(n+\)Y — (D(I(n))Y = (I*\n+\)- By the inductive hypothesis this amounts to 
showing that (D(/(„)))* = D *(/(„))*. Comparing with the proof of 1.7, this equality is 
true provided all the ideals in question are open. Only for D *(/(„))* this is not trivial 
by definition. But (D (/(„>))* Ç D *(/(«))*, which yields the result. (2) The equality 
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(/(„)) " = I(n),n ^ 0, follows from 1.8, since now we are dealing with an 7-adic 
filtration. The continuity of <p gives immediately /(„) Ç <p~lI*n) for all n ^ 0. Now, 
these are open ideals in R\ we need only observe that (p~](I*n))P\R — I^^R — /(«) for 
all n ^ 0, which follows from the fact that (p prolongs the identity on R. (3) For every 
d G D we have that d*, the prolongation of d on /?*, and df, the derivation induced 
by d on /?*, coincide with J on R. This yields immediately the assertion. (4) R* is 
7-adically complete, as a homomorphic image of R. Suppose now R to be noetherian. 
Then the 7-adic and the 7-adic structures on R coincide, and we have (ln) = In for all 
n ^ 0. But (/?(/") = (/*)", « ^ 0, hence the /-adic and the 7*-adic structures on R* are 
equal. This finishes the proof of our theorem. • 

EXAMPLE 1.11. The topological situation, as described by 1.10, is the following: Let 
R be noetherian. R* is /*-adically complete, but whenever A(7) ^ 0, the induced /-adic 
topology on R Ç R* is not the given one (which, in this case, is strictly finer). R is 
7*-adically dense in R*. We should give an easy example in order to make the situation 
clear. Consider R = k[x,y\Xy), the local ring of the affine k-plane at the origin, and 
assume char k = 0. Let d = d/dx + (y — l)d/dy be the ^-derivation of R which maps 
x onto 1, and keeps (y — 1) fixed. R does not contain any nontrivial d-invariant ideal 
(see [4, (2.10)]); this is equivalent to the fact that A(m) = 0, where m = (x,y\Xy) 
is the maximal ideal of R. Consider now (R,d), where R = &[[x,;y]] is the formal 
power series ring in x and y over k. We have A(m) = Rf, with/ = ex — 1 +y (note 
that df = / , hence Rf is J-invariant; on the other hand, Rf is a prime ideal of height 
one in R, m is not à-invariant, and A(m) must be a prime ideal, since in characteristic 
zero all associated prime ideals of a differential ideal need also be differential). We 
get R* = £[[JC, 1 — ex]] = k[[x]], with d* = d/dx, the derivative relative to x. The 
embedding R — k[x,y\x,y) —>/?*= k[[x]] is given by substitution of 1 — ex for y. 
We have m* = R*x, and m*n+l HR = (mn+l + ^ / ) n / ? = (y+A: + . . .+ \/n\xn) + ww+1, 
which shows that the ra-adic structure on R is strictly finer than the induced m*-adic 
structure. 

2. Differentially simple local noetherian CX-algebras. In order to derive non-
trivial consequences of our somehow too general (since characteristic-free) theory, we 
have to impose the standard Q, -algebra condition (we are not working with higher 
rank derivations), together with noetherian assumptions. 

LEMMA 2.1. Let (5, m, K) be a regular local m-adically complete Q -algebra (hence 
a formal power series ring in a finite number of variables over A'), and let D be a set 
of Q -derivations on S. Then S is D-simple (that is A(m) = 0) if and only if there is 
a k ^ 1 with m(k+\) — Dk(m) Ç m2. 

PROOF. Assume first S to be D-simple; S is thus separated relative to the filtration 
(tftyi))fl>o- By a well-known theorem of Chevalley ([5, p. 270, theorem 13]) there is 
a function a : !A£ —•» fA£,lim<r(«) = oo, such that m^n)) Ç mn for all n ^ 1. In 
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particular, there is a k ^ 1 such that m(k+\) = Dk(m) Ç ra2. Conversely, assume 
that W(£+i) = Dk(m) Ç m2 for some £ ^ 1. This condition means explicitly that 
for every regular parameter t € m\m2 there are d\,...,d2 E D,y ^ &, such that 
(d\ o . . . o rf7-)(0 ̂  m. Consider now P = A(m) — nn>om(n), the maximal D-invariant 
(prime) ideal of S. We have to show that P — 0. Now, S is excellent, hence S' — S JP 
is also excellent. But S' is D'-simple (where D' is the set of derivations on S' induced 
by the elements of D). Thus, by [1, Corollary to theorem 1], Sf is regular. We get 
P = (fi , . . . , U) for some regular system of parameters (t\,..., tr) of S. For / ^ 1 
the D-invariance of P is in contradiction to the above explicit formulation of our 
assumption. Thus P — 0, and we have finished our proof. 

DEFINITION 2.2. Let (/?, m) be a local ring, D a set of derivations on R. We call 
D exhaustive if and only if there is a k ^ 1 such that for every t G m\m2 there 
are d\,...,dj G D, 1 ^ /:, with (d\ o . . . o dj)(t) £ m (every t G m\m2 can be made 
invertible by iterated application of appropriate elements ofD, in at most k steps). 

THEOREM 2.3. A local noetherian Q, -algebra (R,m,K) is differentially simple (for 
some set of CI -derivations on R) if and only if ( 1 ) R is a dense subalgebra of some 
power series ring R* — K[\J\,..., Tr]] (for its (T\,..., Tr)-adic topology). (2) There 
is an exhaustive set D* of Q, -derivations on R* which leaves R invariant (that is we 
have D*R Ç R). 

PROOF. One implication is an immediate consequence of 1.10, since R*, the D-
adic completion of R, is an excellent local D*-simple Q,- algebra, hence regular (by 
corollary to theorem 1 in [1]). The other implication follows from 2.1. 

COMPLEMENT 2.4. There is a natural question arising in the context of 2.3: Let 
(/?, m1 K) be a noetherian local Q -algebra which is D-simple for some set D of Q, -
derivations on R. Is the following assertion true: R is regular if and only if R is 
excellent? One implication is a well-known result of R. Hart, the other implication 
would be in the spirit of a theorem of Mizutani (see [2, Theorem 10]). 
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