
LATTICE OCTAHEDRA 

L. J. MORDELL 

Let A i, A2, . . . , An be n linearly independent points in w-dimensional 
Euclidean space of a lattice A. The points ± A\, ±A2, • . . , ±An define a 
closed ^-dimensional octahedron (or "cross poly tope") K with centre at the 
origin 0. Our problem is to find a basis for the lattices A which have no 
points in K except zkAi, zLA2, . . . , dcAn. 

Let the position of a point P in space be defined vectorially by 

(1) P = piAl + p2A2 + . . . + M » . 

where the p are real numbers. We have the following results. 
When n = 2, it is well known that a basis is 

(2) U1M2). 

When w = 3, Minkowski (1) proved that there are two types of lattices, 
with respective bases 

(3) (Alt A2} A3), (Au A2} i(^ii + A2 + A3)). 

When n = 4, there are six essentially different bases typified by A1, A2, Az 

and one of 

44> h(A2 + A, + A,), 1{A, + A2 + A, + .44), 

(4) i ( ± A1±A2±As± AA), i ( ± 2^i ± A2 ± ^3 ± .44), 

K ± 2 4 i db 2 ^ 2 ± ^ 3 dzy44). 

In all expressions of this kind, the signs are independent of each other and 
of any other signs. This result is a restatement of a result by Brunngraber 
(2) and a proof is given by Wolff (3). 

The proofs for n = 3, 4 depend upon Minkowski's method of adaption of 
lattices, and that for n = 4 is very complicated. I notice another method 
of considering the question which gives the result more directly, more simply, 
and with less troublesome numerical detail. 

The simplest required lattice is that with basis (Ai, A2, . . . , An). This will 
not be a basis of the other lattices A. Hence there will be points A of A given by 

(5) pA = axAx + a2A2 + . . . + anAn, 

where ai, a2, . . . , an and p > 1 are integers, and 

(6) (a l fa2 , • • • ifln, P) = 1. 

Received January 28, 1959. 

297 

https://doi.org/10.4153/CJM-1960-025-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-025-4


298 L. J. MORDELL 

For brevity, we shall denote such a point A by 

A = {ai, a2, . . . ,an)/p. 

There is no loss of generality in supposing that 

(7) |ai| < | £ , |a2| < | £ , . . . , \an\ < ^ . 

We may also suppose that no a = 0 (mod £). For if ai = 0 (mod p), we 
have an n — 1 dimensional problem which may be considered as solved in 
dealing with the n-dimensional problem. 

By the conditions of the problem, the point A is such that for any integer 
x prime to p, and all integers Xi, x2, . . . , xn 

xA — XiAi — X2A2 — . . . — xnAn 

is not in K\ and there is no loss of generality in supposing that |x| < p. We 
shall call such points A admissible. Then A will be admissible if and only if 

d\X 
- X\ +. .+ xJUyuA/ 

Xn 

p p 
since the point P in (1) lies in K if 

(9) |Px| + \P2\ + ... + \Pn\ < 1. 

Now by Minkowski's theorem on convex bodies, the convex n + 1 dimen
sional body 

|Xx| + \X2\ + . . . + \Xn\ < 1, \X\ < p 

of volume 2n+1p/n\ contains at least two points of the lattice given by 

ffl^ y dnX -y-
1 , X i, . . . , A n Xn, A X, 

P P 
of determinant one when p > n\ We may suppose that X ^ 0 since then 
Xi = 0, X2 = 0, . . . , xn = 0. Hence, as is well known, admissible points A 
can arise only when p < n\ 

In this paper, we shall be concerned only with the cases n = 2, 3, 4. We 
shall see that admissible points A arise only when n = 3, p = 2, and n = 4, 
£ = 2 , 3 , 4 , 5 . 

Suppose first that n = 2. We need only consider p — 2, and then |ai| < 1, 
|a2| < 1. Clearly the point A = ^{ai, a2( lies in K and so cannot be a point 
of A. Hence (^4i, .42,) is a basis of A. 

Suppose next that n = 3. We have now to consider p = 2, 3, 4, 5, 0. 
If p = 2, \a,i\ < 1, |a2| < 1, |a3| < 1, and then A = |{ai, a2, a3}. This will 

be a point of X unless |#i| = |a2| = |a3| = 1, and so .1 = ^{± 1, =tl, ± 1 } . 
This point is admissible since xA = /I (mod A) when x = ± 1. Hence we 
clearly have a lattice A typified bv the basis (A = ^{1, 1, 1}, /li , .42), since 
A, = 2A - Ax- A2. 
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If p = S, |ai| < 1, \a2\ < 1, |a3| < 1, then A = J { ± 1, db 1, ± 1} and lies 
in K and is not admissible. 

If p = 4, |ai| < 2, |a2| < 2, |a3| < 2. We may suppose that one at least 
of the as is not even, say \a\\ — 1. Since A does not lie in K, the only possi
bility for A is 4 = i{=h 1, d= 2, db 2}. Then 24 = \AX (mod A) and so A is 
not admissible. 

If p = 5, \a,i\ < 2, |a2| < 2, |a3| < 2 and so since A is not in K, we must 
have A = |{ db 2, db 2, db 2}. Then 2A = | { ± 1, ± 1, ± 1} (mod A), and 
so 4̂ is not admissible since | { ± 1 ,d= 1, =b 1} lies in X. 

If p = 6, |ai| < 3, \a2\ < 3, |a3| < 3. Since we require \a,i\ + |a2| + |a3| > 6, 
we have only the three cases typified by 

(fli,fl2, a8,) = (d= 1, ± 3 , ± 3 ) , ( ± 2 , ± 2 , db3), (db 2, db 3, db 3), 

(db3, ± 3 , ±3 ) . 

In all these, 2.4 is congruent mod A to a point of K and so A is not admissible. 
Suppose finally that n = 4 and so now p < 24. We shall show that there 

exist admissible points if and only if p < 5. We first give some results of a 
general character which will simplify the arithmetic. We note 

(I) A is not admissible if p contains a factor / such that every A with 
denominator / is not admissible. This is obvious from 

pA/f = {aha2,az,a4,}/f. 

We note next 
(II) A is not admissible if for d, the greatest common divisor of p and 

of any of the as, d > 2. 
For suppose that (ai, p) = d. Then pA/d = {0, a2, a3, âul/d (mod A), and 

from the case n = 3, this cannot be admissible unless d = 2 and a2, a3, <z4 are 
all odd. Hence, whenever A is admissible, we may suppose that one of the 
a, say a± is odd and prime to p. On considering xA where xa\ = ± 1 (mod p), 
we may then take 

(III) ^ = db 1 (mod£). 
We shall presently consider the admissible points with \a2\ = 1,2, 3, but 

first we consider the smaller values of p. 
When p = 2, 3, it is clear that the only admissible points A are 

A = {± 1, ± 1, ± 1, db l}/£. 

Note /lx = {=1= 1, ± 1, =h 1, =b l}/£ (mod A) for x - db 1. 
When p = 4, |#i| < 2, |a2| < 2, |a3| < 2, |a4| < 2. Since A is admissible, 

J2\a\ > 5, and since all the |a| cannot be less than 2, we can take say \a,\\ = 2. 
Then from (II), a2, a3, a4 are odd giving the admissible point 

A = i{=±=2, ± 1, ± 1, db 1}. 

We note 2A s |{0, 1, 1, 1} (mod A). 
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When p = 5, |ai | < 2, etc. We can t ake |&i| = 1, and since ]£ |a | > G, we 
may take , say, |a2 | = 2, and then, say, \az\ = 2. W e can reject |a4 | = 2 since 
for ,4 = i { ± 1, ± 2, dz 2, ± 2}, 2A is not admissible. W h e n |a4 | = 1, we 
have the admissible point A typified by 

A = i { ± 2 , ± 2 , ± 1, ± 1 } . 

We note 2A = | { zb 1, =b 1, =1= 2, =t= 2} (mod A). 
I ^ e n >̂ = 6, by means of ( I I ) , we can exclude the cases when any a is 

divisible by 3, and also when any a is divisible by 2, since then the only 
possible forms for A are given by A = J{ db 2, db 1, ± 1, =h 1}, and these 
are obviously not admissible. Hence also from (I) , 

p = 12, 18, 24 are not admissible. 

When p = 7, we have |ai | = 1 and then, say, |a2 | = 3. Hence |a3| = 2 or 3. 
We reject |a3 | = 3 since then 2A = {̂ zb 2, zb 1, zb 1, 2a4} (mod A) and is 
inadmissible. T h e n |a4 | = 2 or 3 and we can reject |a4 | = 3 leaving 
A = i { ± 1, ± 3 , ± 2 , ± 2 } ; and 3/1 = £ { ± 3 , ± 2 , ± 1 , ± 1 ) (mod A) and 
is not admissible. Hence also 

p = 7, 14, 21 are not admissible. 

When p = 8, suppose first t h a t all the a are odd. Since \a\ = 1 or 3, a t 
least two of the \a\ are equal, and on considering 3.4, if need be, we can t ake 
|#i| = 1, |a2 | = 1. Then A = | { ± 1, ± 1, a3, a4} is obviously inadmissible: 
Suppose next t h a t some of the a are even. Then by ( I I ) , we need only con
sider the case when |ai | = 2, and |a2 |, |a3 |, |a4 | , are odd. Since a t least two 
of these are equal, we may on considering 3/1 if need be, t ake \az\ = 1, |a3 | = 1 
and then A is inadmissible: Hence also 

p = 16, 24, are not admissible. 

Whenp = 9, on considering 3^4, we see t h a t each a satisfies a = db 1 (mod 3), 
t h a t is, \a\ = 1, 2, or 4. Since a t least two of the \a\ are equal, we can on con
sidering 2^4 or 4^4, if need be, take |&i| = 1, |a2 | = 1. Hence A = J{ d= 1, zb 1, 
d= 4, zb 4}, and 2/1 is not admissible. Hence also 

p = 18, is not admissible. 

When p = 10, we have |#i| = 1, and since \a2\ + |a3 | + \a±\ > 10, we must 
have, say, |a4 | = 4 or 5. By ( I I ) , we can reject |a4 | = 5, and when |a4 | = 4, 
a3 and a4 mus t be odd and so |a3 | < 3, |a4 | < 3. T h e only possibility is 
A — ±{ zb 1, zb 4, =b 3, zb 3}, bu t then SA is not admissible. Hence also 

p = 20 is not admissible. 

W e have now dealt with all the even values of p < 24, except p = 22 which 
will be deal t with when p = 11 is considered, and which is not admissible. We 
must now consider the remaining odd values of p > 9, We shall show t h a t 
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no admissible points A arise when p > o and |#i| = 1, |a2| = 1, 2, or 3. This 
will then hold also for any two a, say ar, as if (a r, p) = 1 and as = ± a r , 
dz 2a r , dz 3a r (mod />). 

(IV) Suppose |ai | = 1, |a2 | = 1. Since |a3 | + |#4| > £ — 1, we mus t have 
|a3 | = i ( £ - 1), \aA\ = UP ~ 1). Then 2A =s= {d= 2, d= 2, d= 1, ± l}//> (mod 
A) and 2/1 is not admissible if p > 7. 

(V). Suppose |ai | = 1, |a2| = 2. Then |a3 | + |ÛU| > £ — 2 and so, say, 
|< 3̂| = i ( £ ~ ! ) • Then |a4| = è(£ — 1) or | ( £ — 3). The first value can be 
rejected by (IV) since 

For the second, 2.4 = {=b 2, ± 4, ± 1, ± 3 } / ^ and is not admissible if 
p > 11. We have seen t ha t no admissible points arise when p = 7 or 9. 

(VI). Suppose finally \a,\\ = 1, |a2| = 3. Since |a3| + |a4 | > £ — 3, we 
have |a3 | = \{p — 1) or \(p — 3). Since a,\ = dz 2a3, we need only consider 
la3| = è ( ^ "" 3) and then |a4 | = J(/> — 3). This can be rejected by (IV) when 
(p, 3) = 1, and by (II) when (p, 3) - 3. 

We now consider the odd values of p > 11. We know from (IV), (V), and 
(VI), t h a t we need consider only the cases when \a,\\ = 1, and the other a 
satisfy \a\ > 4; and of course all a satisfy \a\ < \p. We can reject all 
a = =b \{p - 1) or a = =b \(p - 1). 

p = 11. Here |a2| = 4 or 5, and both can be rejected. Hence A is not 
admissible. 

p = 13. Here |a2 | = 4, 5, or 6 and \a2\ = 4, 6 can be rejected, and so 
\a2\ = 5. Since |a3 | = 4, 5, or 6, we can reject 4, 6 and then \a2\ = |a3 |. Hence 
A is not admissible. 

p = 15. Here |a2 | = 4, 5, 6, 7 and we can reject 5, 6, and also 7 from (I I ) . 
Hence \a2\ = 4 and this is also the only possibility for |a3 |. Hence A is not 
admissible. 

p = 17. Here \a2\ = 4, 5, 6, 7, 8 and we can reject 6, 8. Since \a2\, |a3 |, |a4| 
are distinct by (IV), they must be 4, 5, 7 in some order, and then |ax | + \a2\ 
+ |a3 | + \a±\ = 17, so t ha t ^ is not admissible. 

p = 19. Here |a2 | = 4, 5, 6, 7, 8, 9. 
We can reject 6 and 9. Hence \a2\, |a3 |, |a4| are three out of 4, 5, 7, 8 and since 

|#2| + |a3 | + |a4 | > 19, we can suppose t ha t A = {dz 1 d= 7, ± 8, a 4}/19 
where a4 = dz 4 or dz 5. But now 3^4 = {dz 3, ± 2, ± 5, dz 3a4}/19 (mod A) 
and is not admissible since 3a4 = dz 7 or dz 4 {mod 19}.* 

p = 23. Here \a2\ = 4, 5, 6, 7, 8, 9, 10, 11. 
We can reject 8, 11. The cases \a2\ = 6, 9, 10 are included under \a2\ = 4, 5, 7 

respectively on considering 4A, 5/4, 7A, respectively. 

*I am indebted to the referee for these proofs for n — 17,19, which are rather shorter than 
those I had given. 
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When |a-2| = 4, |a3| + |a4| > 19 and so |a3| = 10. Then /I = {db 1, ± 4, 
± 10, a4}/23, and 5̂ 4 == { ± 5, d= 3, ± 4, 5a4}/23 (mod A) is not admissible. 

When \a2\ = 5, \az\ + |a4| > 18 or, say, |a3| = 9, 10. We can reject 10 since 
\az\ = 2|a2|. Hence 4 = { ± 1, db 5, ± 9, a4} and now 3/1 = {± 3, ± 8, ± 4, 
3a4} is not admissible. 

When |a2| = 7, |< 3̂| + | ^ | > 16 and so |a3| = 9, 10 and so A = { ± 1, d= 7, 
dz 9 or =b 10, a4}/23. Now 7A = {=b 7, 3, d= 6, or =b 1, 7a4}/23( mod A) and 
is clearly not admissible. 

We can now find the possible bases for A. We may suppose that not all 
of the bases of the three-dimensional sublattices are of the type (Ai, A2, 
\(Ai + A2 + A3)). For if (Au A2,^(A1 + A2 + AA)) were also allowable, 
then \{Az — A 4) would be a point of A. Hence we may suppose that three of 
the ^4's, say, A\, A2, A% form a basis for the three-dimensional sublattice. Then 
the fourth basis element A must be such that A\ — bA + biAi + 62^2 + £3^3 
where the b are integers. Clearly we can typify A by one of A 4, \ (A 2 — A 3 —A4) 
a n d è ( l , 1, 1, l } , i ( ± 1, ± 1, =b 1, ± 1 } , 1 ( ± 2 , ± 1, d=l , ± l } , i { ± 2 , ± 2 , 
± 1 , ± 1}. 

This completes the proof for n = 4. We note that we have shown that when 
n = 4, integers x, Xi, x2, . . . , xw not all zero exist for which 

d\X 
— — xi 
p 

+.. . + anx 
p ~ Xn 

not only when p > 4Î but also when p > 5. It is an interesting problem to 
find the exact result for n > 4. Approximate results for large n have been 
given by Blichfeldt (4). 
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