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Abstract
This paper examined organic fertilizer adoption and its effects on two household food security indicators
and gender-based farm labor use among smallholder farmers in Northern Ghana. An endogenous switch-
ing regression analysis shows that observed and unobserved farmer background factors determine farmers’
decision to adopt organic fertilizer as well as the outcomes from adoption. On average, adoption is associ-
ated with an 11% increase in per capita food consumption and a 55% reduction in household food gap
duration. Adoption is also related to an increased labor use by 5.9 (90%) of female worker days and 1.3
(9%) of male worker days per acre, placing nearly all (82%) of the increased labor burden on female farm-
hands. We recommend mitigation of factors that hinder farmers from adopting the input and provision of
female-user-friendly labor-saving devices for organic fertilizer use tasks.
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1. Introduction
Food insecurity will persist in sub-Saharan Africa (SSA) unless the decline in agricultural produc-
tivity, caused mainly by soil degradation, is halted and the trend reversed (AfDB, 2006; Nkonya
et al., 2015). Soil erosion and related factors, including nutrient mining, loss of organic matter, and
declining biodiversity, are responsible for increasing crop productivity gaps in the region (FAO,
2015; Kassie et al., 2013; Martey, 2018). Erosion has affected more than 22% of the arable lands of
many countries, particularly in West Africa, jeopardizing the livelihoods of over 65% of national
populations depending on agriculture (FAO, 2015; Nkonya et al., 2015). Meanwhile, the farm
household population in the region is rapidly growing, thus exerting more pressure on the lands
(FAO, 2015). This limits access to arable land and renders traditional soil maintenance practices,
like fallowing land to restore nutrients, impracticable (Pandey et al., 2002). Yet, the resource-poor
farmers in the region apply mineral fertilizer at a rate far below world standard (AfDB, 2006; Ayalew
et al., 2020; Sheahan and Barrett, 2017), though there is quite recent evidence of increased fertilizer
use, particularly for cereal production in some countries (Liverpool-Tasie et al., 2017). This implies
that majority of the farmers intensify cropping under negative nutrient balances (Martey, 2018).
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In Ghana, farmers in the northeastern part are the most affected by soil degradation nationwise.
Semi-desert conditions in the area combine with intense farming activities to accelerate degradation
of the arable lands (Atakora et al., 2014; Danquah et al., 2019; Owusu et al., 2020). The area lies
within the Sudan Savannah zone, where a larger proportion of the landmass is hilly and rocky, hav-
ing very thin vegetation cover (Government of Ghana, 2015). Continual removal of the scanty
vegetation through cultivation and annual bush fires accelerates the loss of soil organic matter
and useful biodiversity (Tittonell and Giller, 2013). The area also experiences the least and most
erratic rainfall country-wide (Amikuzuno and Donkor, 2012; Issahaku et al., 2016; Wiredu, 2015).

Cereals (maize, millet, and sorghum) are the main staple crops, the production of which con-
stitutes the primary livelihood of the subsistence rural households (Government of Ghana, 2015).
The farmer-population of the area is dense; hence, the limited land has been put under traditional
exploitative cultivation practices without sufficient nutrient replacement (Atakora et al., 2014;
Danquah et al., 2019; Owusu et al., 2020). Consequently, yield of the main crops continues to
decline; thus, trapping many of the farm households in poverty (Atakoral et al., 2014) and food
insecurity cycle (Government of Ghana, 2015).

As the farmers try to cope with poor soil conditions, the apply nearly all their mineral fertilizer
purchases on cereal crops. Thus, rate of fertilizer application for the area is usually higher than the
national average (FAO, 2005) and has been increasing since the introduction of a national fertil-
izer subsidy program in 2008 (Wiredu, 2015). However, experts have begun warning about nega-
tive effects of inappropriate modes of fertilizer application. They fear that the repetitive use of
existing formulations of mineral fertilizer in the area without site-specific soil test-based recom-
mendations further deteriorates soil health (Atakora et al., 2014; Ayalew et al., 2020). Already,
soils have become increasingly non-responsive to the fertilizers (Atakora et al., 2014). A condition
under which the farmers do not fully benefit from their investment in any high-value external
input without rehabilitating the soils (Tittonell and Giller, 2013).

Meanwhile, ecological intensification (EI)1 is a win-win approach to addressing soil degrada-
tion, cutting down mineral fertilizer cost, and simultaneously improving food security through
reduction in yield variability (Abagale and Ayuegabe, 2015; Kassie et al., 2013, 2015; Teklewold
et al., 2013; Zeweld et al., 2017). EI relies on locally available organic options for maintaining eco-
logical competitiveness and economic viability of agriculture. Thus, it allows reduced use of inputs
that are potentially harmful to the environment (Zeweld et al., 2017). EI practices help improve soil
health and thus enhance the return on investments in mineral fertilizer and other external inputs
(Kousar and Abdulai, 2015; Zeweld et al., 2017).

Therefore, farmers within the affected area are being encouraged to adopt EI practices, partic-
ularly the use of organic fertilizer to resuscitate degraded soils for sustainable2 crop production
(Government of Ghana, 2015; Zeweld et al., 2017). Organic fertilizer3 plays a crucial role in sus-
taining soil ecology. It maintains organic matter content at levels necessary for conserving soil
moisture, plant nutrients, and other properties required for healthy plant growth (Abebe and
Debebe, 2019; Kassam et al., 2017; Zeweld et al., 2017).

In economic terms, the literature (e.g., Abebe and Debebe, 2019; Kassie et al., 2009; Usman et al.,
2015; Zerihun and Haile, 2017) provides ample evidence regarding the positive effects of organic
fertilizer on crop productivity; hence farmer welfare. For instance, Gelgo et al. (2016) reported
increased incomes of farmers who adopted the input in the Shashemene District of Ethiopia. In

1Cropping practices that help to improve environmental services and increase crop yields while reducing the need for
external inputs like agrochemicals and fuel (Tittonell and Giller 2013).

2Crop production is environmentally non-degrading, resource conserving, socially acceptable, technically appropriate, and
economically viable (FAO, 1995 as quoted in Nadia et al., 2017). This means that organic fertilizer maintains good yields and
farm profits without undermining the soil resources on which crops depend.

3Organic fertilizers are carbon-based compounds that increase the productivity and growth quality of plants. These include
crop residue, green manure and agroforestry, compost, animal manure, agro-processing by-products and excreta/sewage
sludges and organic waste from urban centers.
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Ghana, Martey (2018) found that adoption of the input improves crop productivity, incomes, and
poverty status, while reducing the total and per capita food expenditure of farm households.

Though findings of the previous studies relating organic fertilizer to the welfare indicators
mentioned above are useful in assessing overall farm household food access, they do not capture
the stability dimension of food access, especially through self-provisioning capacity. Self-
provisioning is a critical element of farm households’ food access because farmers primarily con-
sume their own produce, either directly from the farm or from storage. Furthermore, Martey’s
(2018) study, for instance, involved a sample with observations from heterogeneous populations
across different ecological zones having divergent organic fertilizer types and related practices.
Findings of such a study would not reflect agroecology-specific situations, wherein practices
are homogenous, and Meso-level agricultural policies are often designed to suit.

Besides, we expect organic fertilizer adoption to occur at a cost for other input, especially labor,
adjustments (Fuglie and Bosch, 1995; Teklewold et al., 2013). The potential increased labor
requirements could hinder organic fertilizer adoption and application rate, and thus diminish
the associated benefits to farmers (Teklewold et al., 2013). However, to the best of our knowledge,
the extent to which organic fertilizer adoption affects farm-labor use in the entire SSA has not
been empirically examined. These are shortcomings in the literature, underscoring the need to
further analyze the impacts of organic fertilizer on farm-household welfare, especially within agro-
ecologies, to adequately inform micro-/meso-level organic fertilizer use policies.

The main objective of this study is to evaluate the effects of organic fertilizer adoption on farm
household food access and labor use among rural farmers. Using a set of observational data obtained
from farmers in the northeastern part of Ghana, we adopted the potential outcome framework
(see Imbens and Wooldridge, 2009) and applied the endogenous the switching regression (ESR)
to model organic fertilizer adoption process, simultaneously with 1) per capita food expenditure,
2) household food gap (FG), and 3) gender-segregated farm labor used, as outcome variables.
Subsequently, we estimated the effects of organic fertilizer on the outcomes. The study analyzes
for the first time the effect of organic fertilizer on FG and farm labor use. It thus contributes to
organic fertilizer literature, particularly in Ghana, by providing firsthand empirical links between
farm labor use and household FG, on the one hand, and organic fertilizer adoption on the other.

The rest of the paper is structured as follows: the next section (section 2) describes the back-
ground to organic fertilizer practices in the study area. Section 3 outlines the study methodology,
including sampling and the data used, the theoretical model and empirical specification applied.
Section 4 provides data summary, presents econometric results for the ESR model, and discusses
the effects of organic fertilizer adoption on food expenditure, FG, and labor use. Finally, section 5
summarizes the study’s findings and concludes with key policy suggestions.

2. Organic Fertilizer use in Northeastern Ghana
Local organic fertilizer practices and their potentials to improve soil condition; hence farm produc-
tivity depend, to a large extent, on the agroecology, the farming system and population dynamics of
an area (Tittonell and Giller, 2013; Adnana et al., 2017). Organic practices such as agroforestry and
green manuring are almost impracticable in northeastern Ghana because arable land is increasingly
scarce, and agriculture depends entirely on a unimodal rain season which is too short to grow green
manure before the main crops. Thus, the common organic fertilizer practices among farmers in the
area include crop residue restitution, composting, and the use of livestock manures (Martey, 2018).
Yet, competing uses for crop residues in particular (e.g., for feeding livestock, as fuel, or for house
construction) limit its availability for use as the primary biomass for maintaining the required level
of organic matter (Wekesah et al., 2019). Crop-livestock integration is a traditional component of
farming systems in the area, and farmers thus have some path dependencies in using manures for
soil maintenance. However, livestock densities and the carrying capacity of local grasslands in the
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region cannot support the rate of manure turnover needed to supply more than one-third of house-
hold crop fields (Bationo and Buerkert, 2001; Tittonell and Giller, 2013).

Nonetheless, farmers are aware of the conservational values and the good returns on invest-
ment in organic fertilizers, and as a result many are motivated to increase its use (Nkonya et al.,
2015; Powell and Williams, 1995). As soil and weather conditions change, the farmers must con-
tinue to adapt their traditional practices to prevailing agroecological conditions in order to sustain
the quantities of organic matter they require for use (Fairhurst, 2012; Tittonell and Giller, 2013).

In support of farmers’ adaptation, the Ministry of Food and Agriculture (MoFA) and other
agencies (e.g., PAS [Presbyterian Agriculture Station], AGRA [Alliance for Green Revolution
in Africa], NRGP [Northern Rural Growth Project], ACDI/VOCA [Agricultural Cooperative
Development International/Volunteers in Overseas Cooperative Assistance], and GIZ
[Gesellschaft für Internationale Zusammenarbeit])4 have been sensitizing smallholder farmers
and building their capacity to source and use organic fertilizers. Capacity-building efforts have
focused mainly on developing skills for enhanced collection of agro-processing and domestic
waste, harnessing animal manure and crop residues, and preparing compost using these materials
(Bellwood-Howard, 2013). Dynamic kraaling5 of cattle for in-situ accumulation of manure on
cereal plots has become a popular organic fertilizer practice among the rural farmers. In commu-
nities where human excreta/sewage is accessible, farmers have also been educated on its safe use,
and some combine it with other organic amendments to fertilizer their fields (Cofie et al., 2005,
2010). PAS and Opportunity for Industrialization Center (OIC), in particular, have trained farm-
ers on the pit and heap methods of preparing, and supported some farmer groups to acquire
equipment such as donkey carts for gathering compost materials (Bellwood-Howard, 2013).
ACDI/VOCA, NRGP, and AGRA Ghana primed farmers on efficient and effective ways, includ-
ing the zai-pit6method of applying the input for moisture conservation and the micro-dosing with
mineral fertilizers for initial crop growth before organic fertilizer nutrients become available to the
crop. They have also adopted intercropping and rotation of the grains with legumes and learned to
augment organic fertilizers with significant quantities of mineral, especially Nitrogen-phosphrus-
Potassium (NPK) fertilizers (Chapoto et al., 2015; Martey et al., 2014). Through such capacity-
building programs, farmers now prioritize using their scarce organic amendments for the
production of staple cereals as the most important food security crops (Martey, 2018). This study
drew farmers from PAS and MoFA project areas to examine the effects of organic fertilizer
adoption on food security and farm labor use.

3. Methodology
3.1. Sampling, Data, and Measurements

The data for this study was obtained through a recent farm household survey we conducted, in
partnership with PAS in the North East and Upper East Regions of Ghana. As stated earlier, PAS,
AGRA, and NRGP have under different projects at various locations within the study area, primed
farmers to use organic fertilizer to sustain soil health. Except for the Bunkpurugu area where there
is no PAS extension agent, we followed the operational areas of PAS to sample the study

4The full names of the organizations are PAS-Presbyterian Agriculture Station; AGRA-Alliance for Green Revolution in
Africa; NRGP-Northern Rural Growth Project; ACDI/VOCA-Agricultural Cooperative Development International/
Volunteers in Overseas Cooperative Assistance; and GIZ-Gesellschaft für Internationale Zusammenarbeit.

5Abagale and Ayuegabe 2015 defined dynamic kraaling as a system of keeping cattle in temporary ranches usually farm-
lands, and rotating them with the main aim of accumulating the droppings and urine of the animals for fertilizer value to
improve soil fertility for annual crop production.

6Zai is a term that refers to small planting pits that typically measure 20–30cm wide, 10–20cm deep and spaced 60–80cm
apart. It is a technique used to rehabilitate degraded drylands with hard pans and to restore soil health. The pits break through
soil pan and collects and conserves water and organic matter which supports crop growth and in the long run, help soften and
gradually break the entire soil (Danquah et al., 2019).
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participants. Prior to sampling, a discussion was held with MoFA (Bunkpurugu area) and the PAS
extension agents to identify the types of organic fertilizer and related practices the farmers
currently use.

We selected 504 households across 52 communities clustered around 3 PAS and 1 MoFA
extension zones through a multistage cross-sectional sampling approach. At the first stage, we
purposively selected the PAS and MoFA extension zones to ensure equal chances of including
farmers the various organic fertilizer types in the sample. PAS and MoFA extension agents in
the selected zones provided lists of farming communities from which we randomly drew 30%
of the communities to represent each zone. At the community level, farmer-group and opinion
leaders helped enumerators to identify and compile lists of organic fertilizer adopter and non-
adopter households. Households were then randomly selected from the lists to represent each
subsample group. Farmers who applied, at least, one ton per acre of any biomass (e.g., crop resi-
due, animal manure, compost, domestic/urban waste, agro by-products, excreta slurry, or a com-
bination of these) constituted the organic fertilizer user group (adopters)7.

The data was collected through a face-to-face personal interview (PI) with sample participant
farmers. Appendix 4A shows the number of communities and sampled households across the
study locations. Since the main objective is to evaluate the effects of organic fertilizer on food
access and labor use, the questionnaire elicited data on these as the outcome variables of organic
fertilizer adoption. For food access, we considered two indicator variables critical in farm house-
hold settings: per capita food expenditure and food stability through self-provision (indicated by
FG)8. Per capita food expenditure was measured in Ghana Cedis based on market value of adult
equivalent units (AEU)9 of food consumed, while household FG was captured as the duration of
the period (in months) a household had difficulties securing sufficient foodstuff (Tambo and
Wünscher, 2017). We used the AEU for per capita food expenditure because it is more directly
linked to food access status of subsistent farm households and is less prone to measurement errors
than the income-based indicators (Tambo and Wünscher, 2017). Following Tambo and
Wünscher (2017) and Martey (2018), our questionnaire used a 7-day recall period to identify food
items consumed by a household and thus captured the corresponding expenditure. Non-
purchased food items were valued at current market prices. Regarding labor use, farmers reported
the number of worker-days used per acre during the most recent crop season. This was subdivided
into male and female worker-days10 used in order to examine gender-based effects of organic fer-
tilizer adoption on labor.

Following the strands of literature on farm technology in general (e.g., Di Falco et al., 2011;
Fuglei and Bosch, 1995; Manthenge et al., 2014; Sheferaw et al., 2014; Tambo and Wünscher,
2017; Teklewold et al., 2013) and specifically, organic fertilizer adoption (e.g., Chen et al.,
2018a, 2018b; Martey, 2018; Ullah et al., 2015; Waithaka et al., 2007), the survey also captured
data on six categories of farmer background factors (explanatory variables). These moderator var-
iables are farmer/household characteristics, resource constraints, and plot-specific factors. Other
groups of explanatory variables include social capital, governance and institutional variables,
information access factors, and environmental shocks. Empirically, the literature has proven that
these variables significantly influence farmers’ decision to adopt farm technology (Ayalew et al.,
2020; Shiferaw et al., 2009; Teklewold et al., 2013). Table 1 shows the description and summary

7Adopters in this study are farm households who applied at least one ton of organic fertilizer (e.g., crop residue, animal
manure, compost, domestic/urban waste, agro by-products, excreta slurry, or a combination of these) per acre.

8Food access is the ability to acquire sufficient quality and quantities of food, while food stability refers to the continuous
availability of food under all conditions (FAO, 2008).

9We used a 1-week recall period to capture household food consumption expenditure by all components and then the
OECD’s [Organization for Economic Co-orperation and Development] adult equivalent scale given as; 1�0.7(A-
1)� 0.5C, where A is the number of adults while C represents the number of children in a household, to arrive at adult
equivalence units (AEU) of per capita food expenditure.

10A worker day is equivalent to 8 hours of farm work time of a man or woman.
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Table 1. Summary statistics of variables

Variable Description and measurement of variable
Sample
mean Adopters

Non-
adopter

Mean
diff.

Explanatory variables

Dist. to exten. Distance (minutes’ walk) to agric. ext. office 80.3 59.3 100.9 −41.60

Gender Gender of the family head (1=male, 0=
female)

0.8 0.8 0.7 0.1***

Age Number of years 42.3 43.0 41.5 1.45

Education Number of years of formal schooling 5.2 6.6 3.9 2.74***

Household size Number of people in the household 9.4 9.9 8.9 0.94***

Female2male Ratio of female to male adults in a household 3.1 3.2 3.1 0.05

Off-farm work Off-farm work participation (dummy) 0.4 0.4 0.4 0.01

Means_Trans 0= no means, 1= bicycle, 2=motorbike/truck 1.2 1.2 1.2 0.04

FAssets Value of farm assets (thousands of GHS) 5.6 6.2 5.0 1.16

TLUs Livestock size (tropical livestock units) 3.6 5.0 2.2 2.82***

Farmland Number of acres of farmland. 10.0 10.0 9.9 0.16

Plotsize Number of acres of maize plot 3.7 3.9 3.6 0.29

Walkdist∼T Distance (walking minutes) to plot 31.1 26.8 35.3 −8.48

Extension Frequency of visit during the cropping season 0.4 0.7 0.0 0.70***

Inputmktdis Walking distance (minutes) to inputs market 45.8 50.7 40.9 9.80***

Groupmember Household head is member of a Farmer Based
Organization (FBO) (1= yes, 0= no)

0.4 0.7 0.1 0.63***

Mrktrelations Number of grain traders a farmer knows 1.4 1.5 1.2 0.22

LandTenure Farmland tenure dummy (1= own, 0= rented) 0.9 0.9 0.8 0.04

Peststress Whether pests ever affected crops (dummy) 0.8 0.7 0.8 −0.12

Disease Whether disease ever affected crops(yes= 1,
no= 0)

0.2 0.2 0.3 −0.14

Droughts Whether drought ever affected crops (yes= 1,
no= 0)

0.4 0.6 0.2 0.40***

Watrlogg Water-logging experience (yes= 1, no= 0) 0.1 0.2 0.0 0.13***

Soil status Average of soil quality scores (1 to 3) 2.1 2.2 2.1 0.06*

Capital exp. Capital expenditure on the plot (in GHS) 78.4 77.2 79.6 −2.39

Herbicides Herbicides cost (in GHS) per acre. 21.0 22.7 19.3 3.48

Tillage mode Minimum tillage dummy (1=minimum,
0= conventional)

0.1 0.2 0.0 0.22***

Mineral fert. Kilograms of mineral fertilizer used per acre 99.3 89.1 109.2 −20.10

Seedgrade Seed quality- (1= improved seed, 0= land-
race)

0.5 0.5 0.5 −0.05

Bunpk. _Zone 0 Bunkpurugu extension cluster dummy 0.33 0.26 0.41 −0.15

Langb. _Zone 1 Langbinsi extension cluster dummy 0.21 0.27 0.15 0.12***

Garuwest _Zone 2 Manga-Bazua extension cluster dummy 0.13 0.21 0.04 0.17***

GaruEast _Zone 3 Garu-Tempane extension cluster dummy 0.33 0.26 0.41 −0.15

(Continued)
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statistics, including mean differences between adopters and non-adopters regarding for all explan-
atory variables used in the study.

3.2. Theoretical Model and Estimation Strategy

Assuming farm households aim at maximizing access to food through organic fertilizer farm
enterprise under optimal input use. We assume further that they are risk-neutral, and consider
only the net benefits to be derived between organic fertilizer use and otherwise when deciding to
adopt it. The decision task then is to choose the option that maximizes their welfare, subject to
household resource endowment or constraints. Subsequently, the observed inputs used and resul-
tant welfare indicators (food expenditure and FG) are outcomes of the binary adoption decision a
household made (Sanglestsawai et al., 2015; Teklewold et al., 2013).

To specify the adoption model, let Qja and Qjn represent the net outcome farmer j derives from
organic fertilizer adoption and non-adoption, respectively. The farmer adopts organic fertilizer if
Qja >Qjn (i.e., the benefit from adoption exceeds that from non-adoption). Also, let U�

j (the dif-
ference between Qja and Qjn) be a latent criterion variable on which farmer j bases his/her deci-
sion. Further, let Dj indicates the observed binary decision such that U�

j =Qja −Qjn >0 when
Dj= 1 (i.e., if farmer j adopts organic fertilizer) and Qja −Qjn ≤ 0 when Dj= 0 (i.e., when farmer
j does not adopt organic fertilizer). By expressing U�

j as a function of observed farmer character-
istics denoted Z, we obtain a latent variable (adoption or selection) model that sorts farmers into
adopters and non-adopter as (Di Falco et al., 2011):

U�
j � γ 0Zj � εj withDj � 1 if U�

j > 0
0 otherwise

� �
(1)

where Zj is a vector of household and farm characteristics; γ is a vector of parameters to be esti-
mated, while ϵj is a random term with zero mean and variance σ2

ε , capturing measurement errors
and effects of unobserved factors (Abdulai, 2016). Even though we cannot observe U�

j ; it can be
indexed by the observed adoption decision Dj of farmer j, such that the probability of adoption is
specified as:

Pr�Dj � 1� � Pr�U�
j > 0� � Pr�εj > � γ

0
Zj�

� 1 � F��γ 0Zj�
(2)

where F is the cumulative distribution function of ϵ. Since Dj is the binary decision with value 1 or
0, equation (2) is an adoption model and can be estimated consistently by a standard probit esti-
mator if εj is assumed normal. We can assess the effect of adoption on any of the outcomes (Qj) by

Table 1. (Continued )

Variable Description and measurement of variable
Sample
mean Adopters

Non-
adopter

Mean
diff.

Outcome variables

Food cons. Exp
(FCE)

Adult equivalence of food expenditure (in
GHS)

597.91 605.51 590.43 15.07

Food gap Number of months of inadequate food supply 1.16 0.74 1.56 −0.82

Female labor Number of female worker days used/acre 11.60 15.37 9.48 5.89***

Male labor Number of male worker days used/acre 14.14 16.93 11.39 5.55***

Observations 504 250 254
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regressing Qj on the binary adoption decision, Dj, and other explanatory variables as below
(Tambo and Wünscher, 2017);

Qj � X0
jβ� ωDj � µj; (3)

where Xj is a vector of household/farm characteristics such as age, gender, educational attainment
of the household head, household size, resource endowment, social network, geographical loca-
tion, and inputs/production characteristics; ωmeasures the effect of organic fertilizer adoption on
outcome Qj; μ captures measurement errors as well as the effects of unobserved factors, with j
indexing individual farmers (Abdulai and Huffman, 2014; Tambo and Wünscher, 2017).

Equation (3) could be estimated by standard regression (ordinary least squares) if adoption
were randomly assigned. In this observational case, however, adopters selected themselves into
adoption probably because their personal characteristics like innate managerial and technical abil-
ities support both the decision to adopt and the outcomes, such that they are also the ones who
obtain higher outcomes even if they do not adopt (Fuglie and Bosch 1995). It means adopters
systematically differ from non-adopters in terms of their background characteristics. Such a sys-
tematic difference obscures the true effect of adoption if ω is estimated by through equation (3)
(Tambo and Wünscher, 2017). For this cross-sectional evaluation, where we have no counterfac-
tual information for observed outcomes, using either a propensity score-matched (PSM) sample
or adopting the ESR approach allows us to control for biases arising from systematic difference
(Abdulai and Huffman, 2014). However, the PSM-based model assumes conditional unconfound-
edness and thus becomes an invalid approach, where there is insufficient overlap in characteristics
of adopters and non-adopters. Even in cases where it is applicable, the probit model coefficients
usually, obtained after the PSM are not true coefficients of determination of adoption and cannot
be interpreted as such. Since we wished to identify factors determining organic fertilizer adoption
among the farmers in this case, we had to apply the ESR (Abdulai, 2016; Abdulai and
Huffman, 2014).

3.3. Empirical Specification of ESR Model

In the ESR framework, equation (2) sorts farmers into adopters and non-adopters, having differ-
ent outcome regimes. Because we observed either Qja or Qjn for every farmer, there is no coun-
terfactual information on the outcome. Thus, the ESR approach specified potential outcome
equations conditional on adoption decision Dj as:

Qja � X0
jaβa � uja if Dj � 1 (4a)

Qjn � X0
jnβn � ujn if Dj � 0 (4b)

With a continuous outcome variable Q, linear regressions could be applied to estimate βa and βn.
However, OLS estimator will give biased βs if the error term ϵj of equation (2) correlates with
those (uja and ujn) of the outcome equations (4a) and (4b). In other words, OLS cannot be applied
when there is selection bias to be addressed. Bias is addressed by including selectivity correction
terms in the outcome equations to capture the effect of selection (Abdulai and Huffman, 2014;
Khonje et al., 2015; Lokshin and Sajaia 2004; Shiferaw et al., 2014; Tambo and Wünscher, 2017).

Error terms uja and ujn correlating with ϵj implies that the expected values of uja and
ujn, conditional on the sample selection (adoption decision) are not zeros. But we can assume that
ϵj has a variance σ2

εj
= 1, and the correlation coefficients between ujs and ϵj sum up to zero, mean-

ing that they have a trivariate normal distribution with a zero-mean vector and a variance–covari-
ance matrix (Σ) as defined below (Manthenge et al., 2014):
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Σ �
σ2
εj

σujaεj σujnεj

σεjuja σ2
µja

:

σεjujn : σ2
ujn

2
64

3
75;

where σ2
uja = var (uja), σ2

ujn = var(ujn), σujaεj = cov(uja, ϵj) and σujnεj = cov(ujn, ϵj). The cov(uja, ujn)
is undefined since we cannot observe Qja and Qjn simultaneously from any farmer (Maddalla,
1983). The expected values of uja (E(uja |Dj= 1)) and ujn (E(ujn |Dj= 0)) contain the selection
bias and are statistically equivalent to the product of the error covariances (σujaεj and σujnεj)
and inverse Mills ratios (IMRs) for study participants computed from probabilities obtained
by (2) at γ 0Zj. Thus, we calculate the IMRs (λja and λjn) as:

λja �
φ�γ 0Zj�
Φ�γ 0Zj�

if Dj � 1 (5a)

λjn �
φ�γ 0Zj�

1 �Φ�γ 0Zj�
if Dj � 0 (5b)

where ϕ is the standard normal probability density function and Ф represents cumulative density
function of equation (2).

Including λja and λjn in equations (4a) and (4b), respectively, gives the switching outcome
equations that correct for selection bias as follows:

Qja � Xjaβa � σµjaεj
λja � ξja if Dj � 1 (6a)

Qjn � Xjnβn � σµjnεj
λjn � ξjn if Dj � 0; (6b)

where σµjaεj
and σµjnεj

become coefficients of the selection control terms λja and λjn, capturing
effects of all unobserved selection variables on outcomes. ξja and ξjn become the standard error
terms with zero expectations. Equation (6) gives more consistent and efficient estimates if esti-
mated simultaneously with the adoption equation (2), using the full information maximum like-
lihood (FIML)11 estimator rather than Maddala’s (1983) two-step approach (Lokshin and Sajaia,
2004; Tambo and Wünscher, 2017).

The FIML ESR model is identified through non-linearity of λja and λjn (Lokshin and Sajaia,
2004), but identification is better when, at least, one variable (exclusion variable) affecting the
adoption decision Dj but not the outcomes is included in equation (2) (Tambo and Wünscher,
2017). Following Di Falco et al. (2011) and Tambo and Wünscher (2017), we conducted falsifi-
cation tests (see Appendix 4C)12 for several potential instrumental variables to identify relevant
exclusion variables. The tests revealed that the distance between household’s location and the
nearest agricultural extension office is the only valid instrument for use in our case. After esti-
mating equations (2) and (6) simultaneously, we derived conditional expectations of the outcomes
as follows:

Adopters with adoption (actual/observed outcome for adopters):

E�QjajDj � 1;X� � Xjaβa � σµjaεj
λja; (7a)

11The FIML estimation is implemented in STATA using the movestay command by Lokshin and Sajaia (2004), which
implements the simultaneous estimation of the first- and second-stage equations.

12According to Di Falco et al. (2011), Khonje et al. (2015) and Tambo and Wünscher (2017) variables to be added in the
selection model as instruments to improve ESR model identification are those that affect farmers’ decision to adopt organic
fertilizer do not directly affect any of the outcome variables, at least among non-adopter.
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Non-adopters without adoption (actual/observed outcome for non-adopters):

E�QjnjDj � 0;X � � Xjnβn � σµjnεj
λjn; (7b)

Adopters had they not adopted (counterfactual outcome for adopters):

E�QjnjDj � 1;X � � Xjaβn � σµjnεj
λja; (7c)

Non-adopters had they adopted (counterfactual outcome for non-adopters):

E�QjajDj � 0;X� � Xjnβa � σµjaεj
λjn; (7d)

From these expectations, we calculate the average effect of adoption on adopters (AEAA) as:

AEAA � 7a� � � 7c� � � E�QjajDj � 1;X� � E�QjnjDj � 1;X�
� Xja�βa � βn� � λja�σujaεj � σujnεj�;

(8)

where Xja(βa – βn) captures the expected change in adopters’mean outcome if they have the char-
acteristics similar to non-adopters.

AEAA estimates obtained from FIML are consistent but not efficient if there is effect hetero-
geneity (Wooldridge, 2015). Therefore, we checked the robustness of the AEAA estimates by com-
paring them with their precise but inconsistent counterparts obtained from endogenous adoption
effect (eteffect)model, using the control function approach. Detail econometric results of the etef-
fect model are not presented in this paper but are available upon request. Further, we also ana-
lyzed farmer-level pre-adoption and transitional adoption effect heterogeneity, following the
procedure outlined by Di Falco et al. (2011). However, for policy purposes, it is essential to exam-
ine heterogeneity across relevant farmer groups. This could be done by estimating and comparing
the local average effects of adoption (LAEA) within different quantiles of the outcomes (Issahaku
and Abdulai, 2019). This implies discrete measures of heterogeneity for groups. Yet, effect het-
erogeneity could be continuous; meaning that discrete measures would not reflect its true nature
(Xie et al. 2012). Thus, following Xie et al.’s (2012) approach, we expressed farmer-specific effect
of adoption (effect of adoption on adopters (EAA) and effect of adoption on non-adopters (EAN))
as a function of the probability to adopt organic fertilizer. We then visualized the trends of EAA
and EAN by two-way scatter plots fitted with local polynomials of degree 1. (Xie et al., 2012). That
allows us to observe how effect heterogeneity (the gap between polynomials lines) differs across
levels of probability to adopt.

4. Empirical Results and Discussion
In this section, we show descriptive statistics of the sample data, and present and discuss the
econometric results of organic fertilizer adoption probability model, followed by the results of
the ESR outcome models. Next, we present and discuss estimated effects of organic fertilizer adop-
tion on food access and labor outcomes variables. We then conclude the section with a discussion
on adoption effect’s heterogeneity.

4.1. Data Summary Statistics

Table 1 presents the summary statistics of the data we used in the study. Column three shows the
pooled sample means, while columns four to six display subsample means for adopters and non-
adopters and their differences, respectively. Mean-difference tests showed significant difference
between adopter and non-adopter households regarding key socioeconomic variables, including
gender, education, household size, and livestock size. Adopters also differ from non-adopters in
terms of information access and social leverage profiles, such as extension visits, distance to the
nearest input market, and membership of a farmer-based organization. Other characteristics
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distinguishing adopters from non-adopters are soil quality status, type of soil tillage practiced, and
experience regarding production shocks such as drought and waterlogging. These differences
mean that the randomized selection of communities during sampling did not yield a sample with
participants of similar characteristics across the adoption regimes. This indicates that the observed
characteristics and, probably, other unobserved factors determine self-selection of farmers into
adoption as well as the outcomes.

The summary statistics of the outcome variables reported at the bottom of Table 1 show that
the average per capita (adult equivalence) food expenditure is about 598GHS (Ghana Cedis) per
annum. An average sample household experiences about 1 month of foodstuff shortages, usually
from late April to late May. This period seems shorter (0.74 months) for adopters than for
non-adopters (1.5 months), although the difference is not statistically significant. Regarding labor
use, an average sample farmer deploys 11.6 worker days of female labor and 14.14 worker days of
male labor, totaling 25.74 worker days per acre of maize. Organic fertilizer adopters, however, use
significantly (at 1%) more labor than non-adopters.

Figure 1 shows kernel density distributions of the four outcome variables. These distributions
highlight the systematic differences between adopters and non-adopters, affirming the validity of
ESR model. Since the ESR command we used relies on a linear function of outcome variable, we
carried out Box–Cox’s functional form tests to identify and appropriately specify each outcome
equation. The test reveals (see appendix 4B) that food consumption expenditure follows a log-
linear function, while FG follows a multiplicative inverse (reciprocal) function. Female labor
and male labor each support a linear identity process.

4.2. Determinants of Organic Fertilizer Adoption

An initial probit model for organic fertilizer adoption showed that the explanatory variables in our
empirical model jointly determine adoption (LR χ2(34) = 545.02 [0.000], Pseudo R2 = 0.78) and

Figure 1. Kernel density distribution of outcome variables by adoption status.
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Table 2. First-stage FIML estimates of organic fertilizer adoption probit model

Adoption probit model, jointly estimated with:

Explanatory variable
LogFood consump.

expenditure Recip. food gap Female labor Male labor

EXTFdistance −0.019*** −0.020*** −0.021*** −0.020***

(0.003) (0.002) (0.002) (0.001)

Gender −0.302 −0.426* −0.487** −0.476

(0.279) (0.239) (0.228) (0.296)

Age 0.098*** 0.087* 0.085 0.073

(0.029) (0.053) (0.053) (0.047)

Age2 −0.001*** −0.001 −0.001 −0.001

(0.000) (0.001) (0.001) (0.000)

Edu 0.036*** 0.054*** 0.042*** 0.033**

(0.012) (0.007) (0.014) (0.014)

Household size 0.090*** 0.088*** 0.084*** 0.102***

(0.026) (0.028) (0.022) (0.017)

F2M_Ratio −0.018*** −0.017*** −0.020*** −0.018***

(0.003) (0.003) (0.002) (0.002)

Input market distance 0.224 0.012*** 0.011*** 0.010***

(0.142) (0.002) (0.003) (0.001)

Farm assets −0.075 −0.013 −0.013 −0.015

(0.115) (0.008) (0.014) (0.010)

Lifestocksize (TLUs) 0.053*** 0.055*** 0.057*** 0.055***

(0.016) (0.014) (0.021) (0.021)

Farmland −0.426*** −0.039* −0.028 −0.039

(0.101) (0.021) (0.039) (0.029)

Extension 2.012*** 1.800*** 2.093*** 1.943***

(0.084) (0.201) (0.041) (0.076)

LandTenure 0.422*** 0.370** 0.425 0.470**

(0.164) (0.156) (0.341) (0.190)

Groupmember 2.223*** 2.094*** 2.229*** 2.183***

(0.470) (0.251) (0.379) (0.383)

Market relations −0.167*** −0.122** −0.201*** −0.183***

(0.037) (0.047) (0.043) (0.055)

Tillage mode 1.548*** 2.031*** 1.961*** 1.967***

(0.516) (0.372) (0.507) (0.529)

Mineral fertilizer −0.236*** −0.006 −0.005 −0.004

(0.040) (0.004) (0.005) (0.005)

(Continued)
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correctly predict about 94% of observed organic fertilizer adoption. The results for this first-stage
adoption (selection) model are presented in Table 2. The excluded variable (i.e., distance to exten-
sion office) is statistically significant, proofing its validity as an instrument for identifying the
empirical model. The coefficients of the other variables remained almost the same when the model
is estimated simultaneously with any of the outcome’s model. The error term of the adoption
model correlates with that of FG and female labor use equations.

Organic fertilizer adoption is significantly explained by: (a) household characteristics (gender,
age, and educational attainment of household head, household size, and female-to-male adults
ratio); (b) resource endowment (tropical livestock units [TLUs], arable farmland available, and
land tenure); (c) market, information, and social leverage constraints (extension visit, distance
to input market, farmer group membership, and market relationships), and (d) husbandry prac-
tices and plot-specific production shocks (tillage type, mineral fertilizer use, pest stress, disease
occurrence, drought, and waterlogged conditions). Finally, the probability of adoption also cor-
relates positively with PAS extension clusters (zone) location relative to the Bunkpurugu zone.

Female-headed households are more likely to adopt organic fertilizer than male-headed ones.
Age of the household head shows a quadratic relationship with the likelihood of organic fertilizer
adoption. From youth, it increases with the likelihood of adoption, but the relationship tends to
decrease for farmers beyond prime age, as indicated by the quadratic age term (age2). Unlike the
mixed findings by Martey (2018), this study finds that education is associated with an
increased likelihood of adoption. This supports previous findings (e.g., Kassie et al. (2015) that

Table 2. (Continued )

Adoption probit model, jointly estimated with:

Explanatory variable
LogFood consump.

expenditure Recip. food gap Female labor Male labor

Peststress 0.36*** 0.63*** 0.57** 0.55**

(0.12) (0.22) (0.28) (0.25)

Diseases −1.00 −1.15* −1.01* −1.06

(0.63) (0.69) (0.60) (0.72)

Drought 1.09*** 0.94*** 0.86** 0.93***

(0.39) (0.26) (0.44) (0.20)

Langb. _Zone 1 2.399*** 2.447*** 2.695*** 2.598***

(0.331) (0.445) (0.300) (0.277)

Garuwest _Zone 2 4.682*** 4.503*** 5.024*** 4.922***

(0.514) (0.303) (0.399) (0.364)

Garueast _Zone 3 3.588*** 3.933*** 4.042*** 3.959***

(0.745) (0.504) (0.575) (0.600)

Joint sig. of plot-specific 9.120* 177.76*** 2.340* 23.71***

Variables. �2 3� � [0.028] [0.000] [0.505] [0.000]

Constant −2.879 −4.806** −4.420** −4.408**

(1.897) (2.052) (1.960) (2.170)

Log pseudo LR −384.292 −173.837 −1470.334 −1502.731

Observations 504 504 504 504

*** p<0.01, ** p<0.05, * p<0.1 and [ ] = p>�2. Robust standard errors in parentheses. Other variables controlled for are meanstrans, plot-
size, walkdisttoplot,watrlog, SoilStat, capitalexp herbvaluacre, seedgrade, off-farmincom, and OffFarmRes.
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better-educated farmers are able to access information required to understand farm technology; in
this case, the complex relationship between soil health and organic practices and, therefore, are
more likely to adopt than less the educated ones. Household size is significant and positively
related to adoption, meaning that large households are more likely to adopt than their small coun-
terparts with few members. This is in line with the assertion that organic fertilizer use is labor-
demanding, and therefore, households who are capable of meeting the requirement will, more
likely, adopt the technology (Chikowo et al., 2014). However, households with more female farm-
workers are less likely to adopt the input’s use than those having more male farmworkers.

Among the resource endowment factors, the number of TLUs a farmer owns has a significant
positive relationship with organic fertilizer adoption. Since organic fertilizers are not commer-
cially available, farmers who have substantial livestock herds may have better access to it in
the form of animal manure than those without livestock. Hence, they are more likely to use
organic fertilizer than those without livestock. The number of acres of arable land (farmland)
a household has seems to reduce the probability of using organic fertilizer. On the contrary, own-
ership (tenure) of the organic fertilizer plot on which organic fertilizer is applied is associated with
increased tendency to use organic fertilizer. Organic fertilizers release nutrients and build organic
matter content of soil slowly, with the yield benefits accruing in the medium to long-run time span
(Waithaka et al., 2007). Thus only the farmers who own plots on which organic fertilizer is applied
are sure to derive the benefits themselves. Hence they are more motivated and likely to invest in
organic fertilizer than those farming on rented plots (Abdulai, Owusu and Goetz, 2011; Chen
et al., 2018a; Jacoby et al., 2002; Jacoby et al., 2008; Kousar and Abdulai, 2015).

Of the information and social leverage factors, the distance between a farm household and local
input market, the number of extension visits, and membership of farmer-based organization(s)
significantly increase the probability of organic fertilizer adoption. This is in line with previous
studies that extension services, through information and skill enhancement, enable farmers to
adopt new technologies (Abdulai, 2016; Abdulai and Huffman, 2014; Issahaku and Abdulai,
2019). Improved access to information through interaction with extension agents and fellow farm-
ers increases awareness about the need to use organic soil amendments, hence, the probability of
adoption. Distance to the nearest input market has a similar relationship with organic fertilizer
use, probably by limiting access to the commercial alternative (i.e., mineral fertilizer), and thus,
inducing the farmers to adopt organic fertilizers, which they can produce locally by themselves.
On the contrary, the number of trusted marketing relations (traders) negatively correlates with
adoption. Access to traders seems to enhance farmers’ capacity to access and use mineral fertilizers
(Teklewold et al., 2013). In summing up the results of the social leverage factors, it is reasonable to
assert that organic fertilizer is a traditional resource-poor soil management technique rather than
a modern technology to the sample farmers.

Regarding husbandry practices, minimum tillage is related to an increased probability of using
organic fertilizer. That is because farmers in the area generally do not practice minimum tillage,
except when they have to apply organic fertilizer by the Zai pit method. On the contrary, the
quantity of mineral fertilizer a farmer applies tends to relate with reduced likelihood of organic
fertilizer adoption, indicating farmers might have perceived the inputs as substitutes (Bellwood-
Howard and Al-hassan, 2016). Experience in production shocks such as droughts and pest stress
encourage adoption, while previous crop disease incidence seems to discourage adoption, even
though statistically not very significant. This result is consistent with Teklewold et al.’s (2013)
findings about factors affecting adoption of sustainable agricultural practices in Ethiopia.

Lastly, the location of a farm household, relative to extension zone 0 (Bunkp., reference zone),
significantly determines organic fertilizer adoption. Households in zone 1 (Langbinsi area), zone 3
(Garu-Tempane area), and zone 2 (Manga-Basua area) are more likely to use organic fertilizer
than their counterparts in zone 0. This could be attributed to better access to extension through
organic fertilizer interventions by PAS and its affiliates.
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Table 3. ESR estimates for determinants of household food access and labor use

Log FCE (Food Gap)^-1 Female labor Male labor

Variable Adopters
Non-

adopters Adopters
Non-

adopters Adopters
Non-

adopters Adopters
Non-

adopters

Gender −0.010 0.050 0.016 0.038 −0.071 −1.338* −1.532*** −0.256**

(0.125) (0.041) (0.033) (0.076) (0.473) (0.800) (0.484) (0.111)

Age 0.001 0.014 −0.001 −0.001 0.235*** 0.177** −0.217 0.088

(0.004) (0.012) (0.009) (0.003) (0.047) (0.078) (0.135) (0.096)

Age2 0.000 −0.000 0.000 0.000 −0.002*** −0.002** 0.002* −0.001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

Edu 0.009* 0.006 0.001 0.002 0.105* −0.031 0.073 0.172**

(0.005) (0.004) (0.003) (0.008) (0.063) (0.046) (0.074) (0.079)

Household size −0.039*** −0.090*** 0.007 −0.004*** 0.033*** −0.036 0.108 0.079

(0.006) (0.014) (0.010) (0.000) (0.013) (0.091) (0.115) (0.160)

F2M_ratio 0.001 0.000 −0.002*** −0.001 −0.009*** −0.001 0.007 −0.007

(0.001) (0.000) (0.000) (0.000) (0.003) (0.002) (0.006) (0.006)

Input market
dist.

0.012 −0.041*** −0.001 −0.001 0.018*** −0.014 0.016 −0.002

(0.032) (0.014) (0.000) (0.001) (0.005) (0.013) (0.015) (0.011)

FAssets 0.039 0.055*** 0.000 0.004*** −0.037* 0.078*** −0.013 0.006

(0.029) (0.010) (0.002) (0.001) (0.021) (0.022) (0.026) (0.030)

Livestock (TLUs) 0.004 −0.001 −0.000 −0.006 0.053*** −0.068** −0.034*** 0.200***

(0.002) (0.004) (0.001) (0.007) (0.005) (0.029) (0.011) (0.059)

Farmland −0.014 0.074* −0.005** 0.001 0.121*** −0.075* 0.072 −0.034

(0.095) (0.045) (0.002) (0.008) (0.031) (0.041) (0.050) (0.068)

Extension −0.032 −0.548*** 0.029 0.330*** 0.082 −0.927*** −1.017** 2.684***

(0.030) (0.057) (0.023) (0.023) (0.466) (0.180) (0.434) (0.821)

LandTenure 0.071 −0.123*** 0.022 0.093 −1.210* −0.622 −0.727 0.223

(0.123) (0.033) (0.044) (0.061) (0.652) (0.696) (0.461) (0.826)

Tillage mode 0.240** −0.026 −0.020 0.999*** −1.139 −2.218 0.724 3.444**

(0.097) (0.053) (0.048) (0.115) (0.898) (1.679) (0.635) (1.681)

Mineral fert −0.007 0.016 −0.000 0.000 0.006 0.019*** 0.002 0.001

(0.013) (0.012) (0.001) (0.000) (0.009) (0.005) (0.009) (0.006)

Groupmember 0.081** −0.006 0.162 0.207* 0.101 −1.760*** −1.142 −0.722

(0.035) (0.157) (0.103) (0.107) (1.944) (0.682) (1.076) (0.982)

Mrktrelations 0.041 −0.069*** −0.028 −0.017** −0.014 0.389*** 0.393*** 0.550

(0.025) (0.025) (0.029) (0.008) (0.205) (0.081) (0.094) (0.343)

Langb. Zone 1 0.117*** −0.344*** −0.153* 0.020 1.455* 0.230 0.647 2.365***

(0.030) (0.112) (0.088) (0.086) (0.783) (0.391) (0.813) (0.762)

(Continued)

Journal of Agricultural and Applied Economics 449

https://doi.org/10.1017/aae.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2021.8


4.3. Factors Explaining Household Food Expenditure, Food Gap, and Gender-Based Labor Use

Table 3 presents the results of second-stage ESR outcome model for adopters and non-
adopters, respectively. At the bottom of the table are correlation coefficients (ρjaϵ and ρjnϵ)
between error the terms of the adoption equation and that of the outcome regime equations.
Statistically significant values for these coefficients indicate a considerable self-selection of farmers
into the outcome regimes based on some unobserved factors that influence both the adoption and
the outcomes. Self-selection could lead to biased estimates for organic fertilizer effects, had it not
been accounted for (Tambo and Wünscher, 2017). The ρjnϵ between adoption model and non-
adopter regimes and the Wald test of independence of the equations are also statistically signifi-
cant, meaning that outcomes are not independent of adoption decision. Thus, we had to apply the
ESR to control for selection bias in order to obtain accurate estimates of adoption effects on FG
and female labor. A positive ρjnϵ (in the non-adopter regime) between the reciprocal of FG and the
adoption model suggests that non-adopters’ decision not to adopt leads them to reduced FG.
Similarly, the negative correlation (ρjnϵ) with the female labor equation indicates a reduction
in female labor use under non-adoption.

Such kind of biases could exist in the other outcome (logFCE and male labor) equations with-
out being detected, probably due to low statistical power. Thus, empirically we needed to employ
the ESR approach in this study (Issahaku and Abdulai, 2019), even though the insignificant ρjaϵs
between adoption and adopter outcome equations suggest that adopters do not do better than a
farmer selected at random. The transformed error covariances, lnσjaϵ, and lnσjnϵ, also reported at
the bottom, are highly significant, implying endogenous switching of outcomes between adoption
and non-adoption (Tambo and Wünscher, 2017). These coefficients having the same sign, in this

Table 3. (Continued )

Log FCE (Food Gap)^-1 Female labor Male labor

Variable Adopters
Non-

adopters Adopters
Non-

adopters Adopters
Non-

adopters Adopters
Non-

adopters

Garuwest Zone 2 0.267* −0.683*** −0.124 −0.371*** 1.296** −1.636* 0.016 4.669***

(0.138) (0.117) (0.082) (0.143) (0.551) (0.892) (1.963) (0.955)

Garueast Zone 3 0.050 −0.218 −0.249*** 0.177** 2.535*** −2.502*** 1.370 2.708***

(0.118) (0.142) (0.085) (0.073) (0.485) (0.333) (1.551) (0.738)

Joint sig.(plot
vars) �2 37� �

69.24*** 72.40*** 71.12*** 72.81*** 65.17*** 66.96 *** 64.20*** 63.17**

[0.001] [0.000] [0.000] [0.000] [0.003] [0.002] [0.004] [0.005]

ln�ja"=ln�jn" −0.737*** −0.863*** −1.266*** −1.151*** 1.408*** 1.302*** 1.404*** 1.424***

(0.133) (0.123) (0.295) (0.089) (0.015) (0.021) (0.006) (0.022)

�ja"=�jn" 0.139 0.128 0.545 0.511* 0.013 −0.485* −0.176 0.280

(0.127) (0.378) (0.577) (0.294) (0.723) (0.278) (0.415) (0.470)

Wald test of
indep. (� � 0�

0.61 6.90*** 3.72* 1.32

[0.4363] [0.008] [0.053] [0.250]

Constant 6.023*** 6.090*** 0.731*** 0.392 6.909 9.700*** 20.347*** 0.830

(0.263) (0.216) (0.151) (0.241) (4.424) (1.411) (1.461) (2.065)

Observations 250 254 250 254 250 254 250 254

*** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. Other variables included are meanstrans, plot size, walkdisttoplot,
disease, Drought, watrlogg, SoilStat, capitalexp herbvaluacre, seedgrade, peststress, OffFarmRes, and offfarmincom. For their coefficients
and sig. level, the unedited Stata model outputs are available upon request.
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case, imply that farmers’ decision to adopt organic fertilizer is not based on any comparative
advantage of organic fertilizer. Rather farmers choose fertilizer regime that makes them better
off in terms of the outcomes.

The estimates in Table 3 show that gender, age, and education of household heads do not affect
food consumption expenditure (logFCE) and FG but they negatively influence labor, especially
female labor use. Household size is negatively related to logFCE of both regimes and the FG
of non-adopters, but positively associated with female labor use of adopters. This means that large
households generally have low FCE, while only non-adopter large households experience higher
FG compared with their small counterparts. Large adopter-households use female labor more than
small households, probably because they (large adopter-households) have more household labor.
Similarly, female-to-male ratio in a household is associated with extended periods of FG and more
female labor use. Farm asset value is also significant and positively affects FCE, FG, and female
labor of non-adopters, but negatively relates to adopters’ female labor use. TLU statistically relates
to only labor use, with opposing signs on adopters and non-adopters. The size of total arable land
a household possesses has a similar alternate relationship with outcomes of adopters and non-
adopters, even though it is not statistically significant in the case of FCE of adopters, FG of
non-adopters, and male labor use of both regimes.

Besides the household characteristics presented above, market and information access varia-
bles, including extension visits, membership of farmer-group(s), and relationship with traders also
significantly influence outcomes of the regimes differently. The same holds for geographical loca-
tion (cluster) of households relative to Bunkpurugu area (reference zone). Lastly, we refer the
reader to Table 3 for the joint effects of plot-specific variables. Even though some of them have
insignificant coefficients, their joint-significance test result (see χ2 (37)) is highly significant (at
1%). Based on equations 7a to 7d, we obtained both conditional and unconditional expected out-
comes for each adoption regime. We then computed different measures of organic fertilizer effect
from the expectations, as presented below.

4.4. Effects of Organic Fertilizer Adoption on Food Security and Labor Use13

Table 4 shows the expected outcomes, average effect of adoption on adopters (AEAA)14, average
effect of adoption on non-adopters (AEAN), as well as adoption effect heterogeneity indexes
(BH1, BH2, and AH) for each outcome variable (i.e., under the first column). BH1 and BH2
are the transitional and base heterogeneity, respectively, while AH indicates average effect hetero-
geneity, showing whether the effect of organic fertilizer is more or less on adopters than non-
adopters, in a counterfactual situation that non-adopters did adopt (Di Falco et al., 2011). In other
words, it represents the effect of selection on adoption (Wooldridge, 2015).

We obtained alternative estimates for the adoption effects (see appendix 4D) using the endog-
enous adoption effect (eteffects) model to check the robustness of ESR estimates. The eteffects-
based AEAA estimates have the same signs and are close to those from the ESR model even
though, except for female labor use, they are not statistically significant. The eteffects model
employs the control function estimator, which gives precise but inconsistent estimates because
it is sensitive to self-selection and influential observations (Wooldridge, 2015). Thus, its estimates
are subject to larger standard errors than those of ESR in cases where there is self-selectivity
(lnσjaε=lnσjnε) and effect heterogeneities (BH and AH). On the other hand, the ESR model if

13We defined the average effect of adoption on adopters as the average effect treatment on the treated (AEAA), and the
average potential effect of adoption on non-adopters as the average effect of treatment on untreated (AEAN), so that we
continue to use the latter set of terms, because they are well established in the literature

14AEAA is the average difference between the actual expected outcome of adopters (a) and its counterfactual expected
outcome (c) had they not adopted. Similarly, AEAN is the difference between (d) the counterfactual expected outcome of
non-adopters had they adopted and the actual expected outcome (b). BH1, BH2, and AH are (a)–(d), (c)–(b), and
AEAA–AEAN, respectively.
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estimated by the FIML, exploits all available information in the data to fit the model. Hence, the
estimates are more consistent than those of the control function estimator (Issahaku and
Abdulai, 2019).

The estimated average effects of adoption show that food consumption expenditure for adopter
households increased by about 0.6 log units (AEAA= 0.595) over what it would be, had they not
adopted. This represents about 11% (GHS 30.35) increased consumption under organic fertilizer
adoption in adopter households. However, food consumption would have been 2% lower in non-
adopter households (GHS 9.46) had they adopted organic fertilizer (AEAN=−0.126 log units).
These results, as indicated earlier, imply that while adopters are better off adopting organic fer-
tilizer, non-adopters are also better off not adopting. Yet, adopters are far better off under their
decision to adopt than non-adopters are under non-adoption. The base and transitional effect
heterogeneity estimates (BH1, BH2, and AH) indicate that adopters systematically differ from

Table 4. ESR-based expected outcomes; adoption effects and heterogeneity

Outcome variable Subsample

Expected outcomes Adoption (adoption) effects

With adoption Without adoption Difference % change

Log FCE per AE Adopters 6.212a 5.620c AEAA 0.595*** 11

(0.025) (0.050) (0.040)

Non-adopters 6.033d 6.159b AEAN −0.126***

(0.027) (0.031) (0.021)

Heterogeneity effects BH1= 0.179*** BH2=−0.539*** AH 0.721***

(0.014) (0.018) (0.016)

Food Gap Adopters 1.231 0.793 AEAA 0.438*** 55

(0.047) (0.010) (0.044)

Non-adopters 0.591 0.623 AEAN −0.032**

(0.010) (0.008) (0.0126)

Heterogeneity effects BH1= 0.640*** BH2= 0.170*** AH 0.470***

(0.015) (0.001) (0.015)

Female labor days/acre Adopters 12.316 6.466 AEAA 5.850*** 90

(0.108) (0.159) (0.198)

Non-adopters 11.455 10.893 AEAN 0.562***

(0.100) (0.104) (0.152)

Heterogeneity effects BH1= 0.861*** BH2=−4.427*** AH 5.288***

(0.029) (0.032) (0.037)

Male labor days/acre Adopters 16.932 15.605 AEAA 1.327*** 9

(0.127) (0.263) (0.320)

Non-adopters 18.618 11.387 AEAN 7.230***

(0.117) (0.143) (0.189)

Heterogeneity effects BH1=−1.686*** BH2= 4.218*** AH −5.903***

(0.031) (0.040) (0.037)

Standard error in parenthesis. **, *** significant at 5% and 1%, respectively. a and b are actual expected outcomes for adopters and
non-adopter, respectively, while c and d are their counterfactual outcomes. For food gap, �AEAA means decrease, while the reverse is
true for AEAN, since the estimates are in reciprocals.
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non-adopters are regarding their background characteristics. And adoption makes adopters a
higher per capita food consumers than non-adopters. This meso-level finding is at variance with
Martey (2018) macro-level conclusion that organic fertilizer adoption insignificantly lowers food
consumption expenditure. The difference could be due to the fact that the present study consisted
more subsistent farm households whose additional farm proceeds from adoption reflect in higher
food consumption rather than in other expenditures such as report in Martey (2018). It could also
be that the previous study’s estimates were biased through averaging over different agroecologi-
cal zones.

The FG estimate gives an AEAA of 0.438 reciprocal months of FG, representing 0.69 months
(55%) decrease from the mean FG that adopter households would have experienced, had they not
adopted. Non-adopter households, on the other hand, have a reciprocal of 0.623 FG months but
would have had 0.591 with an AEAN (−0.032) representing a 5% increase in the duration of the
FG, had non-adopters adopted organic fertilizer. These results show that organic fertilizer adop-
tion decreases food deficits in adopter households, though they still would have experienced fewer
months of food inadequacy than non-adopters, had they not adopted.

Regarding labor use, the AEAA shows that organic fertilizer adoption results in a vast increase
(5.9) in female worker days from 6.5/acre to 12.3/acre, representing 90%. For non-adopters, the
difference (i.e., AEAN) between expected labor use, if they had adopted, and the actual labor use
under non-adoption is 0.56 worker days, representing a 5% increase. Hence the transitional het-
erogeneity (AH= 5.3 worker days) indicates that the effect is more on adopters than non-adopt-
ers. However, the pattern is reversed in the case of male labor use. The AEAA on male labor used
by adopters is about 9% (1.3 worker days) more than they would have used if they had not
adopted organic fertilizer. In the counterfactual case that non-adopters would have adopted,
the AEAN indicates they would have used 7.2 worker days (63%) more male labor. This means
that the effect of organic fertilizer adoption on male labor use (as indicated by the negative AH)
is less for adopter households than for non-adopters. In general, the results regarding labor use
are consistent with Teklewold et al.’s (2013) findings that sustainable intensification practices
increase farm labor use, with female workers supplying the extra labor needed. For organic fer-
tilizer in particular, much human effort is required in place of carting equipments to collect,
transport, and apply the high tonnage (Xu et al., 2014). Farmers in the study area generally lack
such equipments. Thus, traditionally they employ young women to carry out such operations.

4.5 Organic Fertilizer Effect Heterogeneity

The indexes (BH1, BH2, and AH) in Table 4 are average difference adoption effects on adopters
and non-adopters. They indicate the presence and general direction of pre-adoption and adoption
effects heterogeneity between adopters and non-adopters. We can observe the heterogeneity trend
by analyzing and comparing farmer-specific deviations from their sub-sample means (AEAA
and AEAN).

Figure 2 shows scatter plots of EAA, EAN, with fitted polynomial lines representing AEAA
(pink) and AEAN (green) for each outcome against the probability of adopting organic fer-
tilizer. The gap between the fitted lines indicates the transitional heterogeneity between adopt-
ers and non-adopters of equal probability at every point along the probability continuum. For
per capita food consumption expenditure, adoption effect heterogeneity is high between farm-
ers with probability ranging from 0.3 to 0.6, where the majority of non-adopters have a nega-
tive AEAN. The heterogeneity between farmers with probabilities beyond 0.6 is low, but
positive and appears increasing with the probabilities approaching 0.9. The intuition behind
this is that non-adopters with an adoption probability above 0.6 will improve their per capita
food consumption if they are facilitated to adopt, whereas the same cannot be said about those
with low adoption probabilities.
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The adoption effect on the FG among adopters decreases from positive to negative as the prob-
ability of adoption increases, while that of non-adopters remains negative except for those with
probabilities between 0.6 and 0.8. Thus, AH becomes negative at probabilities beyond, where non-
adopters have almost zero but higher adoption effects than adopters. In that case, encouraging
non-adopters to adopt without first changing ground conditions that select them on non-adoption
will yield no benefit. Similar to the trend observed in AH of the FG is that of male labor use but the
AH effect in that case is negative at all probabilities of adoption, meaning that non-adopters, if
adopt, will use more male labor than adopters. Finally, for female labor use, the effect of adoption
is positive for both adopters and non-adopters but higher on the adopters than the non-adopters.
However, the difference (AH) between the two remains relatively unchanged at all probabilities of
adoption.

5. Summary and Conclusions
This paper used a set of observational data obtained from 504 smallholder maize farmers in
Northeastern Ghana to examine organic fertilizer adoption and its effects on farm household food
access on the one hand and farm labor use on the other. Given that adopters, through their char-
acteristics, self-selected to adopt, we employed the ESR approach to account for self-selectivity bias
while modeling adoption and expected outcome for each regime.

The adoption model estimates show that household characteristics, such as the age, gender,
education of household head, household size, and location of household within PAS extension
zone significantly correlate with the probability of adopting organic fertilizer. Resource-based,
plot-specific, and environmental factors like households’ livestock size, farmland ownership, min-
imum tillage practice, and previous drought experience also tend motivate farmers to adopt
organic fertilizer. Social capital, governance, and institutional factors supporting organic fertilizer
adoption include household distance to input market, membership to farmer group, and access to
extension services. On the other hand, factors like farm size (acres of arable land), farm capital

Figure 2. Adoption effects on food access (a and b) and labor demand (c and d) by adoption regime.
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expenses, mineral fertilizer use, the number of grain buyers a household has contact with, and the
distance to agricultural extension office negatively correlate with the probability of organic fertil-
izer adoption.

These characteristics have mixed effects across adopters and non-adopters outcome equations,
except education, which positively affects all the outcomes of both regimes. Generally, the ESR
results show that adoption is not based on any comparative advantage organic fertilizer has.
Instead, farmers choose to adopt or otherwise based on the regime that gives the farm household
the best outcome.

The ESR model results also reveal that observed and some unobserved factors influence farm-
ers’ outcomes, not only through adoption but also directly. This means that our estimates for
organic fertilizer effects would have been biased, had we not applied the ESR model. Adoption
effect heterogeneity trends indicate that we would have underestimated the effects on food
consumption expenditure, FG and female labor use and yet overestimate that of male labor
use. The effect estimates show that organic fertilizer adoption improves household food access
by increasing per capita food consumption expenditure significantly, while reducing FG
period. Unfortunately, adoption increases labor requirement by about one-third, placing
nearly all the increased labor burden on female farmhands. This means that though organic
fertilizer adoption can improve food security among farm households, it could be severely
hindered, especially by female labor constraints.

From a policy perspective, findings of this study have implications for current and future inter-
ventions seeking increased organic fertilizer use in the country. Investment in rural education and
improved access to organic fertilizer use information through farmer-based organizations and
extension services are strategic measures to promote adoption. For short-term measures to draw
in non-adopters, unobserved factors opposing farmers’ motivations to use organic fertilizer,
including misconceptions about the input, need to be identified and mitigated. The negative effect
of mineral fertilizer in the adoption process suggests that farmers have wrongly perceived mineral
and organic fertilizers to be substitutes (Bellwood-Howard and Al-hassan, 2016). Hence, the need
to sensitize farmers further on the complementary roles the inputs play in sustainable crop pro-
duction. Interventions should consider providing female-user-friendly and labor-saving equip-
ments for collection, transportation, and application of organic fertilizer to facilitate uptake
and intensification of the inputs’ use in the area.

Finally, we note that, though this paper contributes significant empirical evidence to the litera-
ture on organic fertilizer use and farm household welfare, the analysis used a cross-sectional
dataset. Thus, it does not account for time adjustments in organic fertilizer use and associated
long-term beneficial effects on the welfare outcomes (Chen et al., 2018b; Martey, 2018).
Hence, the results should be interpreted and appropriated with caution.
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