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Development of next-generation safe, high energy lithium (Li)-batteries requires better understanding how 

electrodes function by characterizing electrochemical reaction and the associated ionic transport in anodes, 

cathodes and the involved interfaces/interphases. Such characterization is preferentially applied in the in 

situ, operando conditions, at relevant length scales. Most of the available techniques, such as those based 

on hard X-ray scattering, are suited for bulk measurement at electrode level, but very often have no 

adequate spatial resolution to probe local structural changes in single particles or interfaces [1]. High-

resolution scanning/transmission electron microscopy (S/TEM) – electron energy-loss spectroscopy 

(EELS) is powerful, not only because of its high spatial resolution, but also the unparalleled analytical 

capability in imaging, diffraction, spectroscopy within a single instrument [2]. However, directly probing 

Li, the “main player” in Li-batteries, poses a great challenge to traditional X-ray, electron diffraction and 

high-resolution S/TEM imaging due to its weak elastic scattering power and vulnerability to radiation 

damage. Here, we show that Li K-edge EELS can be a unique tool for probing Li, both of its spatial 

distribution and chemical state in the radiation-sensitive Li-battery materials [3-4], and may also be 

applied in situ, for tracking lithium ion transport in an operating battery electrode [5-6]. 

Recently, cryogenic S/TEM-EELS techniques were developed for characterization of the radiation-

sensitive Li-battery materials [7-8]. Alternatively, Li K-edge EELS spectroscopy may be applied for 

characterizing Li-containing materials, with potential benefits of reduced damage, because of the high 

ionization cross-section of the shallow Li K-edge. For example, the cross-section of Li K excitation (1s to 

2p) is 2 orders higher than that of the carbon (C) K (Figure 1a). With the optimized Li K-edge EELS, rich 

information about the electronic environment of the Li atoms may be obtained from the near-edge fine 

structure, allowing to differentiate between various lithium species (as illustrate in Figure 1b) [3]. 

Recently, an electrochemical cell specialized for operando Li K-edge EELS was developed [6]. As 

illustrated in Figure 2a, the cell was adapted from a TEM-grid based cell added with non-flammable 

ionic-liquid electrolyte, and has been applied for tracking Li
+
 ion migration in lithium titanate (Li4Ti5O12; 

LTO) nanoparticles. From the evolution of the EELS spectra (particularly in the pre-edge region), we were 

able to identify the local site occupancy and migration of Li
+
 ions among different sites, thereby unveiling 

the kinetic pathways of lithium ion transport in fast charging LTO [6]. The opportunities for combining 

in situ, operando Li K-edge EELS with cryogenic S/TEM and other techniques, for complementary 

characterization of battery materials will also be discussed [9]. 
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Figure 1. (a) Calculated inelastic scattering cross-section of the 1s to 2p transitions corresponding to the 

lithium and carbon K-edges, using a hydrogenic model.  (b) Experimentally measured Li K-edge near-

edge fine structure for a series of lithium compounds, viz., Li, LiC6, Li2CO3, Li2O, LiOH, LiPF6, LiF, 

and LiCl [3]. 

 
Figure 2. a) Schematic illustration of the configuration of electrochemical cell with special design for 

operando S/TEM-EELS measurements. (b) Time-resolved Li K-edge EELS spectra from Li4Ti5O12 

(LTO) nanoparticles during 1
st

 discharge, showing subtle but clear spectral changes in the pre-edge region, 

due to formation of metastable intermediates (Li4+xTi5O12). 
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