LATTICE OCTAHEDRA

L. J. MORDELL

Let $A_{1}, A_{2}, \ldots, A_{n}$ be n linearly independent points in n-dimensional Euclidean space of a lattice Λ. The points $\pm A_{1}, \pm A_{2}, \ldots, \pm A_{n}$ define a closed n-dimensional octahedron (or "cross polytope") K with centre at the origin O. Our problem is to find a basis for the lattices Λ which have no points in K except $\pm A_{1}, \pm A_{2}, \ldots, \pm A_{n}$.

Let the position of a point P in space be defined vectorially by

$$
\begin{equation*}
P=p_{1} A_{1}+p_{2} A_{2}+\ldots+p_{n} A_{n} \tag{1}
\end{equation*}
$$

where the p are real numbers. We have the following results.
When $n=2$, it is well known that a basis is

$$
\begin{equation*}
\left(A_{1}, A_{2}\right) . \tag{2}
\end{equation*}
$$

When $n=3$, Minkowski (1) proved that there are two types of lattices, with respective bases

$$
\begin{equation*}
\left(A_{1}, A_{2}, A_{3}\right),\left(A_{1}, A_{2}, \frac{1}{2}\left(A_{1}+A_{2}+A_{3}\right)\right) \tag{3}
\end{equation*}
$$

When $n=4$, there are six essentially different bases typified by A_{1}, A_{2}, A_{3} and one of

$$
\begin{array}{ll}
A_{4} \frac{1}{2}\left(A_{2}+A_{3}+A_{4}\right), & \frac{1}{2}\left(A_{1}+A_{2}+A_{3}+A_{4}\right), \\
\frac{1}{3}\left(\pm A_{1} \pm A_{2} \pm A_{3} \pm A_{4}\right), & \frac{1}{4}\left(\pm 2 A_{1} \pm A_{2} \pm A_{3} \pm A_{4}\right), \tag{4}\\
\frac{1}{5}\left(\pm 2 A_{1} \pm 2 A_{2} \pm A_{3} \pm A_{4}\right) .
\end{array}
$$

In all expressions of this kind, the signs are independent of each other and of any other signs. This result is a restatement of a result by Brunngraber (2) and a proof is given by Wolff (3).

The proofs for $n=3,4$ depend upon Minkowski's method of adaption of lattices, and that for $n=4$ is very complicated. I notice another method of considering the question which gives the result more directly, more simply, and with less troublesome numerical detail.

The simplest required lattice is that with basis $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$. This will not be a basis of the other lattices Λ. Hence there will be points A of Λ given by

$$
\begin{equation*}
p A=a_{1} A_{1}+a_{2} A_{2}+\ldots+a_{n} A_{n} \tag{5}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ and $p>1$ are integers, and

$$
\begin{equation*}
\left(a_{1}, a_{2}, \ldots, a_{n}, p\right)=1 \tag{6}
\end{equation*}
$$

Received January 28, 1959.

For brevity, we shall denote such a point A by

$$
A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} / p
$$

There is no loss of generality in supposing that

$$
\begin{equation*}
\left|a_{1}\right| \leqslant \frac{1}{2} p,\left|a_{2}\right| \leqslant \frac{1}{2} p, \ldots,\left|a_{n}\right| \leqslant \frac{1}{2} p . \tag{7}
\end{equation*}
$$

We may also suppose that no $a \equiv 0(\bmod p)$. For if $a_{1} \equiv 0(\bmod p)$, we have an $n-1$ dimensional problem which may be considered as solved in dealing with the n-dimensional problem.

By the conditions of the problem, the point A is such that for any integer x prime to p, and all integers $x_{1}, x_{2}, \ldots, x_{n}$

$$
x A-x_{1} A_{1}-x_{2} A_{2}-\ldots-x_{n} A_{n}
$$

is not in K; and there is no loss of generality in supposing that $|x|<p$. We shall call such points A admissible. Then A will be admissible if and only if

$$
\begin{equation*}
\left|\frac{a_{1} x}{p}-x_{1}\right|+\ldots+\left|\frac{a_{n} x}{p}-x_{n}\right|>1, \tag{8}
\end{equation*}
$$

since the point P in (1) lies in K if

$$
\begin{equation*}
\left|p_{1}\right|+\left|p_{2}\right|+\ldots+\left|p_{n}\right| \leqslant 1 . \tag{9}
\end{equation*}
$$

Now by Minkowski's theorem on convex bodies, the convex $n+1$ dimensional body

$$
\left|X_{1}\right|+\left|X_{2}\right|+\ldots+\left|X_{n}\right|<1,|X|<p
$$

of volume $2^{n+1} p / n$! contains at least two points of the lattice given by

$$
X_{1}=\frac{a_{1} x}{p}-x_{1}, \ldots, X_{n}=\frac{a_{n} x}{p}-x_{n}, X=x
$$

of determinant one when $p>n$! We may suppose that $X \neq 0$ since then $x_{1}=0, x_{2}=0, \ldots, x_{n}=0$. Hence, as is well known, admissible points A can arise only when $p \leqslant n$!

In this paper, we shall be concerned only with the cases $n=2,3,4$. We shall see that admissible points A arise only when $n=3, p=2$, and $n=4$, $p=2,3,4,5$.

Suppose first that $n=2$. We need only consider $p=2$, and then $\left|a_{1}\right| \leqslant 1$, $\left|a_{2}\right| \leqslant 1$. Clearly the point $A=\frac{1}{2}\left\{a_{1}, a_{2}\right\}$ lies in K and so cannot be a point of Λ. Hence $\left(A_{1}, A_{2}\right.$,) is a basis of Λ.

Suppose next that $n=3$. We have now to consider $p=2,3,4,5,6$.
If $p=2,\left|a_{1}\right| \leqslant 1,\left|a_{2}\right| \leqslant 1,\left|a_{3}\right| \leqslant 1$, and then $A=\frac{1}{2}\left\{a_{1}, a_{2}, a_{3}\right\}$. This will be a point of K unless $\left|a_{1}\right|=\left|a_{2}\right|=\left|a_{3}\right|=1$, and so $A=\frac{1}{2}\{ \pm 1, \pm 1, \pm 1\}$. This point is admissible since $x A \equiv A(\bmod \Lambda)$ when $x= \pm 1$. Hence we clearly have a lattice Λ typified by the basis ($A=\frac{1}{2}\{1,1,1\}, A_{1}, A_{2}$), since $A_{3}=2 A-A_{1}-A_{2}$.

If $p=3,\left|a_{1}\right| \leqslant 1,\left|a_{2}\right| \leqslant 1,\left|a_{3}\right| \leqslant 1$, then $A=\frac{1}{3}\{ \pm 1, \pm 1, \pm 1\}$ and lies in K and is not admissible.

If $p=4,\left|a_{1}\right| \leqslant 2,\left|a_{2}\right| \leqslant 2,\left|a_{3}\right| \leqslant 2$. We may suppose that one at least of the a 's is not even, say $\left|a_{1}\right|=1$. Since A does not lie in K, the only possibility for A is $A=\frac{1}{4}\{ \pm 1, \pm 2, \pm 2\}$. Then $2 A \equiv \frac{1}{2} A_{1}(\bmod \Lambda)$ and so A is not admissible.

If $p=5,\left|a_{1}\right| \leqslant 2,\left|a_{2}\right| \leqslant 2,\left|a_{3}\right| \leqslant 2$ and so since A is not in K, we must have $A=\frac{1}{5}\{ \pm 2, \pm 2, \pm 2\}$. Then $2 A \equiv \frac{1}{5}\{ \pm 1, \pm 1, \pm 1\}(\bmod \Lambda)$, and so A is not admissible since $\frac{1}{5}\{ \pm 1, \pm 1, \pm 1\}$ lies in K.

If $p=6,\left|a_{1}\right| \leqslant 3,\left|a_{2}\right| \leqslant 3,\left|a_{3}\right| \leqslant 3$. Since we require $\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|>6$, we have only the three cases typified by

$$
\left(a_{1}, a_{2}, a_{3},\right)=(\pm 1, \pm 3, \pm 3), \quad(\pm 2, \pm 2, \pm 3), \quad(\pm 2, \pm 3, \pm 3)
$$

$$
(\pm 3, \pm 3, \pm 3)
$$

In all these, $2 A$ is congruent $\bmod \Lambda$ to a point of K and so A is not admissible.
Suppose finally that $n=4$ and so now $p \leqslant 24$. We shall show that there exist admissible points if and only if $p \leqslant 5$. We first give some results of a general character which will simplify the arithmetic. We note
(I) A is not admissible if p contains a factor f such that every A with denominator f is not admissible. This is obvious from

$$
p A / f=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} / f
$$

We note next
(II) A is not admissible if for d, the greatest common divisor of p and of any of the a 's, $d>2$.

For suppose that $\left(a_{1}, p\right)=d$. Then $p A / d \equiv\left\{0, a_{2}, a_{3}, a_{4}\right\} / d(\bmod \Lambda)$, and from the case $n=3$, this cannot be admissible unless $d=2$ and a_{2}, a_{3}, a_{4} are all odd. Hence, whenever A is admissible, we may suppose that one of the a, say a_{1} is odd and prime to p. On considering $x A$ where $x a_{1} \equiv \pm 1(\bmod p)$, we may then take
(III) $a_{1} \equiv \pm 1(\bmod p)$.

We shall presently consider the admissible points with $\left|a_{2}\right|=1,2,3$, but first we consider the smaller values of p.

When $p=2,3$, it is clear that the only admissible points A are

$$
A=\{ \pm 1, \pm 1, \pm 1, \pm 1\} / p
$$

Note $A x \equiv\{ \pm 1, \pm 1, \pm 1, \pm 1\} / p(\bmod \Lambda)$ for $x= \pm 1$.
When $p=4,\left|a_{1}\right| \leqslant 2,\left|a_{2}\right| \leqslant 2,\left|a_{3}\right| \leqslant 2,\left|a_{4}\right| \leqslant 2$. Since A is admissible, $\sum|a| \geqslant 5$, and since all the $|a|$ cannot be less than 2 , we can take say $\left|a_{1}\right|=2$. Then from (II), a_{2}, a_{3}, a_{4} are odd giving the admissible point

$$
A=\frac{1}{4}\{ \pm 2, \pm 1, \pm 1, \pm 1\}
$$

We note $2 A \equiv \frac{1}{2}\{0,1,1,1\}(\bmod \Lambda)$.

When $p=5,\left|a_{1}\right| \leqslant 2$, etc. We can take $\left|a_{1}\right|=1$, and since $\sum|a| \geqslant 6$, we may take, say, $\left|a_{2}\right|=2$, and then, say, $\left|a_{3}\right|=2$. We can reject $\left|a_{4}\right|=2$ since for $A=\frac{1}{5}\{ \pm 1, \pm 2, \pm 2, \pm 2\}, 2 A$ is not admissible. When $\left|a_{4}\right|=1$, we have the admissible point A typified by

$$
A=\frac{1}{5}\{ \pm 2, \pm 2, \pm 1, \pm 1\} .
$$

We note $2 A \equiv \frac{1}{5}\{ \pm 1, \pm 1, \pm 2, \pm 2\}(\bmod \Lambda)$.
When $p=6$, by means of (II), we can exclude the cases when any a is divisible by 3 , and also when any a is divisible by 2 , since then the only possible forms for A are given by $A=\frac{1}{6}\{ \pm 2, \pm 1, \pm 1, \pm 1\}$, and these are obviously not admissible. Hence also from (I),

$$
p=12,18,24 \text { are not admissible. }
$$

When $p=7$, we have $\left|a_{1}\right|=1$ and then, say, $\left|a_{2}\right|=3$. Hence $\left|a_{3}\right|=2$ or 3 . We reject $\left|a_{3}\right|=3$ since then $2 A \equiv \frac{1}{7}\left\{ \pm 2, \pm 1, \pm 1,2 a_{4}\right\}(\bmod \Lambda)$ and is inadmissible. Then $\left|a_{4}\right|=2$ or 3 and we can reject $\left|a_{4}\right|=3$ leaving $A=\frac{1}{7}\{ \pm 1, \pm 3, \pm 2, \pm 2\}$; and $\left.3 A \equiv \frac{11}{7} \pm 3, \pm 2, \pm 1, \pm 1\right\}(\bmod \Lambda)$ and is not admissible. Hence also

$$
p=7,14,21 \text { are not admissible. }
$$

When $p=8$, suppose first that all the a are odd. Since $|a|=1$ or 3 , at least two of the $|a|$ are equal, and on considering $3 A$, if need be, we can take $\left|a_{1}\right|=1,\left|a_{2}\right|=1$. Then $A=\frac{1}{8}\left\{ \pm 1, \pm 1, a_{3}, a_{4}\right\}$ is obviously inadmissible: Suppose next that some of the a are even. Then by (II), we need only consider the case when $\left|a_{1}\right|=2$, and $\left|a_{2}\right|,\left|a_{3}\right|,\left|a_{4}\right|$, are odd. Since at least two of these are equal, we may on considering $3 A$ if need be, take $\left|a_{2}\right|=1,\left|a_{3}\right|=1$ and then A is inadmissible: Hence also

$$
p=16,24, \text { are not admissible. }
$$

When $p=9$, on considering $3 A$, we see that each a satisfies $a \equiv \pm 1(\bmod 3)$, that is, $|a|=1,2$, or 4 . Since at least two of the $|a|$ are equal, we can on considering $2 A$ or $4 A$, if need be, take $\left|a_{1}\right|=1,\left|a_{2}\right|=1$. Hence $A=\frac{1}{9}\{1, \pm 1$, $\pm 4, \pm 4\}$, and 2.1 is not admissible. Hence also

$$
p=18, \text { is not admissible. }
$$

When $p=10$, we have $\left|a_{1}\right|=1$, and since $\left|a_{2}\right|+\left|a_{3}\right|+\left|a_{4}\right| \geqslant 10$, we must have, say, $\left|a_{4}\right|=4$ or 5 . By (II), we can reject $\left|a_{4}\right|=5$, and when $\left|a_{4}\right|=4$, a_{3} and a_{4} must be odd and so $\left|a_{3}\right| \leqslant 3,\left|a_{4}\right| \leqslant 3$. The only possibility is $A=\frac{1}{10}\{ \pm 1, \pm 4, \pm 3, \pm 3\}$, but then $3 A$ is not admissible. Hence also

$$
p=20 \text { is not admissible. }
$$

We have now dealt with all the even values of $p \leqslant 24$, except $p=22$ which will be dealt with when $p=11$ is considered, and which is not admissible. We must now consider the remaining odd values of $p>9$. We shall show that
no admissible points A arise when $p>5$ and $\left|a_{1}\right|=1,\left|a_{2}\right|=1,2$, or 3 . This will then hold also for any two a, say a_{r}, a_{s} if $\left(a_{r}, p\right)=1$ and $a_{s} \equiv \pm a_{r}$, $\pm 2 a_{r}, \pm 3 a_{r}(\bmod p)$.
(IV) Suppose $\left|a_{1}\right|=1,\left|a_{2}\right|=1$. Since $\left|a_{3}\right|+\left|a_{4}\right| \geqslant p-1$, we must have $\left|a_{3}\right|=\frac{1}{2}(p-1),\left|a_{4}\right|=\frac{1}{2}(p-1)$. Then $2 A \equiv\{ \pm 2, \pm 2, \pm 1, \pm 1\} / p(\bmod$ A) and $2 A$ is not admissible if $p \geqslant 7$.
(V). Suppose $\left|a_{1}\right|=1,\left|a_{2}\right|=2$. Then $\left|a_{3}\right|+\left|a_{4}\right| \geqslant p-2$ and so, say, $\left|a_{3}\right|=\frac{1}{2}(p-1)$. Then $\left|a_{4}\right|=\frac{1}{2}(p-1)$ or $\frac{1}{2}(p-3)$. The first value can be rejected by (IV) since

$$
\left(\frac{p-1}{2}, p\right)=1
$$

For the second, $2 A=\{ \pm 2, \pm 4, \pm 1, \pm 3\} / p$ and is not admissible if $p \geqslant 11$. We have seen that no admissible points arise when $p=7$ or 9 .
(VI). Suppose finally $\left|a_{1}\right|=1,\left|a_{2}\right|=3$. Since $\left|a_{3}\right|+\left|a_{4}\right| \geqslant p-3$, we have $\left|a_{3}\right|=\frac{1}{2}(p-1)$ or $\frac{1}{2}(p-3)$. Since $a_{1} \equiv \pm 2 a_{3}$, we need only consider $\left|a_{3}\right|=\frac{1}{2}(p-3)$ and then $\left|a_{4}\right|=\frac{1}{2}(p-3)$. This can be rejected by (IV) when $(p, 3)=1$, and by (II) when $(p, 3)=3$.

We now consider the odd values of $p \geqslant 11$. We know from (IV), (V), and (VI), that we need consider only the cases when $\left|a_{1}\right|=1$, and the other a satisfy $|a| \geqslant 4$; and of course all a satisfy $|a| \leqslant \frac{1}{2} p$. We can reject all $a= \pm \frac{1}{2}(p-1)$ or $a= \pm \frac{1}{3}(p-1)$.
$p=11$. Here $\left|a_{2}\right|=4$ or 5 , and both can be rejected. Hence A is not admissible.
$p=13$. Here $\left|a_{2}\right|=4,5$, or 6 and $\left|a_{2}\right|=4,6$ can be rejected, and so $\left|a_{2}\right|=5$. Since $\left|a_{3}\right|=4,5$, or 6 , we can reject 4,6 and then $\left|a_{2}\right|=\left|a_{3}\right|$. Hence A is not admissible.
$p=15$. Here $\left|a_{2}\right|=4,5,6,7$ and we can reject 5,6 , and also 7 from (II). Hence $\left|a_{2}\right|=4$ and this is also the only possibility for $\left|a_{3}\right|$. Hence A is not admissible.
$p=17$. Here $\left|a_{2}\right|=4,5,6,7,8$ and we can reject 6,8 . Since $\left|a_{2}\right|,\left|a_{3}\right|,\left|a_{4}\right|$ are distinct by (IV), they must be $4,5,7$ in some order, and then $\left|a_{1}\right|+\left|a_{2}\right|$ $+\left|a_{3}\right|+\left|a_{4}\right|=17$, so that A is not admissible.
$p=19$. Here $\left|a_{2}\right|=4,5,6,7,8,9$.
We can reject 6 and 9 . Hence $\left|a_{2}\right|,\left|a_{3}\right|,\left|a_{4}\right|$ are three out of $4,5,7,8$ and since $\left|a_{2}\right|+\left|a_{3}\right|+\left|a_{4}\right| \geqslant 19$, we can suppose that $A=\left\{ \pm 1 \pm 7, \pm 8, a_{4}\right\} / 19$ where $a_{4}= \pm 4$ or ± 5. But now $3 A \equiv\left\{ \pm 3, \pm 2, \pm 5, \pm 3 a_{4}\right\} / 19(\bmod \Lambda)$ and is not admissible since $3 a_{4} \equiv \pm 7$ or $\pm 4\{\bmod 19\} .^{*}$
$p=23$. Here $\left|a_{2}\right|=4,5,6,7,8,9,10,11$.
We can reject 8,11 . The cases $\left|a_{2}\right|=6,9,10$ are included under $\left|a_{2}\right|=4,5,7$ respectively on considering $4 A, 5 A, 7 A$, respectively.

[^0]When $\left|a_{2}\right|=4,\left|a_{3}\right|+\left|a_{4}\right| \geqslant 19$ and so $\left|a_{3}\right|=10$. Then $A=\{ \pm 1, \pm 4$, $\left.\pm 10, a_{4}\right\} / 23$, and $5 A \equiv\left\{ \pm 5, \pm 3, \pm 4,5 a_{4}\right\} / 23(\bmod \Lambda)$ is not admissible.

When $\left|a_{2}\right|=5,\left|a_{3}\right|+\left|a_{4}\right| \geqslant 18$ or, say, $\left|a_{3}\right|=9,10$. We can reject 10 since $\left|a_{3}\right|=2\left|a_{2}\right|$. Hence $A=\left\{ \pm 1, \pm 5, \pm 9, a_{4}\right\}$ and now $3 A \equiv\{ \pm 3, \pm 8, \pm 4$, $\left.3 a_{4}\right\}$ is not admissible.

When $\left|a_{2}\right|=7,\left|a_{3}\right|+\left|a_{4}\right| \geqslant 16$ and so $\left|a_{3}\right|=9,10$ and so $A=\{ \pm 1, \pm 7$, ± 9 or $\left.\pm 10, a_{4}\right\} / 23$. Now $7 A \equiv\left\{ \pm 7,3, \pm 6\right.$, or $\left.\pm 1,7 a_{4}\right\} / 23(\bmod \Lambda)$ and is clearly not admissible.

We can now find the possible bases for Λ. We may suppose that not all of the bases of the three-dimensional sublattices are of the type (A_{1}, A_{2}, $\left.\frac{1}{2}\left(A_{1}+A_{2}+A_{3}\right)\right)$. For if $\left(A_{1}, A_{2}, \frac{1}{2}\left(A_{1}+A_{2}+A_{4}\right)\right)$ were also allowable, then $\frac{1}{2}\left(A_{3}-A_{4}\right)$ would be a point of Λ. Hence we may suppose that three of the A 's, say, A_{1}, A_{2}, A_{3} form a basis for the three-dimensional sublattice. Then the fourth basis element A must be such that $A_{4}=b A+b_{1} A_{1}+b_{2} A_{2}+b_{3} A_{3}$ where the b are integers. Clearly we can typify A by one of $A_{4}, \frac{1}{2}\left(A_{2}-A_{3}-A_{4}\right)$ and $\frac{1}{2}(1,1,1,1\}, \frac{1}{3}(\pm 1, \pm 1, \pm 1, \pm 1\}, \frac{1}{4}(\pm 2, \pm 1, \pm 1, \pm 1\}, \frac{1}{5}\{ \pm 2, \pm 2$, $\pm 1, \pm 1\}$.

This completes the proof for $n=4$. We note that we have shown that when $n=4$, integers $x, x_{1}, x_{2}, \ldots, x_{n}$ not all zero exist for which

$$
\left|\frac{a_{1} x}{p}-x_{1}\right|+\ldots+\left|\frac{a_{n} x}{p}-x_{n}\right|<1,|x|<p
$$

not only when $p>4$! but also when $p>5$. It is an interesting problem to find the exact result for $n>4$. Approximate results for large n have been given by Blichfeldt (4).

References

1. H. Minkowski, Gesammelte Abhandlungen, Bd. II.
2. E. Brunngraber, Ueber Punktgitter (Dissertation, Wien, 1944).
3. K. M. Wolff, Monatsh. Math., 58 (1954), 38-56.
4. H. F. Blichfeldt, Monatsh. Math., 42-43 (1935-6), 410-414.

Mount Allison University Sackville, New Brunswick, Canada
St. Johns College, Cambridge, England

[^0]: *I am indebted to the referee for these proofs for $n=17,19$, which are rather shorter than those I had given.

