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Abstract

When writing transformation systems, a significant amount of engineering effort goes into setting
up the infrastructure needed to direct individual transformations to specific targets in the data being
transformed. Strategic programming languages provide general-purpose infrastructure for this task,
which the author of a transformation system can use for any algebraic data structure. The Kansas
University Rewrite Engine (KURE) is a typed strategic programming language, implemented as a
Haskell-embedded domain-specific language. KURE is designed to support typed transformations
over typed data, and the main challenge is how to make such transformations compatible with generic
traversal strategies that should operate over any type. Strategic programming in a typed setting has
much in common with datatype-generic programming. Compared to other approaches to datatype-
generic programming, the distinguishing feature of KURE’s solution is that the user can configure
the behaviour of traversals based on the location of each datum in the tree, beyond their behaviour
being determined by the type of each datum. This article describes KURE’s approach to assigning
types to generic traversals, and the implementation of that approach. We also compare KURE, its
design choices, and their consequences, with other approaches to strategic and datatype-generic
programming.

1 Introduction

This article describes an approach for building rewrite engines over strongly typed data
structures. Rewriting rules are often expressed as local correctness-preserving transforma-
tions, sometimes with preconditions and contextual requirements, such as lexical scope.
A rewrite engine takes these local rewriting rules and applies them in systematic ways
to achieve a global effect. Strategic programming (Visser, 2005), a style of program-
ming that explicitly supports programmable strategies for composing rewriting rules, is
one approach to structuring rewrite engines. The principal design decision in any typed
strategic-programming implementation is how to specialise generic traversal strategies to
operate over a typed syntax. This design decision becomes more challenging when we
wish to support complex traversal strategies, such as potentially failing traversals, selective
traversals, and traversals over mutually recursive data types.

� This material is based upon work supported by the National Science Foundation under Grant No. 1117569.
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The Kansas University Rewrite Engine (KURE) is a domain-specific language for typed
strategic programming, and is the principal subject of this article. The KURE implemen-
tation began as a component of the HERA system (Gill, 2006), but was later abstracted
out to a standalone Haskell library. Since then KURE has gone through several stages
of development, with various experimental designs implemented. Two prior publications
discuss KURE at earlier development stages: Gill (2009) described the first standalone
version of KURE; Farmer et al. (2012) used an interim version of KURE as part of
a larger system. The current implementation of KURE (Sculthorpe & Gill, 2014) has
similarities with existing approaches to datatype-generic programming, but has different
engineering compromises regarding data-structure traversal. KURE also builds on many
years of research into strategic programming, especially the work on Stratego (Visser et al.,
1998; Visser, 2004) and Strafunski (Lämmel & Visser, 2002).

Specifically, the contributions of this article are:

• We present an approach of using closed universes to type generic traversals over
mutually recursive data types (Section 3).

• We describe a Haskell implementation of strategic programming that uses these
universes to index generic traversals (Section 4).

• We demonstrate how these universes can be used to define statically selective traver-
sals (Section 4.3.2), and traversals whose behaviour can depend not just on the type
of the values being traversed, but also on their location in the data structure (Section
4.3.3).

• We augment the implementation with a user-defined context, and show how it can
be maintained automatically within a generic traversal (Section 4.4).

• We demonstrate the viability of using KURE for realistic applications by presenting
a case study of KURE’s usage in the HERMIT project (Section 5).

• We compare the KURE approach to generic traversals with that of Stratego, and with
the SYB and Uniplate approaches to datatype-generic programming (Section 6).

• We compare KURE’s performance with SYB and Uniplate, and explain the causes
of the performance variations (Section 7).

2 Strategic and generic programming

Traditional term rewriting involves defining a set of rewriting rules over some object lan-
guage, and applying those rules exhaustively to a term in that language. Strategic program-
ming (Visser, 2005) builds on term rewriting by adding programmable strategies that allow
the user to control when and where in a term rewriting rules are applied (Bravenboer et al.,
2008). Typically the object language is a programming or document-markup language, but
the ideas generalise to any tree-structured data.

The term generic programming has multiple meanings (Gibbons, 2005), but in this
article we always mean datatype-generic programming (also known as polytypic program-
ming) (Hinze & Löh, 2007; Rodriguez Yakushev et al., 2008; Hinze & Löh, 2009). This
notion of generic programming involves defining functions that operate over typed data, but
that operate based on the shape of the data rather than its type. Typically, generic traversals
are used to navigate to a particular set of locations in a data type, and then a type-specific
function is applied at those locations.
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KURE is implemented as a Haskell library, providing rewriting strategies as Haskell
combinators, and operating on Haskell data types. Hence, the KURE implementation can
be viewed as either an embedded domain-specific language for strategic programming, or
as a generic programming library.

In this section we will introduce the strategic programming paradigm by presenting
Stratego (Visser et al., 1998; Visser, 2004; Bravenboer et al., 2008), the most widely used
strategic rewriting system, and then overview other approaches to strategic and generic
programming. First however, we will introduce our notation and terminology.

2.1 Terminology and notation

In Section 2.2 we will describe the Stratego language, and use Stratego syntax to do so.
In Section 3 we will discuss assigning types to rewrites and strategies at a language-
independent level, but use a Haskell-like notation for expressing types. In Sections 4 to 7
we use Haskell code, including several (commonly used) language extensions that are not
part of the Haskell 2010 standard, but are provided by the Glasgow Haskell Compiler. In the
Haskell code we also take the liberty of allowing type variables in top-level type signatures
to scope over local type signatures, so that we can provide such type signatures as an aid to
the reader (this could be achieved with a language extension and some additional syntactic
clutter, but we believe that inhibits readability). In all sections, we typeset the program
code -> and => as → and ⇒, respectively, and in the Haskell code we typeset \ as λ .

Throughout this paper we will be working with various tree-structured object languages.
These object languages will be represented as algebraic data types, either in Stratego or in
Haskell. In both cases, we typeset data-type constructors in sans-serif font.

As the distinction between the semantics of different strategic/generic languages can
be quite subtle, we need to introduce some precise terminology for discussing algebraic
data types. We recommend that the reader does not try to internalise all these definitions
immediately, but refers back to this section as needed.

• The proper components of a value x are the arguments to the constructor of x.
• The components of a value x are its proper components, as well as x itself.
• The proper substructures of x are the proper components of x, and those components’

proper substructures.
• The substructures of x are its proper substructures, as well x itself.
• Two substructures are independent if neither is a substructure of the other.
• The similarly typed proper components/substructures of x are those that have the

same type as x.
• The maximal elements of a set of substructures are those that are not a proper

substructure of any other element.
• A node is a substructure that can be targeted by a rewriting rule.
• Child nodes are the maximal independent proper substructures of a node that are

themselves also nodes.

Which substructures can be targets for a rewriting rule, and hence are considered to be
nodes, varies between individual strategic/generic languages, so is not defined in general.
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2.2 Stratego

Stratego is a strategic programming language designed to operate on an arbitrary object
language. The Stratego language is part of the larger Stratego/XT toolkit (Visser, 2004;
Bravenboer et al., 2008), which provides additional tools such as parsers and pretty printers
to convert between the object language and its representation as an algebraic data type
within Stratego. Recently, Stratego has been integrated with the Eclipse integrated devel-
opment environment, as part of the Spoofax Language Workbench (Kats & Visser, 2010).

As an example (adapted from Bravenboer et al., 2008), a simple object language of
integer addition could be defined in Stratego as follows:

constructors
Add : Exp∗Exp → Exp
Int : INT → Exp

That is, an expression is either the addition of two expressions, or an integer. Integers,
floats and strings are built-in types in Stratego. Although the constructors are assigned
type signatures, Stratego is not a typed language — the Stratego compiler only checks that
the arities of these constructor definitions match their usage (Bravenboer et al., 2008).

Rewriting rules over this object language can be defined in the form name :pat1 → pat2,
where name is the name of the rule, pat1 is a constructor pattern defining which nodes the
rule can target, and pat2 is the result of the rule. For example, the commutativity and left-
unit laws of addition can be expressed as rewriting rules as follows:

rules
commutativity :Add (e1,e2) → Add (e2,e1)
leftUnit :Add (Int (0),e) → e

Note that e, e1 and e2 are meta-language variables that can match any node.
Rewriting rules can either succeed or fail. The typical cause of failure is when pat1 does

not match the node that the rule is being applied to. Stratego also provides two built-in
rewriting rules:

• id is the identity rewriting rule that always succeeds;
• fail is the always-failing rewriting rule.

As well as rewriting rules, Stratego also provides some built-in strategies, which provide
a means of combining rewriting rules. Some representative strategies are as follows:

• r1 ; r2 is sequential composition: apply r1, then apply r2, requiring both to succeed;
• r1 <+ r2 is deterministic choice (or “catch”): apply r1, but if it fails then apply r2;
• all(r) is a shallow traversal: apply r to all child nodes, requiring all to succeed.

Note that strategies (and rewriting rules) have a notion of a “current node”, and that the
all (r) strategy shifts the current node to its children when applying r. In Stratego, a node’s
children are its proper components, excluding the built-in string, integer and float types.

Using these basic strategies, more complex strategies can be defined. For example, a
strategy that catches a failed rewrite with the identity rewrite (and thus always succeeds)
can be defined as follows:

strategies
try (r) = r <+ id
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More interestingly, we can define strategies that traverse the entire tree. For example,
the following strategies apply a rewriting rule to all nodes in the tree, as either a top-down
(pre-order) or bottom-up (post-order) traversal:

strategies
alltd (r) = r ; all (alltd (r))
allbu (r) = all (allbu (r)) ; r

We call these deep traversal strategies as they recursively descend through the nodes of
the tree. In contrast, we call all a shallow traversal strategy because it descends only to a
node’s children, and no further.

Strategies can be invoked from within a rule by enclosing them in angled brackets. For
example, the right-unit law of addition can be defined by sequencing commutativity and
leftUnit, and applying them to a node:

rules
rightUnit : e → 〈 commutativity ; leftUnit 〉 e

Using this programming idiom, several rewriting systems have been implemented on
top of Stratego and related tools, including Stratego itself, optimisers, static analysers,
pretty printers, and frameworks for syntactic language extensions (Erdweg et al., 2011,
2012; Erdweg & Rieger, 2013). We have only given a cursory overview of the essence of
Stratego here, and the interested reader is referred to the Stratego literature (Visser et al.,
1998; Visser, 2004; Bravenboer et al., 2008).

2.3 Selective traversals

Stratego’s shallow traversal all descends into every child node, and the deep traversals alltd
and allbu descend into every node in the tree. While this is often the required behaviour, it
is sometimes desirable to exclude some nodes from a traversal. This could be for semantic
reasons: for example, when performing single-variable substitution on a representation of
the lambda calculus, a traversal should not descend past a rebinding of the variable being
substituted (shadowing). Alternatively, it may be for performance reasons: excluding nodes
that are known not to contain any substructures that will be modified by the traversal.
This can significantly improve the efficiency of traversals, so much so that entire libraries
(e.g. Alloy (Brown & Sampson, 2009); Uniplate (Mitchell & Runciman, 2007)) have been
designed around enabling it.

A traversal that descends into some nodes but not others is called a selective traversal.
Selectivity comes in two forms: static selectivity, where it is known at compile-time that
certain nodes are never descended into, and dynamic selectivity, where whether to descend
into a particular node is determined by a run-time predicate. Static selectivity is more
efficient than dynamic selectivity, as it allows compiler optimisations to be applied, and
avoids the need for the run-time checks.

2.4 Approaches to strategic and generic programming

Strategic programming has been implemented in several mainstream languages, including
Standard ML (Visser et al., 1998), Java (Balland et al., 2008) and Haskell
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(Lämmel & Visser, 2002). The Haskell implementation Strafunski was the original inspira-
tion for KURE. Strafunski follows in the tradition of Stratego, but adds types to rewriting
rules and strategies, and uses Scrap-Your-Boilerplate (SYB) (Lämmel & Peyton Jones,
2003) generic programming to implement generic traversals over arbitrary data types. We
will not discuss the specific features and limitations of Strafunski in this article; instead we
will discuss more generally the SYB approach to generic traversals.

Strategic programming in a typed setting resembles datatype-generic programming, to
which there are a rich variety of approaches. To date, the most popular language for
implementing approaches to generic programming has been Haskell, though there have
also been implementations in Scala (Moors et al., 2006; Oliveira & Gibbons, 2010) and
Agda (Löh & Magalhães, 2011). In this article we compare only with the approaches to
generic programming that are most similar to strategic programming: those that focus on
traversing data rather than on reflecting the structure of types.

In Section 6 we extensively compare KURE to the Uniplate (Mitchell & Runciman,
2007) and conventional SYB (Lämmel & Peyton Jones, 2003) approaches. These are
well-documented and have the best-maintained implementations of the traversal-centric
approaches. Other similar approaches include Smash (Kiselyov, 2006), Alloy (Brown &
Sampson 2009), Compos (Bringert & Ranta, 2008), and Multiplate (O’Connor, 2011).
We already mentioned Alloy for its emphasis on selective traversal. Multiplate has the
most similar representation of traversal to KURE: its central value is a record of rewrites,
which is nearly isomorphic to a KURE rewrite over a universe (see Section 3.2). The
distinguishing features of Smash and Compos are not relevant to this article, so we will
not discuss them here.

Our focus is on generic traversals, but there are also alternative approaches that support
functions beyond traversals. The primary line of research explores alternative ways to re-
flect the structure of types and thereby define extensible and generic functions. We refer to
the interested reader to the surveys (Hinze & Löh, 2007; Rodriguez Yakushev et al., 2008)
for discussions of most such libraries before 2009. The subsequent work culminates in
GHC Generics (Magalhães et al., 2010), which situates the type reflection and extensibility
in two corresponding language features: type families and type classes, respectively.

Finally, Van Noort et al. (2010) have applied the modern generic foundations specifically
to rewriting. Their key innovation compared to other embedded implementations of generic
programming is a generic intensional representation of rewriting rules as a data type,
rather than as a function, in the host language. This allows rules to be expressed more
concisely, particularly those that contain meta-variables. The data-type representation also
makes rewriting rules more amenable to manipulation and analysis than an (opaque) host-
language function, albeit at some efficiency cost.

2.5 Related work

There have been many systems for supporting the translation of internal representations of
programs using strategic programming concepts. A number of such systems improve the
ability to provide core language constructions, and support for user-visible extensibility.
SugarJ (Erdweg et al., 2011), which is built on Stratego, allows libraries to augment
Java with syntactical extensions, and includes support for using Stratego rules directly.
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SugarHaskell (Erdweg et al., 2012) applies the same ideas but with Haskell as the base
language, while Sugar* (Erdweg & Rieger, 2013) generalises the approach to abstract
over the base language. With Fortified Macros (Culpepper & Felleisen, 2010; Culpep-
per, 2012), new syntax can be supported with improved support for error checking and
better error messages, using pattern-match–style rewriting rules. KURE as a library has a
fundamentally orthogonal concern: KURE is designed for rewriting internal syntax that is
represented as an algebraic data structure.

Transformation systems have also been used as a basis for impressive language en-
deavours in the space of mechanised meta theory. For example, the K framework (Lazar
et al., 2012) has been used to provide a best-in-class operational semantics for C (Ellison
& Roşu, 2012), and PLT Redex (Felleisen et al., 2009) uses transformations as a basis
for authoring operational semantics (Klein et al., 2012). KURE has a significantly more
modest goal: supporting the rewriting of tree-structured data using techniques from generic
programming and design patterns from strategic programming.

3 Strongly typed strategic programming

In untyped strategic programming languages such as Stratego, a common source of pro-
gramming errors is rewriting rules that can produce ill-formed terms (Erdweg et al., 2014).
A wide class of such errors can be prevented by using typed algebraic data types to
represent nodes in the tree, thereby constraining the possible children that each node can
have. However, this poses the challenge of how to assign types to rewriting rules and
strategies. The main difficulty is assigning types to generic traversal strategies that should
operate over nodes of any type. In this section we consider this challenge, and describe
how KURE addresses it with a mixture of static and dynamic typing.

3.1 Typing transformations and rewrites

First, we make a distinction between rewriting rules that preserve the type of a node, and
rewriting rules that can change the type of a node. We will refer to the former as rewrites,
and the latter as transformations. In a strongly typed setting, a rewrite can be used to
modify a node in the tree, whereas a transformation cannot because the resulting tree may
not be type correct. However, a transformation can be used to project information from a
node, or multiple transformations can be composed to form a rewrite.

Let the type T σ τ denote a transformation from a node of type σ to a node of type τ .
Then let R τ denote a rewrite over a node of type τ , and let us define R to be a synonym
for the special case of T where both parameters are the same:

R τ = T τ τ

Using R and T, it is straightforward to assign types to the following Stratego strategies:

id :: R τ -- identity rewrite
fail :: T σ τ -- failing transformation
(;) :: T ρ σ → T σ τ → T ρ τ -- sequential composition
(<+ ) :: T σ τ → T σ τ → T σ τ -- deterministic choice
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3.2 Typing generic traversals

Now consider assigning a type to Stratego’s all strategy. If all nodes in the object language
have the same type τ , then this is straightforward:

all :: R τ → R τ

However, if the object language is represented by multiple algebraic data types, then this
is inadequate. Consider the situation where the types of some (or all) of the children of a
node differ from their parent. In that case, a rewrite of the above type could only apply its
argument rewrite to children of the same type as the parent — a significant shortcoming.

For example, consider the following algebraic data types (representing a small language
of declarations and expressions):

Decl = Id×Expr
Expr = Id +Expr×BinOp×Expr +Decl×Expr

Given a rewrite r :: R Expr, then we could apply all r to a node of type Expr, and r would
be applied to all Expr children. However, applying all r to a Decl node would be prohibited
as ill-typed, even though we should be able to apply r to the Expr child.

A possible alternative would be to give all a more general type:

all :: R σ → R τ

KURE does not use this type however, as it does not relate σ and τ at all, and so all cannot
use the argument rewrite in any meaningful way — without run-time type comparisons.
The run-time comparison approach has been taken by Dolstra & Visser (2001); Dolstra
(2001), who invent a language that includes a run-time type-case inside traversal combi-
nators. This is also essentially the approach taken by Strafunski using SYB (Lämmel &
Visser, 2002), as we will discuss in Section 6.

Ideally, we would like generic traversal strategies to accept a set of distinctly typed
rewrites as an argument, one for each child. However, this approach would require us to
introduce sets of rewrites as a new first-class notion, and then define additional strategies
to operate on these sets, and to combine them with our existing Rs and Ts. This is possible,
indeed it is the approach taken by the Multiplate library (O’Connor, 2011), but it is not the
approach that KURE takes. Instead, we reuse the R type as the single argument to all. The
challenge is finding a type υ such that R υ encodes a set of rewrites.

One such type is an algebraic (disjoint) sum type. If a node of type τ has n possible
children with types τ1,τ2, . . . ,τn, then we can define the sum type:

υ = τ1 + τ2 + · · ·+ τn

and the type of all could then be:

all :: R υ → R τ

For example, if τ is Decl, then we would have:

υ = Id +Expr
all :: R υ → R Decl

A disadvantage of using a sum type in this way is that it admits some non-type-
preserving rewrites. This can be seen if we expand the R synonym:

R υ = T υ υ = T (τ1 + τ2 + · · · + τn) (τ1 + τ2 + · · · + τn)
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That is, a rewrite could transform a child of one type into a child of another type. To
retain type safety with this approach, KURE performs dynamic type checks during generic
traversals. Any such type errors are handled by having the rewrite fail. By comparison,
Multiplate’s set approach has more type precision, but leads to less composable transfor-
mations.

That said, the above type for all is not yet very composable — for example, the Stratego
definitions of alltd and allbu (Section 2.2) would not type check, as υ and τ are not the
same type. To address this, we generalise from a sum of child types to a sum of the types
of all nodes in the tree. We call this generalised sum type a universe type. We then modify
the type of all such that its argument and return types are rewrites over the same universe.
For example:

υ = Decl+Expr + Id +BinOp
all :: R υ → R υ

This type is composable, and leads to deep traversals of the same type. For example:

alltd :: R υ → R υ
alltd (r) = r ; all (alltd (r))

A universe need not contain all node types in the tree; it could contain only a subset of the
node types. In this case, all r could only traverse nodes whose types inhabit that universe,
and could only target children whose types inhabit that universe. That is, the universe acts
as an index defining a statically selective traversal (Section 2.3). Consequently, all is an
ad-hoc polymorphic (Strachey, 1967) function: it exhibits non-uniform behaviour when
instantiated to different universe types.

4 KURE implementation

In this section we describe how the ideas in Section 3 are implemented as a Haskell-
embedded domain-specific language. We begin by describing the main aspects of KURE
that are required by most use cases: side-effecting rewrites (Section 4.1); strategies (Sec-
tion 4.2); and generic traversals using a universe (Section 4.3.1). We then discuss more
advanced aspects of KURE that may only be needed for some use cases: traversals over
multiple universes (Section 4.3.2); traversals that distinguish nodes based on their location
rather than their type (Section 4.3.3); support for maintaining a context during generic
traversals (Section 4.4); and strategies and traversals involving change detection (Section
4.5).

4.1 Transformations, rewrites and side-effects

The central implementation decision is how to represent the T type. Haskell is a purely
functional language, so simply defining T as a function,

type T a b = a → b

would be inadequate, as it does not allow a transformation to perform any side effects.
Side effects are an inherent part of strategic programming, most notably the side effects of
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class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b
fail :: String → m a

pure :: Monad m ⇒ a → m a
pure = return
(<$>) :: Monad m ⇒ (a → b) → m a → m b
f <$> ma = ma >>= λa → return (f a)
(<∗>) :: Monad m ⇒ m (a → b) → m a → m b
mf <∗> ma = mf >>= λ f → (f <$> ma)

Fig. 1. Monads in Haskell, and some derived functions.

failure, and catching failure. Additionally, specific use cases may need to support arbitrary
side-effecting operations, such as fresh name generation.

In Haskell, the standard way of encoding side effects is to use a monadic (Wadler, 1992)
structure. Furthermore, the KURE library needs to be applicable to different use cases,
with arbitrary side effects, so the library design should not commit to any specific set of
effects. Therefore, rather than using a concrete monad, transformations are parameterised
over an arbitrary monad. This leads to the following implementation of T, where m is the
monad parameter1:

type T m a b = a → m b

As before, we will define rewrites as a synonym for a special case of transformations:

type R m a = T m a a

Note that in Haskell, the constraint that the parameter m must be a monad is specified on
the operations over T , rather than on the T type itself.

However, an arbitrary monad does not support catching failure, and indeed it is some-
what of a historical accident that Haskell’s Monad type class (Figure 1) even supports
throwing failures. As catching failure is necessary to encode the deterministic-choice
strategy, KURE provides a subclass of Monad that provides a catching operation:

class Monad m ⇒ MonadCatch m where
catchM :: m a → (String → m a) → m a

The purpose of the String argument in fail and catchM is to pass error messages; this
allows KURE strategies to provide informative error messages for failing transformations.
As error messages are not the topic of this article, we will not discuss them further.

Using the function space of the host language is not the only way to represent trans-
formations; an alternative encoding is as pairs of expressions, augmented with some ad-
ditional infrastructure to represent meta-variables. Most embedded implementations of
strategic/generic programming take the former approach, but Van Noort et al. (2010) have
shown that the latter approach can be taken without any additional boilerplate burden on
the user.

Finally, we note that while an implementation of T as a (partial) function may appear to
restrict us to deterministic transformations, the monadic structure allows non-deterministic

1 Actually, T needs to be a newtype, rather than a type synonym, because type synonyms cannot be partially
applied and to avoid ambiguous type class instances. However, we elide that detail in this article to avoid the
syntactic clutter introduced by the data constructor.
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instance Monad m ⇒ Monad (T m a) where
return :: b → T m a b
return b = λ → return b
fail :: String → T m a b
fail s = λ → fail s
(>>=) :: T m a b → (b → T m a d) → T m a d
t >>= f = λa → (t a >>= λb → (f b) a)

instance MonadCatch m ⇒ MonadCatch (T m a) where
catchM :: T m a b → (String → T m a b) → T m a b
catchM t1 t2 = λa → catchM (t1 a) (λ s → (t2 s) a)

Fig. 2. The Monad and MonadCatch type class instances for T .

transformations to be encoded, either by using a monad that supports pseudo-random
choice, or a list-like monad that computes multiple results.

4.2 Strategies

We now need to implement strategies over T . The identity and sequential-composition
strategies, which in KURE we denote as idR and >>>, can be defined straightforwardly
as the identity and composition operations in the Kleisli category:

idR :: Monad m ⇒ R m a
idR = return
(>>>) :: Monad m ⇒ T m a b → T m b d → T m a d
t1 >>> t2 = λa → (t1 a >>= t2)

The T type itself forms a monad, as defined in Figure 2. The definition is fairly standard:
T m a forms a monad that corresponds to applying the Reader monad transformer (Liang
et al., 1995) to the underlying monad m, where the environment is the argument node a.
This monadic structure corresponds to a strategy that applies multiple transformations to
the same node, with the choice of subsequent transformations depending on the results of
prior transformations. We will give some examples of this in Section 5.4.

Failure and catching infrastructure are provided by the fail and catchM methods of the
Monad and MonadCatch classes. Exact analogues of Stratego’s fail and <+ strategies
(which do not pass error messages) can then be easily defined:

failT :: Monad m ⇒ T m a b
failT = fail "failT"
(<+ ) :: MonadCatch m ⇒ T m a b → T m a b → T m a b
t1 <+ t2 = catchM t1 (λ → t2)

New strategies can then be constructed in the same manner as in Stratego, for example:

tryR :: MonadCatch m ⇒ R m a → R m a
tryR r = r <+ idR

Note that the type signatures can be entirely inferred by the Glasgow Haskell Compiler,
and so can be omitted by a KURE user if desired.
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4.3 Universe-indexed generic traversals

We now turn to the main implementation challenge: implementing generic traversals using
universe types. This subsection is divided into three parts:

• Section 4.3.1 demonstrates the main idea, and gives an example of standard KURE
usage using a single universe that treats all nodes of the same type equally.

• Section 4.3.2 explains how to support statically selective traversals by using multiple
universes.

• Section 4.3.3 describes how to define traversals that distinguish between nodes of
the same type, based on their location in the tree.

4.3.1 Walking the tree

Recall that the key idea from Section 3.2 is for all to be ad-hoc polymorphic in its universe
type. KURE implements this using the following type class, where u is the universe type:

class Walker u where
allR :: MonadCatch m ⇒ R m u → R m u

Notice that the monad m is not a class parameter — instead the allR method is parametri-
cally polymorphic (Strachey, 1967) in any MonadCatch m. This choice brings expressive-
ness benefits, as we will explain in Section 4.5.

The KURE library provides a suite of traversal strategies defined using allR. For exam-
ple, Stratego’s alltd strategy is defined as follows:

alltdR :: (Walker u,MonadCatch m) ⇒ R m u → R m u
alltdR r = r >>> allR (alltdR r)

Providing the Walker instance for each universe is the responsibility of the KURE user,
and this is how the user customises the traversal behaviour for each universe. To demon-
strate how a KURE user would define a universe and Walker instance, we will use
the following representation of an object language as a running example. To avoid confu-
sion between KURE implementation code and user code, we enclose the latter in
boxes.

data Prog = PrgCons Decl Prog | PrgNil
data Expr = Lit Literal | Var Name | Append Expr Expr | Let Decl Expr
data Decl = Decl Name Expr
type Name = String
type Literal = String

This models a small expression language with non-recursive let-bindings for building
strings. We deliberately designed this example to use strings in two semantically different
ways (as variable names and as literals), so that we can later demonstrate how KURE can
distinguish between the two during traversals.

The first task for the KURE user is to define a universe. Let us assume she wants to
traverse programs, declarations and expressions, but not variable names or string literals.
That is, she wants to define a statically selective traversal that omits strings. (In Haskell,
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injectT :: (Monad m, Injection a u) ⇒ T m a u
injectT = λa → return (inject a)
projectT :: (Monad m, Injection a u) ⇒ T m u a
projectT = λu → case project u of

Just a → return a
Nothing → fail "projectT"

promoteR :: (Monad m, Injection a u) ⇒ R m a → R m u
promoteR r = projectT >>> r >>> injectT
extractR :: (Monad m, Injection a u) ⇒ R m u → R m a
extractR r = injectT >>> r >>> projectT

Fig. 3. Promotion and extraction combinators.

String is implemented as a synonym for a singly linked list of characters.) She begins by
defining a universe consisting of the three node types she wishes to traverse:

data U = UP Prog | UD Decl | UE Expr

A common need when working with universe types is to inject nodes into a universe, or
project them out of a universe. To aid this, KURE provides a type class Injection,

class Injection a u where
inject :: a → u
project :: u → Maybe a

along with several conversion functions for converting transformations and rewrites to and
from universe types (Figure 3). The important point about these conversion functions is
that a failed projection will result in a failing transformation. Consequently, a rewrite over
a universe type that is applied to a node will fail if it does not preserve the node type
(this provides the dynamic type checking mentioned in Section 3.2). Injection instances
are straightforward to define, as exemplified by the following instance for Expr:

instance Injection Expr U where
inject = UE
project (UE expr) = Just expr
project = Nothing

Having declared Injection instances for a universe, the user can then declare a Walker
instance. This requires the user to decide which substructures should be considered child
nodes, but the definition of allR is otherwise systematic. The essence of the definition is as
follows. First, deconstruct the node by pattern matching. Then, for each child node, extract
a specialised rewrite from the argument rewrite (which operates over the universe type),
and apply that rewrite to child. Finally, reconstruct the node by reapplying the construc-
tor(s). As an example, we present the Walker instance for the U universe in Figure 4.

Observe that the traversal does not descend below variable or literal nodes. These are
the non-systematic parts of the definition that had to be decided by the user. These user
decisions prevent this definition of allR from being generated automatically. Additionally,
we will later (Section 4.4) augment the Walker class to support maintaining a context,
which will also interfere with automatic generation of allR definitions.
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instance Walker U where
allR :: MonadCatch m ⇒ R m U → R m U
allR r u = case u of

UP p → UP <$> allProg p
UD d → UD <$> allDecl d
UE e → UE <$> allExpr e

where
allProg :: R m Prog
allProg PrgNil = pure PrgNil
allProg (PrgCons d p) = PrgCons <$> (extractR r) d <∗> (extractR r) p
allDecl :: R m Decl
allDecl (Decl n e) = Decl <$> pure n <∗> (extractR r) e
allExpr :: R m Expr
allExpr (Var n) = Var <$> pure n
allExpr (Lit l) = Lit <$> pure l
allExpr (Append e0 e1) = Append <$> (extractR r) e0 <∗> (extractR r) e1
allExpr (Let d e) = Let <$> (extractR r) d <∗> (extractR r) e

Fig. 4. An example of a typical Walker instance.

However, it is possible to generate a Walker instance for a particular formulaic traversal.
Indeed, an earlier version of KURE (Gill, 2009) used Template Haskell (Sheard & Peyton
Jones, 2002) to generate both universe types and corresponding Walker instances. Those
instances treated every proper component of a node as a child, and performed no context
updates. For our example string language, that would mean treating the String represen-
tation of variables and literals as the sole child of a variable or literal node, and the head
and tail of every String would be children of that String. Thus, for example, deep traversals
would visit every character of every variable name and string literal.

Ideally, the user would be able to take a hybrid approach of mechanically deriving
the systematic cases, while manually overwriting the non-systematic cases. Investigating
support for this sort of partial derivation is ongoing work (Frisby et al., 2012).

4.3.2 Alternative universes

We now consider using multiple universes to provide multiple statically selective traversals
over the same object language. As an example, consider the situation where a user wants
a traversal that descends into strings, without losing the existing capability to perform
traversals that do not descend into strings. She begins by defining a new universe,

data U1 = UP1 Prog | UD1 Decl | UE1 Expr | US1 String

and declaring corresponding Injection instances. She then defines a Walker instance for U1.
This is mostly the same as the instance for U, but with three additions to allR. First, there
is an additional local function allString:

allString :: R m String
allString [ ] = pure [ ]
allString (x : xs) = (:) <$> pure x <∗> (extractR r) xs
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Second, the Var and Lit clauses of allExpr are modified such that the traversal descends
into the string:

allExpr (Var n) = Var <$> (extractR r) n
allExpr (Lit l) = Lit <$> (extractR r) l

Third, there is an extra case alternative when pattern matching on the universe:

US1 s → US1 <$> allString s

This may seem like a lot of code duplication, but in practice allR definitions operating
over the same object language can be built out of a set of reusable congruence combina-
tors (Visser, 2004), which factor out the duplication. We will demonstrate this in Section
5.2.

When performing a traversal, the user now has the option of which universe to use; that
is, she can choose between statically selective traversals. We will give some examples of
this in Sections 4.4 and 5.4.

4.3.3 Locations not types

Thus far we have treated all nodes of the same type in the same manner. However, a KURE
traversal can distinguish between nodes based on their location, even if their types are the
same. For example, imagine a user desired the U1 traversal to descend into string literals
but not into variables names, despite them both having type String. This could be achieved
by changing the Var clause of allExpr to the following:

allExpr (Var n) = Var <$> pure n

Alternatively, if a user wished to support both behaviours, she could define a new universe
with a Walker instance defined in this way. She could also define a universe for traversals
that descend into variables but not literals.

It is also possible to define a traversal that descends into multiple nodes of the same type,
yet treats them distinctly based on their location. As this is not quite so straightforward, we
defer the details to the Appendix.

4.4 Maintaining a context

It is often useful for transformations to have access to a context, and for this context to be
updated automatically during generic traversals. The motivating example is storing the def-
initions of variable bindings in scope (when working with an object language that has vari-
able bindings), to support local fold/unfold (Burstall & Darlington, 1977) transformations.
One way to encode a context would be to constrain m to be a Reader monad (Liang et al.,
1995), but, for subtle reasons that we will discuss in Section 4.5, it is beneficial to keep
the context separate from the monad. Instead, we make the context type (c) an additional
parameter of T , and make the context available as an argument to each transformation:

type T c m a b = c → a → m b
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The strategy definitions from Section 4.2 need to be updated accordingly, but the changes
are fairly minor. The changes correspond to applying (another) Reader monad transforma-
tion (Liang et al., 1995), where the additional environment is the context c.

As an example, we will consider adding a context to our string expression language. Let
us assume the desired context is a list of all declarations currently in scope:

type Context = [Decl ]

Having these declarations available allows, for example, variables to be inlined locally. A
rewrite to perform such inlining can be defined as follows2

inline :: Monad m ⇒ R Context m Expr
inline = λc e → case e of

Var n → lookupName n c
→ fail "not a Var"

where
lookupName :: Monad m ⇒ Name → Context → m Expr
lookupName [ ] = fail "Name not found"

lookupName n (Decl n′ e : c) = if n == n′

then return e
else lookupName n c

We now need to consider how to correctly maintain the context during generic traversals.
The key idea is to define all generic traversals in terms of allR. If we can ensure that allR
performs all desired context updates, then all generic traversals will update the context.
Furthermore, the definition of allR will be the only place that the context is modified — all
other strategy definitions will only read the context.

To enable this, we add the context to the Walker class as an additional class parameter:

class Walker c u where
allR :: MonadCatch m ⇒ R c m u → R c m u

It is important that, unlike the monad m, the context be a class parameter rather than
parameter of the allR method. This is because we need to instantiate the context to a
concrete data type so that we can modify it during the generic traversal.

As an example, consider the following representative fragment of the modified Walker
instance for the U universe (from Section 4.3.1):

instance Walker Context U where
allR :: MonadCatch m ⇒ R Context m U → R Context m U
. . .

allExpr c (Append e0 e1) = Append <$> (extractR r) c e0 <∗> (extractR r) c e1
allExpr c (Let d e) = Let <$> (extractR r) c d <∗> (extractR r) (d : c) e

. . .

Observe that the context is passed as an argument to the rewrites being applied to the chil-
dren, and that in the case of the let-body, the context is updated by adding the

2 We assume no variable shadowing for simplicity.
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let-bound declaration. We reiterate that because this choice of context update is made by
the user, it is not possible to mechanically derive this Walker instance.

It is now possible to define deep generic traversals that make use of the context. For
example, the following traversal will inline all variable occurrences in an expression:

inlineAll = alltdR (tryR (promoteR inline))

(The use of promoteR is necessary because inline is a rewrite over Expr, whereas alltdR
expects a rewrite over a universe as its argument.)

As inlineAll has not been ascribed a type signature, its type is inferred to be polymorphic
in its universe type. The traversal can thus be instantiated to any universe containing Expr;
that is, the user can choose between statically selective traversals. Variables only occur
as expressions, not within literals or names, so it would be more efficient to instantiate
inlineAll to the U universe than the U1 universe.

4.5 Change detection and monad transformers

When defining a strategy, it can be useful to be able to determine not just whether a rewrite
succeeded, but whether it actually modified the node it was applied to. To enable this,
KURE supports an (optional) convention whereby rewrites that do not modify the node
should fail, and that repeated application of a rewrite should fail after a finite number of
iterations. When following this convention, a rewrite that can result in an identity rewrite
(such as tryR) may be used, but only as a sub-component of a rewrite that is guaranteed
to either make a change or fail. For example, the following repeatR strategy recursively
applies a rewrite until it fails, returning the result before the failure:

repeatR :: MonadCatch m ⇒ R c m a → R c m a
repeatR r = r >>> tryR (repeatR r)

To further support this convention, KURE provides a monad transformer that can be
used to convert a rewrite defined for an arbitrary monad into a rewrite that succeeds if at
least one sub-rewrite succeeds, converting any failures into identity rewrites. We omit the
implementation details, but the main idea is to use a writer monad transformer over the
monoid of Boolean disjunction, with the Boolean value representing whether at least one
sub-rewrite has succeeded. This allows us to derive from allR traversals such as

anytdR :: (Walker c u,MonadCatch m) ⇒ R c m u → R c m u

which is a variant of alltdR that succeeds if the argument rewrite succeeds at any node.
Note that this differs from alltdR (tryR r), which will always succeed.

For this monad-transformer technique to work in combination with generic traversal
strategies, it is essential that the allR class method be parametrically polymorphic in its
monad parameter. If the monad was a class parameter, then the Walker instance would be
specialised to that particular monad, and could not be used with a transformed monad. This
is the principal reason why the monad is not a class parameter, and, consequently, why the
monad and context are kept separate.
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This monad-transformer technique is taken from the SYB library, and KURE uses sev-
eral transformers to define a suite of generic traversal combinators. These derived traversals
include transformations as well as rewrites. For example,

collectT :: (Walker c u,MonadCatch m) ⇒ T c m u b → T c m u [b]

applies its argument transformation to every node in the tree, ignoring failures and collect-
ing the results of successes in a list. Because collectT in defined in terms of allR, each appli-
cation of the argument transformation to a sub-node will occur in an appropriately updated
context. Without transforming the monad, it would not be possible to define collectT in
terms of allR, and thus the user would be required to define an additional generic traversal
from which collectT could be defined. Such an additional traversal would also need to
include context updates in its definition, as it would be independent of allR.

5 Case study: HERMIT

The principal use-case of KURE to date has been in the HERMIT system (Farmer et al.,
2012; Sculthorpe et al., 2013). Indeed, much of the development of KURE has been driven
by the needs of HERMIT. As this is a “realistic” use of KURE, we will now present
HERMIT as a case study of KURE usage. During the case study we will also introduce
congruence combinators: a technique to allow code reuse when defining generic traversals
over multiple universes.

HERMIT is an experimental plugin for the Glasgow Haskell Compiler (GHC) that
provides a toolkit to support user-guided transformations during compilation. Haskell pro-
grams are represented as abstract syntax trees inside GHC, and HERMIT makes extensive
use of KURE to rewrite these abstract syntax trees.

HERMIT and GHC are systems undergoing active development, and the details of their
implementation, and the use of KURE, continue to fluctuate. Consequently, we will not
attempt to present the exact HERMIT source code in this section. Instead, we will give a
simplified presentation that demonstrates the key points of KURE usage in this project. As
previously, we will enclose in boxes any code that is not provided by the KURE library.

5.1 GHC Core universes

HERMIT operates on GHC’s internal intermediate language, GHC Core. GHC Core is
an implementation of System FC, which is System F (Girard, 1972; Reynolds, 1974)
extended with let-binding, constructors, and first-class type equalities (Sulzmann et al.,
2007). KURE is used for rewriting nodes in the GHC Core abstract syntax tree, and for
projecting information from nodes using transformations.

A representative subset of GHC Core is shown in Figure 5. The majority of HERMIT’s
transformations and rewrites act on Program, Bind, Def , Expr and Alt nodes, while only a
few act on Coercion and Type nodes. Observe that Bind, Def , Expr and Alt nodes are mutu-
ally recursive, but that neither they nor Program nodes appear as substructures of Coercion
or Type nodes. Consequently, a statically selective traversal that omits Coercion and Type
nodes will not change the semantics of a traversal that only acts on the former set of nodes,
but will yield significant efficiency gains by avoiding unnecessarily traversing Coercion
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type Program = [Bind ]
data Bind = NonRec Var Expr | Rec [Def ]
data Def = Def Var Expr
data Expr = Var Var | Lit Literal

| App Expr Expr | Lam Var Expr
| Let Bind Expr | Case Expr Var Type [Alt ]
| Cast Expr Coercion | Type Type

type Alt = (AltCon, [Var ],Expr)
data Coercion = CoVar Var | Refl Type | Sym Coercion | Trans Coercion Coercion | . . .
data Type = TyVar Var | Fun Type Type | ForAll Var Type | . . .

Fig. 5. A representative subset of GHC Core.

and Type nodes. To support this, HERMIT defines two universes, one that includes types
and coercions (CoreTC), and one that does not (Core):

data Core = CProg Program | CBind Bind | CDef Def | CExpr Expr | CAlt Alt
data CoreTC = CCoercion Coercion | CType Type | CCore Core

5.2 Congruence combinators

Rather than define Walker instances for our two universes directly, we shall first define
congruence combinators (Visser, 2004) for the nodes in our tree. Congruence combinators
provide an abstract way of traversing a node that factors out the commonality of different
statically selective traversals. We will then define the Walker instances in terms of the
congruence combinators, thereby avoiding code duplication.

Each congruence combinator is specialised to a single node constructor, and takes as ar-
guments transformations to apply to each of the node’s children, and a function to combine
the results. For example, consider the following congruence combinator for App nodes:

appT :: Monad m ⇒ T c m Expr a1 → T c m Expr a2 → (a1 → a2 → b) → T c m Expr b
appT t1 t2 f = λc expr → case expr of

App e1 e2 → f <$> t1 c e1 <∗> t2 c e2
→ fail "not an App"

That is, an App node should be traversed by applying the argument transformations t1 and
t2 to the child nodes e1 and e2, and then combining the results by mapping the function f
over them. If the node is not an App, then the transformation should fail.

A useful specialisation of a congruence combinator is when the argument transforma-
tions are rewrites, and the function to combine the results is the node constructor:

appR :: Monad m ⇒ R c m Expr → R c m Expr → R c m Expr
appR r1 r2 = appT r1 r2 App

This is essentially a version of allR specialised to App nodes, a point that will be important
later. Note that because the number and type of its child nodes are known, appR can take
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one argument rewrite for each child, with each rewrite matching the type of the child, rather
than taking a single rewrite over the universe type as is done by allR.

The appT congruence combinator does not modify the context, and hence is poly-
morphic in its context parameter c. However, in general, if traversing the node should
cause a context update, then the congruence combinator for that node should update the
context accordingly. For example, the HERMIT context (HermitC) stores the set of variable
bindings in scope (among other things). Thus, a congruence combinator for Let nodes
needs to add the bindings to the context when traversing into the let-body:

letT :: Monad m ⇒ T HermitC m Bind a1 → T HermitC m Expr a2 → (a1 → a2 → b)
→ T HermitC m Expr b

letT t1 t2 f = λc expr → case expr of
Let bds e → f <$> t1 c bds <∗> t2 (addBindings bds c) e

→ fail "not a Let"

addBindings :: Bind → HermitC → HermitC
-- definition not given

While congruence combinator definitions are fairly systematic, they do require some
semantic knowledge of the object language. For example, consider the top-level Program
type, which is a list of bindings. Each Bind in the list could be considered a child of a
Program node. However, another interpretation could be that a (non-empty) list has exactly
two children: the binding group at the head of the list, and another program making up the
tail of the list. The latter interpretation is the one HERMIT uses, as that matches the scoping
behaviour of binding groups in GHC Core.

Defining congruence combinators for all nodes that we wish to traverse may seem like
a lot of work, but our experience with HERMIT has been that there is a significant pay-off
in the simplicity with which subsequent transformations can be defined. Furthermore, this
allows the context updates to be localised to one place. Any Walker instances that require
the same context updates can be defined using these congruence combinators (see Section
5.3), and any node-specific transformations can also use the congruence combinators to
apply transformations to descendant nodes — in both cases the context will be correctly
updated while doing so. This localisation makes it less likely that any contextual updates
will be accidentally omitted by the programmer, and also aids code maintenance.

Finally, we note that the notion of congruence combinators is not specific to HERMIT
or KURE, and can be used in any strategic programming language to express shallow
traversals over nodes in any object language.

5.3 Walker instances

Once a complete set of congruence combinators and Injection instances have been defined
for the nodes of the object language, then defining Walker instances is systematic. The
instances for the Core and CoreTC universes are presented in Figure 6. The key point is
that each congruence combinator is given extractR r as an argument for each child node that
should be traversed, and idR as an argument for each child node that should be omitted. The
main difference between the two instances is in allRexpr, as several of the Expr nodes have
Type or Coercion children (you may find it helpful to refer back to Figure 5). Additionally,
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instance Walker HermitC Core where
allR :: MonadCatch m ⇒ R HermitC m Core → R HermitC m Core
allR r = promoteR allRprog <+ promoteR allRbind <+ promoteR allRdef

<+ promoteR allRalt <+ promoteR allRexpr
where

allRprog :: R HermitC m Program
allRprog = progNilR <+ progConsR (extractR r) (extractR r)
allRbind :: R HermitC m Bind
allRbind = nonRecR (extractR r) <+ recR (extractR r)
allRdef :: R HermitC m Def
allRdef = defR idR (extractR r)
allRalt :: R HermitC m Alt
allRalt = altR idR idR (extractR r)
allRexpr :: R HermitC m Expr
allRexpr = varR idR <+ litR idR <+ appR (extractR r) (extractR r)

<+ lamR idR (extractR r) <+ letR (extractR r) (extractR r)
<+ caseR (extractR r) idR idR (extractR r)
<+ castR (extractR r) idR <+ typeR idR

instance Walker HermitC CoreTC where
allR :: MonadCatch m ⇒ R HermitC m CoreTC → R HermitC m CoreTC
allR r = promoteR allRprog <+ promoteR allRbind <+ promoteR allRdef

<+ promoteR allRalt <+ promoteR allRexpr
<+ promoteR allRcoercion <+ promoteR allRtype

where
allRprog :: R HermitC m Program
allRprog = progNilR <+ progConsR (extractR r) (extractR r)
allRbind :: R HermitC m Bind
allRbind = nonRecR (extractR r) <+ recR (extractR r)
allRdef :: R HermitC m Def
allRdef = defR idR (extractR r)
allRalt :: R HermitC m Alt
allRalt = altR idR idR (extractR r)
allRexpr :: R HermitC m Expr
allRexpr = varR idR <+ litR idR <+ appR (extractR r) (extractR r)

<+ lamR idR (extractR r) <+ letR (extractR r) (extractR r)
<+ caseR (extractR r) idR (extractR r) (extractR r)
<+ castR (extractR r) (extractR r) <+ typeR (extractR r)

allRcoercion :: R HermitC m Coercion
allRcoercion = coVarR idR <+ reflR (extractR r) <+ symR (extractR r)

<+ transR (extractR r) (extractR r)
allRtype :: R HermitC m Type
allRtype = tyVarR idR <+ FunR (extractR r) (extractR r)

<+ forAllR idR (extractR r)

Fig. 6. Walker instances for the Core and CoreTC universes.

the CoreTC instance has functions for traversing Type and Coercion nodes, which were not
needed in the Core case. In both cases, Var, Literal and AltCon nodes are not traversed.

Notice that having defined the context updates within the congruence combinators, we
do not need to update the context within each Walker instance. Furthermore, if HERMIT
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later adds more universes, it will be possible to define the corresponding Walker instances
using the existing congruence combinators.

5.4 Example rewrites and transformations

We will now give some examples of HERMIT rewrites and transformations. We begin with
a rewrite that converts the application of a lambda to a non-recursive let binding (a form of
β -reduction that preserves sharing). This can be defined succinctly as follows:

appLamToLet :: Monad m ⇒ R c m Expr
appLamToLet = do App (Lam v e2) e1 ← idR

return (Let (NonRec v e1) e2)

This definition exploits Haskell’s monadic do-notation to implicitly handle failure: if the
argument node does not match the pattern App (Lam v e2 e1) then this rewrite will fail,
invoking the fail method of the underlying monad m.

To apply this rewrite throughout the tree, we promote it to operate on the Core universe,
and apply the anytdR traversal strategy:

appLamsToLets :: (Walker c Core,MonadCatch m) ⇒ R c m Core
appLamsToLets = anytdR (promoteR appLamToLet)

This rewrite will convert any applications of lambdas in the tree to let expressions, and will
succeed if there is at least one such conversion. We use the Core universe rather than the
CoreTC universe for efficiency, as there are no lambdas within Type or Coercion nodes.

Thus far, the only monadic side effects used in this article have been failure, and catching
failure. As an example of an application-specific effect, some HERMIT rewrites need to
be able to generate globally fresh variables. HERMIT defines its own concrete monad
(HermitM), which provides an operation newVar :: HermitM Var, among others. This is
useful when, for example, defining a rewrite that introduces a let binding:

letIntro :: R c HermitM Expr
letIntro = λ e → do v ← newVar

return (Let (NonRec v e) (Var v))

As a final example, consider the task of collecting all variable occurrences in the tree.
This can be achieved using the library traversal collectT (from Section 4.5), in combination
with a user-defined local transformation (varOcc) that succeeds only if the current node is
a variable, returning that variable.

-- definition not given
varOcc :: T HermitC m CoreTC Var
collectVarOccs :: MonadCatch m ⇒ T HermitC m CoreTC [Var ]
collectVarOccs = collectT varOcc

We choose the CoreTC universe because GHC Core contains type variables and coercion
variables (beyond just value variables).
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5.5 User experience

Many of the features of KURE were motivated by the needs of HERMIT, including
support for: statically selective traversals; rewriting nodes of different types during the
same traversal; automatic maintenance of a context during generic traversals; and
the ability to detect when a successful rewrite actually modified its target. This combination
of features is not provided by any other library for strategic or generic
programming.

KURE transformations and strategies permeate the HERMIT code base, with the ma-
jority of user-facing commands being implemented by an underlying KURE transfor-
mation or rewrite. Overall, our experience (and that of the other HERMIT developers)
of using KURE has been extremely positive. The library strategies saved a substantial
amount of implementation effort, and the structured handling of context and monadic
effects (especially failure) has helped avoid errors and made code refactoring
easier.

Of particular note is that KURE’s universe types have proved especially amenable to
design changes. The initial HERMIT implementation (Farmer et al., 2012) only traversed
the Core universe, which was a deliberate design decision to avoid the inefficiency of
traversing types and coercions. However, as HERMIT developed we began to need to apply
transformations within types and coercions. The ability to define a new universe (CoreTC)
after much infrastructure was already in place, and to do so using the existing congruence
combinators, was immensely convenient.

Regarding programming style, we found that congruence combinators tend to be more
useful than the shallow generic traversal strategies. There were no cases where we wanted
to perform a shallow traversal without knowing the identity of the node constructor, and
hence we were always able to use a (more precise) congruence combinator. However,
HERMIT does make extensive use of deep generic traversal strategies.

Looking beyond HERMIT, the largest example of KURE use is the html-kure pack-
age (Gill, 2013), which layers the KURE interface on top of the HXT HTML parser
and pretty printer (Schmidt et al., 2012). Rewriting HTML is a task for which KURE
was not specifically designed, so that this was straightforward provides evidence that
KURE is more generally useful (indeed, we use this package to preprocess our research
group’s website). However, KURE needs to be used for many more applications before
we are in a position to fairly assess its ease of use compared to other strategic rewriting
systems.

6 Comparison of KURE to SYB, Uniplate and Stratego

In this section we compare and contrast KURE’s approach to generic traversals with three
other approaches: Stratego, Scrap Your Boilerplate (SYB) (Lämmel & Peyton Jones, 2003)
and Uniplate (Mitchell & Runciman, 2007). The focus of our comparison is the differing
choices that each approach makes as to which substructures of a node are considered “chil-
dren”, and how, given those choices, the generic traversal combinators of each approach
are typed. We also consider the consequences of these choices regarding modularity and
statically selective traversals.
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6.1 Identifying children

In Stratego, the children of a node are its proper components, excluding the built-in string,
integer and float types. SYB similarly takes the children of a node to be its proper compo-
nents, but it does not exclude any types. Instead, primitive types are considered to be nodes
with zero children.

In KURE, the user specifies which substructures of a node should be considered chil-
dren. Typically, these children are zero or more independent proper substructures of the
node (but may also be abstract retractions of the substructures, which allows different
substructures of the same type to be treated distinctly).

In Uniplate, the children of a node are determined by type. Specifically, the children
of a node of type τ are the maximal proper substructures of that same type τ . Uniplate
also provides an extension called Biplate, in which an additional type index σ is used. The
children of a Biplate node of type τ are the maximal substructures of that type σ . This use
of an ad-hoc polymorphic type to index a family of traversals has similarities with KURE’s
use of a universe type to index a family of traversals.

Thus, in Stratego and SYB children are determined by structure, in Uniplate children
are determined by type, and in KURE children are determined by location, as specified by
the user.

6.2 Typing a generic traversal

We will now compare the types of the generic traversal strategies in KURE, SYB and
Uniplate. We use Haskell for the comparison, but we present only the essence of each ap-
proach, not the actual Haskell library implementations. Strategies in Stratego are untyped,
so we mostly omit Stratego from the discussion.

The focus of our comparison will be the shallow traversal that requires success at every
child node: KURE’s allR strategy. The analogue in SYB is gmapM, while Uniplate has two
analogues: descendM and descendBiM. These can be defined as follows:

class Data τ where
gmapM :: Monad m ⇒ (forall σ. Data σ ⇒ σ → m σ) → (τ → m τ)

class Uniplate τ where
descendM :: Monad m ⇒ (τ → m τ) → (τ → m τ)

class Uniplate σ ⇒ Biplate τ σ where
descendBiM :: Monad m ⇒ (σ → m σ) → (τ → m τ)

These classes are analogous to KURE’s Walker class, with the type τ → m τ corresponding
to a rewrite.

The type of each shallow traversal is a consequence of which substructures are consid-
ered children. In SYB the children are all proper components of the node being traversed,
and so the argument rewrite to gmapM must be applicable at almost any type. The Haskell
implementation of SYB achieves this via rank-2 polymorphism (Peyton Jones et al., 2007).

The Uniplate shallow traversals have simpler types. As descendM treats only similarly
typed proper substructures as children, its rewrite argument need only be applicable at that
one type. The type of descendBiM is more general, allowing the type of the children to
differ from their parent, but still requiring all children to have the same type.
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Note that for both the SYB and Uniplate libraries, an applicative functor (McBride
& Paterson, 2008) rather than a monad would suffice, whereas a Monad is required for
KURE’s allR traversal. This is because allR takes a rewrite that operates on a universe
as an argument, and KURE needs the ability to fail in the (error) case that the argument
rewrite changes the child to a different summand. This is a disadvantage of the rewrite-
over-a-sum-type approach.

Finally, we note that while Stratego is conventionally an untyped language, there has
been recent work on adding dynamic type checks to Stratego, in the form of typesmart
constructors (Erdweg et al., 2014). These typesmart constructors dynamically check that
any node constructed by a transformation is well-typed, and cause the transformation to fail
if not. While implemented rather differently, in essence this is similar to KURE’s dynamic
check that a rewrite operating on a universe does not change the summand type: in both
cases the strategic programming notion of failure is invoked when a term is found to be
ill-typed by a dynamic check.

6.3 Defining a generic traversal

We will now present some example definitions of the generic shallow traversal in SYB
and Uniplate, using the same object language of string expressions that we introduced in
Section 4.3. To keep the examples concise, we only define traversals for Expr and Decl
nodes.

The intended SYB semantics entirely determine the definition of SYB’s shallow traver-
sal: it must target every proper component. A major advantage of this inflexibility is
that the definition can be derived mechanically. The Data instances for Decl and Expr
are:

instance Data Expr where
gmapM :: Monad m ⇒ (forall σ. Data σ ⇒ σ → m σ) → (Expr → m Expr)
gmapM r (Var n) = Var <$> r n
gmapM r (Lit s) = Lit <$> r s
gmapM r (Append e0 e1) = Append <$> r e0 <∗> r e1
gmapM r (Let d e) = Let <$> r d <∗> r e

instance Data Decl where
gmapM :: Monad m ⇒ (forall σ. Data σ ⇒ σ → m σ) → (Decl → m Decl)
gmapM r (Decl n e) = Decl <$> r n <∗> r e

Because all proper components are targeted, the types of all proper components require
Data instances to be declared for them, even if the user would prefer a statically selective
traversal that does not descend into them. In this case, these instances rely on existing Data
instances for lists and characters.

The intended Uniplate semantics entirely determine the definitions of Uniplate’s shallow
traversals: the targets are the maximal substructures of a specific type. These targets can
be below several constructors, which leads to more complex instances. To gain some
code reuse, the instances are usually defined mutually recursively; but this still leads to
a quadratic number of instances. For example, the instances for traversing Expr and Decl
nodes are as follows:
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instance Uniplate Expr where
descendM :: Monad m ⇒ (Expr → m Expr) → (Expr → m Expr)
descendM (Var n) = Var <$> pure n
descendM (Lit l) = Lit <$> pure l
descendM r (Append e0 e1) = Append <$> r e0 <∗> r e1
descendM r (Let d e) = Let <$> descendBiM r d <∗> r e

instance Uniplate Decl where
descendM :: Monad m ⇒ (Decl → m Decl) → (Decl → m Decl)
descendM r (Decl n e) = Decl <$> pure n <∗> descendBiM r e

instance Biplate Decl Expr where
descendBiM :: Monad m ⇒ (Expr → m Expr) → (Decl → m Decl)
descendBiM r (Decl n e) = Decl <$> pure n <∗> r e

instance Biplate Expr Decl where
descendBiM :: Monad m ⇒ (Decl → m Decl) → (Expr → m Expr)
descendBiM (Var n) = Var <$> pure n
descendBiM (Lit l) = Lit <$> pure l
descendBiM r (Append e0 e1) = Append <$> descendBiM r e0 <∗> descendBiM r e1
descendBiM r (Let d e) = Let <$> r d <∗> descendBiM r e

To avoid the quadratic code explosion, the Uniplate library offers alternative means of
defining instances by making them polymorphic, using SYB to various degrees.

6.4 Statically selective traversals

As discussed in Section 2.3 there are two forms of selective traversal: static and dynamic.
Static selectivity is more efficient than dynamic, but static selectivity can also limit the
expressiveness of a traversal.

The SYB semantics mandate exactly one way to traverse a node, and that is to descend
into all proper components of the node. That is, the user is not intended to define statically
selective traversals. This is analogous to being limited to a single KURE universe that
contains all substructures of the tree as summands. Consequently, dynamic selectivity is
the only way to prevent a deep traversal from descending into all substructures of the tree.
Stratego is essentially the same as SYB in this regard, in that it provides exactly one way
to traverse a node.

Like SYB, the Uniplate semantics mandate how to traverse a node. Unlike SYB, Uni-
plate is fundamentally characterised by static selectivity: each traversal only ever has one
target type, and it only descends into a substructure if it could contain that type. Essentially,
Uniplate provides a separate statically selective traversal for each type of node, each of
which corresponds to a KURE traversal indexed by a singleton universe.

However, the expressiveness cost of Uniplate’s static selectivity is that if the user wishes
to modify nodes of different types, then she must perform multiple traversals, one for
each node type that she wishes to target. Decomposing a traversal into multiple sequential
traversals in this way is inefficient, and could be problematic to express if the traversal uses
monadic effects in such a way that they cannot be reordered.

SYB and Uniplate are the two endpoints of a spectrum regarding static selectivity,
and a KURE traversal can lie anywhere in between. The universe type determines which
locations are to be visited by a traversal, thereby allowing the user to customise the static
selectivity. A large universe tends towards the SYB end of the spectrum; in which case
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dynamic selectivity may offer significant efficiency gains. Note that, in contrast to Uniplate,
the static selectivity of KURE is location-directed, not type-directed.

6.5 Data abstraction

While the intended SYB semantics mandate exactly one way to traverse a node, the Haskell
implementation of SYB does not prevent the user from declaring semantically invalid
Data instances that omit some proper components of a node during a traversal. However,
this may cause third-party code to behave unexpectedly when used with such instances.
Furthermore, as there can only be one Data instance in scope, this would not allow other
statically selective traversals to be defined: in SYB the Data instance defines the one sole
way to traverse all nodes of a given type.

There is a workaround for these problems though: the user can create new abstract
types as wrappers around the node types to be traversed, with a manually defined Data
instance for each abstract type that defines a statically selective traversal. This overcomes
the limitation of there only being one way to traverse a node, as each abstract type has its
own traversal behaviour. The disadvantages of this approach are that it violates the intended
semantics of SYB, the code can no longer be mechanically generated, and it requires a set
of abstract types to be defined for each statically selective traversal.

The Uniplate semantics specify how to traverse a node based on the type of the targeted
children. However, as with SYB, it is possible to define semantically invalid instances that
omit some children of the targeted type, or to introduce abstract-type wrappers to allow
several statically selective traversals to be defined.

Ultimately, if the user is willing to disregard the intended semantics of SYB and Uni-
plate, then extensive use of abstract types and manual instance declarations allows either
library to simulate the traversal behaviour of the other, or even of KURE. Meanwhile,
KURE is designed to be configurable to different statically selective traversals, so simu-
lating the behaviour of SYB or Uniplate, or behaving somewhere in between, is within
its intended semantics, and does not require inventive uses of abstract types. Furthermore,
as KURE uses the universe type to index its traversals, abstract-type wrappers are only
required in the (rare) case that a traversal needs to traverse nodes of the same type in
different locations, while treating them distinctly (see Appendix).

6.6 Modularity

We now consider the modularity of each library, by contrasting how easy it is to add new
(statically selective) traversals, or to modify existing traversals. Stratego is the simplest
case: there is exactly one way to traverse a node, and this is built-in to the Stratego
language. Thus it is perfectly modular as it can traverse any object language with nothing
required from the user — but that traversal cannot be modified in any way.

SYB is the second-most modular because it defines a single statically selective traversal
using an open universe. The user can add new node types without modifying any ex-
isting code, extending the SYB traversal to operate over types that were not previously
traversable.
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Uniplate is founded on the premise that each (statically selective) traversal targets chil-
dren of exactly one type. Thus, for each traversal, the set of child types is a closed singleton
set. The Biplate extension allows for parent nodes of multiple types to be traversed, sharing
code, but the child nodes being targeted must still be of that singleton type. Thus, the
universe of traversable node types is open, and there is no need to modify existing code
when adding new parent node types (though doing so may allow for more code reuse).
That is, a Uniplate traversal is modular in the sense that it can be extended to operate over
new traversable nodes, but it is not modular in the sense that rewrites targeting children of
different types cannot be combined into a single traversal. To target children of a different
type, an entirely new traversal must be defined.

In KURE, each universe is a closed sum type, and is used to define exactly one statically
selective traversal. As the universe is closed, it is not possible to add new nodes without
modifying existing code. However, new traversals can be defined by adding new universes
(and their corresponding instances). Because KURE traversals are more configurable than
those of Stratego, SYB and Uniplate, it is more likely that several similar traversals will be
defined (e.g. over the Core and CoreTC universes of HERMIT). For these cases, some
code reuse can be enabled by defining instances in terms of congruence combinators
(Section 5.2).

6.7 Summary

If used as intended, SYB, Uniplate and KURE provide fairly distinct approaches to traver-
sal, with SYB corresponding closely with Stratego. SYB provides a single traversal based
on an open set of node types; KURE allows the user to specify statically selective traversals,
each with a closed set of node types; and Uniplate allows multiple statically selective
traversals, each with an open set of traversable node types but only a single target node type.
In SYB everything is a target; in Uniplate all substructures of a specific type are targets,
and in KURE the user specifies which locations are to be targets. They each take different
approaches to typing: SYB uses rank-2 polymorphism; KURE uses a universe type; and
Uniplate is able to give the type directly because it only targets one type. However, by
using abstract types, it is possible for the implementation of each library to emulate the
behaviour of the others.

Assuming the intended semantics of each approach, KURE can be considered more
expressive because the user specifies the children to be targeted, whereas the targets are
fixed by the semantics of SYB and Uniplate. However, this expressiveness comes at the
cost of modularity: the universe type is closed and thus existing code has to be recompiled
whenever a universe is extended.

An advantage of KURE and Stratego over SYB and Uniplate is that they provide an ex-
tensive library of strategic traversals, with domain-specific error messages. KURE also pro-
vides support for allowing generic traversals to automatically update a context. These are
pragmatic benefits: it would be possible to implement a strategic programming language
that contained similar infrastructure but used the traversal approach of SYB or Uniplate.

Finally, we note that the traversal semantics of Stratego, SYB and Uniplate are specific
enough that the traversals can be mechanically derived. This is not possible in KURE,
because children are user-specified locations.
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7 Performance

This section compares the performance of KURE, SYB and Uniplate using three simple
strategic programs. Our focus is on the generic shallow traversal operator of each library,
so we have selected small benchmarks that are just sufficient to demonstrate the differences
in traversal performance. We try to identify the causes of the different performance results,
and analyse the impact of selective traversals and the most relevant GHC optimisations.
This analysis is quite in depth, and is aimed at a reader interested in the efficient imple-
mentation of typed strategic or generic programming languages.

We do not provide a performance comparison with Stratego, because recent Stratego
versions are implemented as an Eclipse plugin, with Stratego code being compiled to
Java. The priority of this implementation effort is portability rather than efficiency, and
the slow loading time of Java classes is intended to be amortised over a lengthy Eclipse
session (Visser, 2013). Conversely, KURE, SYB and Uniplate are all implemented as
Haskell libraries, and are significantly optimised by GHC.

Although GHC offers many optimisation parameters, we only used the standard level-
O2 optimisation for our benchmarks, as we are interested in the performance of common
usage. We measure using the Criterion (O’Sullivan, 2012) benchmarking library on an
otherwise quiescent workstation; our measurements have more than 95% confidence. We
used the most recently released version of each tool and library at the time of making the
measurements, which were: KURE 2.16.1, SYB 0.4.1, Uniplate 1.6.12, Criterion 0.5.1.1
and GHC 7.8.2. By using the same compiler, compiler options and benchmarking tools, our
results are a meaningful comparison of the relative performance of the differing traversal
techniques. The benchmark code is available as supplementary material on the Journal of
Functional Programming website.

7.1 Type class dictionaries and the static argument transformation

In GHC, type class constraints are implemented as functions that take a class dictionary as
an argument (Wadler & Blott, 1989). A class dictionary is essentially a record containing
a definition for each method of the type class, specialised to a concrete class parameter (or
parameters). Thus each class instance generates a single dictionary. The key to performance
in our two benchmarks is to eliminate higher-order functions, of which a major source is
the passing of these class dictionaries. We will explain how various aspects of each library
enable or inhibit this objective.

Inlining directly eliminates higher-order functions. In GHC, inlining also enables many
other optimisations, including type specialisation. In particular, the static argument trans-
formation (SAT) (Santos, 1995) makes it possible to specialise recursive definitions. The
SAT pulls outside of the recursion any arguments — including dictionaries — that never
change in recursive calls, thereby creating an outer definition that can be inlined in order to
specialise the inner recursive definition. However, in a mutually recursive set of definitions,
GHC heuristically chooses one definition to be a loop-breaker, which prohibits it from
being inlined. Thus, none of the arguments bound by the loop-breaker can be specialised
via inlining. GHC’s implementation of the SAT is quite conservative, because the transfor-
mation by itself is often detrimental unless it enables further optimisations. However, as in
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our context the transformation is beneficial, we write our definitions with explicitly static
arguments whenever possible.

The SYB architecture precludes the gmapM method of the Data class from having
explicitly static arguments when the class parameter is a recursive data type. In the gmapM
method, any application of its rewrite argument must be supplied a corresponding Data
dictionary, which creates mutual recursion between the Data dictionary and the traversal.
By preventing inlining and hence subsequent optimisations, this is a major contributor to
the poor performance of SYB.

Mutual recursion between dictionaries also arises in Uniplate, but the consequences are
less severe as the rewrite and dictionary arguments of descendBiM are explicitly static
arguments. The KURE universe type enables the SAT for the same reason that it is detri-
mental to modularity: all of the traversals are defined in a single Walker instance. Thus the
rewrite and the dictionary are explicitly static arguments, even in the presence of mutually
recursive node types.

7.2 Benchmark: Fibonacci

This benchmark evaluates the Fibonacci function by rewriting the terms of a simple singly
recursive expression language. This exercises the bottom-up deep-traversal strategy. The
rewrite rules are a pedantic transcription of the Fibonacci recurrence relation:

type R m a = a → m a
data Fib = Lit Int | Plus Fib Fib | Fib Fib
plusRule :: Monad m ⇒ R m Fib
plusRule (Plus (Lit x) (Lit y)) = return (Lit (x+ y))
plusRule = fail "plusRule"
fibBaseRule :: Monad m ⇒ R m Fib
fibBaseRule (Fib (Lit 0)) = return (Lit 0)
fibBaseRule (Fib (Lit 1)) = return (Lit 1)
fibBaseRule = fail "fibBaseRule"
fibStepRule :: Monad m ⇒ R m Fib
fibStepRule (Fib n) = return (Plus (Fib (Plus n (Lit (−2)))) (Fib (Plus n (Lit (−1)))))
fibStepRule = fail "fibStepRule"

For each variant, we define a function to reduce a Fib term to an integer. The following
hand-written statically selective traversal (Hand) is our baseline variant:

reduce :: MonadCatch m ⇒ R m Fib
reduce = eval

where
eval = allbu (try (plusRule <+ evalFib))
evalFib = fibBaseRule <+ (fibStepRule >>> eval)

allbu :: Monad m ⇒ R m Fib → R m Fib
allbu r = go

where
go = all go >>> r

all :: Monad m ⇒ R m Fib → R m Fib
all r (Plus a b) = Plus <$> r a <∗> r b
all r (Fib a) = Fib <$> r a
all x = pure x
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Table 1. Fibonacci benchmark, slowdown with respect to Hand

code variant geometric mean geometric standard deviation goodness of fit (r2)

SYB-gmapM 4.65 1.09 0.99
SYB-sat 2.84 1.08 0.99
SYB-sat-static 20.88 1.13 0.99
KURE 1.04 1.12 0.99
Uni 0.84 1.06 0.99

We omit the definitions of >>>, <+ , and try, which are defined in the usual manner.
The performance results are shown in Table 1. For each variant, we measure the time

to compute reduce (Fib (Lit n)), where n ranges from 20 to 34. For the SYB variants we
stop at 31 because they become slow. We list the geometric mean and geometric standard
deviation of its slowdown with respect to the baseline. We also list the goodness of fit of
each variant’s measurements’ logarithmic regression, since the expected complexity of the
Fibonacci computation is exponential. The worst-case error in any given ratio of execution
times or slowdowns was 2.2%.

We used the following variants in our experiment:

• SYB-gmapM uses the deep traversal everywhereM along with a hand-written gmapM
definition, which outperforms the (omitted) GHC-derived gmapM definition by ap-
proximately 15%.

• SYB-sat uses the same gmapM definition from SYB-gmapM, but uses a SAT of
everywhereM. This allows the traversal to be inlined and hence specialised to a
concrete Monad dictionary.

• SYB-sat-static uses an abstract type (as discussed in Section 6.5) to define a stat-
ically selective traversal that omits Int nodes; it also uses the SAT of everywhereM.

• KURE simply uses Fib as a singleton universe.
• Uni defines the conventional Uniplate instance for Fib.

For this dense bottom-up traversal of a singly recursive type, it is evident that Uniplate is
well-tuned for its intended purpose, outperforming even the hand-written shallow traversal
by 15%. We suspect this is due to constructor specialisation (Peyton Jones, 2007), because
the resulting GHC Core is relatively large with many similar loops. KURE nearly matches
the hand-written baseline. The SYB variants are at least three times slower than Hand. For
this particular traversal, the statically selective SYB variant (SYB-sat-static) is actually
much slower, as any speedup due to static selectivity is overwhelmed by the abstract type
interfering with other optimisations. To achieve these performance results, the user need
only use level-O2 optimisation and ensure that inlining and specialisation are possible by
defining functions with explicitly static arguments.

7.3 Benchmark: Paradise

Our second benchmark is the increase function from the Paradise benchmark (Lämmel &
Peyton Jones, 2003). This differs from the Fibonacci benchmark by traversing several data
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types, some of which are mutually recursive. The performance results vary primarily be-
cause of the large potential for static selectivity — only 33% of the non-trivial substructures
are the actual targets. The data types are as follows:

newtype Company = C [Dept ]
data Dept = D Name Employee [Unit ]
data Unit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
newtype Salary = S Integer
type Name = String
type Address = String

The objective is to increase all Salary values in a Company by a given increment. The
following hand-written statically selective traversal (Hand) is the conventional definition
of the traversal, and we use it as our baseline variant:

increase :: Monad m ⇒ Integer → R m Company
increase k = allbuC (inc k)
inc :: Monad m ⇒ Integer → R m Salary
inc k = λ (S x) → if x<0 then fail "inc" else return (S (x+ k))

allbuC f (C ds) = C <$> mapM (allbuD f ) ds
allbuD f (D n m us) = D n <$> allbuE f m <∗> mapM (allbuU f ) us
allbuE f (E p s) = E p <$> f s
allbuU f (PU e) = PU <$> allbuE f e
allbuU f (DU d) = DU <$> allbuD f d

The performance results are shown in Table 2. Each traversal was applied to the same
100 arbitrary test inputs, whose sizes are evenly spread out along the line from 1000 to
8500 nodes. We list the goodness of fit for a linear model, since the traversal complexity
is approximately linear with respect to the number of nodes. The worst-case error in any
given ratio of execution times or slowdowns was 6.5%.

We measured the following variants of the traversal:

• Hand-sat is a manual application of the SAT to Hand; it enables specialisation with
respect to both the monad and the rewrite argument.

• SYB-dyn uses a SAT of the deep traversal everywhereBut, which uses dynamic
selectivity to descend only into nodes that could contain a Salary. The Data instance
is derived by SYB.

• SYB-static uses a SAT of everywhere with an abstract type with a manually de-
fined Data instance to encode a statically selective traversal that only visits Salary
substructures. As the Data dictionaries for Dept and Unit are mutually recursive via
the gmapM definitions, one of those definitions will be a loop-breaker.

• SYB-static-sat is a variant of SYB-static that eliminates the mutual recursion
by including a distinct copy of the gmapM definition for Unit within the gmapM
definition for Dept. The copy of gmapM has the SAT applied. This variant enables
specialisation with respect to both the monad and the rewrite argument.

• KURE uses a conventional universe for the data types, and uses the allbuR strategy to
reach all of the Salary substructures.
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Table 2. Paradise benchmark, slowdown with respect to Hand, 100 arbitrary inputs

code variant geometric mean geometric standard deviation goodness of fit (r2)

Hand-sat 0.54 1.13 0.96
SYB-dyn 3.68 1.17 0.97
SYB-static 1.60 1.15 0.96
SYB-static-sat 0.54 1.14 0.86
KURE 0.68 1.14 0.88
KURE-sel 0.54 1.14 0.95
Uni 1.01 1.16 0.95

• KURE-sel uses an alternative universe that only descends into Salary substructures.
• Uni defines the conventional Uniplate and Biplate instances for the Salary target

type. As the Biplate dictionaries for Dept and Unit are mutually recursive via the
descendBiM definitions, one of the those definitions will be a loop-breaker.

The factor of two speedup of Hand-sat over Hand demonstrates the effectiveness of the
SAT. SYB is 350% slower than Hand, even with dynamic selectivity. The static selectivity
of SYB-static reduces the overhead to 60%, demonstrating the advantage of static over
dynamic selectivity in SYB for a function like this benchmark. The SYB-static-sat

variant further enables the SAT by breaking the mutual recursion among dictionaries, at
the cost of some minor code duplication, and the result performs as well as the Hand-sat
variant. The systemic SYB issue that precluded static arguments is avoided in the two
statically selective variants: the target type Salary is not recursive, so the traversal does
not visit any substructures that result in mutual recursion with the Data dictionary. And
in the SYB-static-sat variant there is no recursion among dictionaries, so inlining can
specialise the traversals as much as possible.

The Uniplate variant is about 100% slower than the best KURE and SYB variants. This
is an unexpected result, and Neil Mitchell has communicated that it is a regression. We
anticipate performance at least as fast as KURE.

The conventional KURE definition, visiting all substructures inhabiting one of the data
types, achieves an efficiency just 20% slower than Hand-sat. The KURE-sel variant
increases the static selectivity by only visiting Salary substructures, matching Hand-sat.

This benchmark emphasises the importance of explicitly static arguments for GHC
optimisation and the potential speedup of static selectivity. Indeed, a traversal defined with
SYB — the conventionally worst performing library — that was designed specifically for
both of those concerns gives performance matching hand-written definitions.

7.4 Benchmark: Tseitin transformation

The Tseitin Transformation (Tseitin, 1968) is an algorithm for converting an arbitrary
Boolean expression to Conjunctive Normal Form. The traversal differs from the previous
benchmarks in two ways. First, it uses a state monad transformer to maintain a name supply
and a writer monad transformer to collect the list of conjunctions. Second, it has aspects
that are awkward to express as a strategic program. As with the Fibonacci benchmark, the
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Table 3. Tseitin benchmark, slowdown with respect to Hand, 100 arbitrary inputs

code variant geometric mean geometric standard deviation goodness of fit (r2)

KURE 1.00 1.05 0.87
SYB-gmapM 3.32 1.15 0.82
SYB-sat 3.29 1.15 0.77
SYB-sat-dyn 1.86 1.16 0.73
SYB-sat-static 3.24 1.11 0.88
Uni 1.05 1.10 0.78

data type is singly recursive. The traversal uses the allbuR combinator and must visit all
compound expressions, so static selectivity is relatively unimportant.

The data type we use for Boolean expressions is BExp:

data BExp = Lit BLit | And BExp BExp | Or BExp BExp | Not BExp
data BLit = Var String | TT | FF

The algorithm replaces every operator application with a freshly generated variable name
and emits conjuncts coupling that new variable to its arguments’ respective variable names.
However, without a term representation based on pattern/shape functors (Swierstra, 2008),
there is no way to express the type inhabited by the intermediate result after applying the
algorithm to a node’s sub-expressions before applying it to the node itself. We settle for
wrapping and unwrapping the generated variable names with the Lit constructor.

We give the definition of the rule for normalising a conjunction; the omitted rules for
disjunction and negation are similar. Each rule uses the state-effect to generate a unique
variable name, uses the writer-effect to emit the encoding conjuncts as a difference list
(Hughes, 1986), and returns the generated variable so that ancestor nodes can proceed in
the same way. The MT monad transformer provides the state- and writer-effects, and the
allbu combinator extends the rules to entire expressions.

tseitin :: MonadCatch m ⇒ R (MT m) BExp
tseitin = allbu (try (andRule <+ orRule <+ notRule))
andRule :: MonadCatch m ⇒ R (MT m) BExp
andRule (And (Lit al) (Lit bl)) = do v ← get

put (v+1)
let a = Lit al

b = Lit bl
c = Lit (Var ("$x"++ show v))
d1 = [Not a,Not b,c]
d2 = [a,Not c]
d3 = [b,Not c]

tell ((d1:) ◦ (d2:) ◦ (d3:))
return c

andRule = fail "andRule"

The performance results are shown in Table 3. Each traversal was applied to the same
100 arbitrary test inputs, whose sizes are evenly spread out along the line from 3000 to
9500 nodes. On average, 13% of the nodes were Nots and 44% were Lits. We list the
goodness of fit for a linear model, since the traversal complexity is approximately linear
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with respect to the number of nodes. The worst-case error in any given ratio of execution
times or slowdowns was 5.2%.

We measured the following variants of the traversal:

• SYB-gmapM uses the conventional everywhereM strategy with no selectivity along
with a hand-written gmapM definition, as in the Fibonacci benchmark.

• SYB-sat uses a SAT of everywhereM.
• SYB-sat-dyn uses a SAT of the deep traversal strategy everywhereMBut, which

dynamically avoids descending into literals.
• SYB-sat-static uses a SAT of everywhereM and uses an abstract type to statically

avoid descending into Lit nodes.
• KURE simply uses BExp as a singleton universe.
• Uni defines the conventional Uniplate instance for BExp.

The results exhibit the same themes as discussed for the previous benchmarks: KURE
and Uniplate are comparable to hand-written code, and SYB-gmapM has significant over-
head. Thus the relative performances were not altered by the presence of monad transform-
ers, nor the use of an algorithm that does not fit as cleanly into a strongly typed strategic
programming paradigm. In particular, as with the Fibonacci benchmark, the benefit of static
selectivity is outweighed by the interference of the abstract type with other optimisations.

7.5 Summary

A key optimisation for generic traversals is selectivity, and static selectivity is more effi-
cient than dynamic selectivity. The performance gain of selectivity depends on the propor-
tion of the data structure that needs to be traversed. In the Paradise benchmark, where much
of the structure could be avoided, the gain was significant. Conversely, in the Fibonacci and
Tseitin benchmarks, where most of the structure must be traversed, the effective overhead
of encoding the selectivity outweighed the benefit.

Performing the SAT can bring significant benefits to the performance of generic traver-
sals in Haskell, as it allows inlining and thence specialisation. The design of SYB interferes
with the SAT, which contributes to SYB’s relatively poor performance. Only by manually
duplicating code were we able to apply the SAT for the SYB variant and achieve perfor-
mance comparable with the other libraries. Note that the variants with hyphenated names
(-gmapM, -sat, -static, etc.) required manual implementation of the corresponding
optimisation; the unhyphenated variants represent a straightforward use of the libraries.

The relatively poor performance of SYB is well known (Rodriguez Yakushev et al.,
2008). Recent work by Adams et al. (2014) has attempted to address this by applying
an (SYB-specific) mechanical transformation to user SYB code at compile-time, imple-
mented using the HERMIT system described in Section 5. By using aggressive inlining
and symbolic evaluation, they were able to improve the performance of SYB code to match
hand-written code.

In summary, on all three benchmarks KURE was significantly better than SYB. Uniplate
performed better than KURE for Fibonacci, roughly the same as KURE for Tseitin, and
noticeably worse than KURE for Paradise. However, the latter result appears to be a
regression in Uniplate, and we expect KURE-like performance once that is resolved.

https://doi.org/10.1017/S0956796814000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000185


The Kansas University rewrite engine 469

8 Conclusion

In this article we have described our approach of using universe types to assign types
to generic traversals, and to support statically selective traversals and traversals that can
distinguish between data based on its location, not just its type. We then described the im-
plementation of this idea as part of a Haskell-embedded strategic programming language.
To demonstrate the viability of this approach, we presented its usage in the HERMIT
system.

The main novelty of KURE compared to other strategic and generic rewriting systems is
the way it uses universe types to index generic traversals. We gave a detailed comparison
of KURE generic traversals, and their types, with those of SYB and Uniplate, two other
approaches to typed generic programming. The crucial distinction is that the semantics
of KURE traversals are not determined by the structure or types of the data structure:
instead the KURE user can customise how traversals should treat each location in the data
type being traversed. Consequently KURE is relatively configurable, and can be used to
simulate either SYB or Uniplate semantics, or, more usually, can be given a semantics
somewhere in between. However, this flexibility does impose a cost in modularity, with
modifications to a traversal requiring more recompilation of existing code than in either of
the other two libraries (though the necessary changes are fairly small and localised).

Finally, we compared the performance of the KURE implementation with the SYB
and Uniplate libraries, examining the main optimisations that each library supports or
inhibits. For the small benchmarks we used, we found KURE’s performance to be roughly
comparable with Uniplate, and superior to SYB.

In closing, we think that the KURE approach is a useful addition to the existing ap-
proaches to typed strategic and generic programming. The emphasis on customisable strate-
gic traversals has allowed KURE to serve as the rewrite engine of HERMIT, and we expect
to use KURE as a foundation for building higher-level rewriting languages in the future.
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Appendix. Traversing similarly typed nodes distinctly

Sometimes it is desirable to define a traversal that descends into multiple nodes of the
same type, yet treats them distinctly based on their location. This is a generalisation of the
technique in Section 4.3.3, which only made a binary choice of whether to descend into a
node or not, based on its location. This appendix will demonstrate how such a traversal can
be defined in KURE, using the String language from Section 4.3 as an example.

Consider the (somewhat contrived) situation where a user wants to apply a rewrite that
operates on substrings of literals, and another that operates on substrings of variable names,
during the same traversal. The first step is to define abstract types to represent names and
literals, thereby providing a type distinction between them:

newtype StringLit = StringLit Literal
newtype StringName = StringName Name

Any rewrites that should succeed for only one of Literal or Name should then be defined
over these abstract types, rather than over String. The user then defines a universe, with
separate summands for names and literals:

data U2 = UP2 Prog | UD2 Decl | UE2 Expr | UL2 Literal | UN2 Name

https://doi.org/10.1017/S0956796814000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796814000185


The Kansas University rewrite engine 473

The Injection instances for U2 use the StringLit and StringName types, rather than String.
This is necessary to avoid ambiguity, as otherwise there would be two overlapping Injection
instances for String.

However, we now cannot use extractR as directly as before in the definition of allR.
Instead we define two variants of extractR, one for names and one for literals, which
additionally add and remove the newtype wrappers. The variant for literals is as follows:

extractRlit :: Monad m ⇒ R m U2 → R m Literal
extractRlit r = λ l → unLit <$> (extractR r) (StringLit l)

where
unLit (StringLit l) = l

We then use these functions to define the Lit and Var clauses of allExpr, as well as two
new local functions, allName (not shown here) and allLit:

allExpr (Var n) = Var <$> (extractRname r) n
allExpr (Lit l) = Lit <$> (extractRlit r) l
allLit :: R m Literal
allLit [ ] = pure [ ]
allLit (x : xs) = (:) <$> pure x <∗> (extractRlit r) xs

A traversal using the U2 universe will now descend into both names and literals, but,
for example, will only apply a rewrite of type R m StringLit to substrings of literals, not to
substrings of names.
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