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Abstract

We present a systematic evaluation of JPEG2000 (ISO/IEC 15444) as a transport data format to enable rapid remote
searches for fast transient events as part of the Deeper Wider Faster programme. Deeper Wider Faster programme uses
~20 telescopes from radio to gamma rays to perform simultaneous and rapid-response follow-up searches for fast transient
events on millisecond-to-hours timescales. Deeper Wider Faster programme search demands have a set of constraints that
is becoming common amongst large collaborations. Here, we focus on the rapid optical data component of Deeper Wider
Faster programme led by the Dark Energy Camera at Cerro Tololo Inter-American Observatory. Each Dark Energy Camera
image has 70 total coupled-charged devices saved as a ~1.2 gigabyte FITS file. Near real-time data processing and fast
transient candidate identifications—in minutes for rapid follow-up triggers on other telescopes—requires computational
power exceeding what is currently available on-site at Cerro Tololo Inter-American Observatory. In this context, data
files need to be transmitted rapidly to a foreign location for supercomputing post-processing, source finding, visualisation
and analysis. This step in the search process poses a major bottleneck, and reducing the data size helps accommodate
faster data transmission. To maximise our gain in transfer time and still achieve our science goals, we opt for lossy data
compression—keeping in mind that raw data is archived and can be evaluated at a later time. We evaluate how lossy
JPEG2000 compression affects the process of finding transients, and find only a negligible effect for compression ratios
up to ~25:1. We also find a linear relation between compression ratio and the mean estimated data transmission speed-up
factor. Adding highly customised compression and decompression steps to the science pipeline considerably reduces
the transmission time—validating its introduction to the Deeper Wider Faster programme science pipeline and enabling
science that was otherwise too difficult with current technology.

Keywords techniques: image processing — surveys

1 INTRODUCTION and lossy compression. Lossless compression yields smaller
compression ratios than lossy compression, but permits one
to retrieve the exact original data after decompression. Lossy
compression results in an approximation of the original data,
requiring one to assess the decompressed data, but can still
enable sound scientific analysis.

In recent years, ‘Big Data’ issues have become more

Data compression, issued from the field of information theory
(Shannon 1948), is the practice of transforming a data file into
a more compact representation of itself. Data compression
increases the amount of data that can be stored on disk (or
other storage medium), and helps reduce the time required

to transmit data over a noisy network. It has been used to
minimise the volume of astronomical data since the 1970s,
and has continued to be developed and used ever since (e.g.
Labrum, McLean, & Wild 1975; White & Percival 1994,
Pence et al. 2000; Pence, Seaman, & White 2011; Tomasi
2016). Two main categories of compression exist: lossless
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prominent for large astronomical projects. The main char-
acteristics of ‘Big Data’ are often described as volume, ve-
locity, and variety (Wu & Chin 2014). The volume refers to
the amount of information that systems must ingest, process,
and disseminate. The velocity refers to the speed at which in-
formation grows or disappears. Finally, the variety refers to
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the diversity of data sources and formats. While the variety of
formats is generally represented by a limited set of options
for a given sub-field [e.g. FITS (Wells, Greisen, & Harten
1981), HDFS (Folk et al. 2011)], the volume and velocity
have a direct impact in modern astronomy.

Recently, a large collaboration of astronomers has been
taking part in the Deeper Wider Faster (DWF) initia-
tive (Cooke et al., in preparation)—a remote and time-
critical observation programme. DWF is a coordinated multi-
wavelength observing effort, that includes = 20 facilities
located worldwide and in space, which aims to identify, in
near real-time, fast transient events on millisecond-to-hours
timescales. Such events include Fast Radio Bursts (FRBs,
Lorimer et al. 2007), Gamma-ray bursts (GRBs, Klebesadel,
Strong, & Olson 1973), kilonove (Li & Paczynski 1998),
and ultra-luminous X-Ray sources (Miller, Fabian, & Miller
2004).

To cover a wide range of wavelengths, DWF uses a vari-
ety of instruments including the Dark Energy Camera (DE-
Cam; Diehl & Dark Energy Surve 2012; Flaugher et al.
2012, 2015) installed at the Cerro Tololo Inter-American
Observatory (CTIO), the Molonglo Observatory Synthesis
Telescope (MOST), the NASA SWIFT Space Telescope,
the Parkes observatory, the Antarctica Schmidt telescopes
(AST3), the Gemini Observatory, Southern African Large
Telescope (SALT), the Anglo-Australian Telescope (AAT),
the SkyMapper telescope, the Zadko Telescope, the Rapid
Eye Mount telescope (REM), and the Laser Interferome-
ter Gravitational-Wave Observatories (LIGO). In the present
paper, we focus our attention on DECam and its data
products.

Data generated with DECam are of imposing size. DE-
Cam is composed of a mosaic of 70 coupled-charged devices
(CCDs; Figure 1), including 62 science CCDs and 8 guide
CCDs. Each science CCD is of dimension 4 146 x 2 160 pix-
els, while each guide CCD contains 2098 x 2 160 pixels. A
mosaic image is saved as a FITS file, where each pixel of
an image is stored as a 32-bit integer (BITPIX). This result
is a data file requiring ~1.2 gigabyte (GB) of storage space
(pre-processing).

During a DWF observation campaign (hereafter run), data
files are acquired every 40 s from a continuous stream of 20-
s exposures, each followed by a 20-s readout time provided
by the DECam electronics. This observing cadence, and the
high sensitivity of DECam, enables the DWF campaign to
search for fast transients, while maintaining survey depth and
time on sky. Each field is observed simultaneously for 1 to
2 h per night by several observatories, as a result of field
constraints imposed by the coincident visibility of DECam
in Chile and Parkes and Molonglo in Australia. As a result,
around 100 to 200 DECam optical images are acquired per
field per night during a run (and three to seven fields per
night).

To search for transient candidates in near real-time requires
computational power that exceeds what is currently available
on-site at CTIO. In this context, data files constantly need
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Figure 1. Example of a raw and uncalibrated mosaic image, as captured by
the 62 science CCDs and 8 guides CCDs of DECam. Each science CCD is
of dimension 4 146 x 2160 pixels, while each guide CCD contains 2098 x
2160 pixels. Each pixel is encoded as a 32-bit integer, resulting to ~1.2 GB
of storage space for the whole mosaic. Each CCD has two amplifiers, pro-
viding the ability to read the pixel arrays using either or both amplifiers. The
uncalibrated image displays a split darker and lighter sides for each CCD,
corresponding to the regions covered by each amplifier. The mosaic was vi-
sualised with SAOImage DS9 (Smithsonian Astrophysical Observat 2000)

using the heat colour map. The blue masks and dashed lines highlight the
size of a science and guide CCD, respectively.

to be transmitted to a suitable location for post-processing,
source finding, visualisation, and analysis (Meade et al. 2017,
Andreoni et al. 2017). The Green II supercomputer' at Swin-
burne University of Technology in Australia provides the
computational power necessary for the main DWF goals.
However, transmission of large amount of raw data from
CTIO to Australia, where our group is located, represents
a major bottleneck. To accelerate this process, we integrate
data compression as part of the science pipeline. To max-
imise our gain in transmission time, we choose to use lossy
compression—keeping in mind that raw data is archived and
can be evaluated at a later time.

1.1. JPEG2000 and lossy data compression

Several lossy compression techniques have been proposed for
astronomical images over the years. These include compres-
sion techniques based on Rice compression (Pence, White,
& Seaman 2010), low-rank matrix decomposition for movie
data (Morii et al. 2017), discrete cosine transform (Brueckner
et al. 1995; Belmon 1998; Vohl 2013), and discrete wavelet
transform (Belmon et al. 2002).

In this work, we consider the JPEG2000 (ISO/IEC 15444)
standards (part 1; ISO/IEC 15444-1:2000 2000) which offer
lossy compression for both integer and real data. JPEG2000

!http://supercomputing.swin.edu.au
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Figure 2. JPEG2000 compression is applied as a stream of processing steps based on the discrete wavelet transform, scalar quantisation, context modelling,
entropy coding, and post-compression rate allocation [adapted from Kitaeff et al. (2015)].

compression is applied as a stream of processing steps that
includes pre-processing (tiling, level offset), wavelet trans-
form?, quantisation, entropy coding [via adaptive arithmetic
coding (Rissanen & Langdon 1979)], rate control, and data
ordering (Figure 2). A low-level description of the stan-
dards, its algorithms, and their related mathematics is be-
yond the scope of this paper. Instead, we refer the reader to
the JPEG2000 specification documentation and other related
papers (e.g. ISO/IEC 15444-1:2000 2000; Rabbani & Joshi
2002; Li2003). To evaluate the amount of storage space saved
by compression, we use the concept of compression ratio. We
define the compression ratio (#:1) as

sizeg
#=——, )]
size.
where size, is size of the original file and size. the size of the
compressed file.

Recent investigations of lossy JPEG2000 compression for
astronomical images (Peters & Kitaeff 2014; Kitaeff et al.
2015; Vohl, Fluke, & Vernardos 2015) show that it can lend
high factors of compression while preserving scientifically
important information in the data. For example, Peters & Ki-
taeff (2014) compressed synthetic radio astronomy data at
several levels of compression, and evaluated how the loss
affects the process of source finding. In this case, it was
shown that the strongest sources (2 000 mJy km s~ and
higher) could still be retrieved at extremely high compres-
sion ratio, where the compressed file would be more than
15 000 times smaller than the original file. When using a
high quantisation step (compression ratio of about 90:1), low
integrated flux sources (less than 800 mJy km s~') were still
identified.

To date however, no study has investigated the effect of
lossy JPEG2000 on the process of transient finding, and no
study has been conducted to evaluate its potential to acceler-
ate data transmission in time-critical observation scenarios.

2 Lossy JPEG2000 implements the irreversible CDF-9/7 wavelet transform
(Cohen, Daubechies, & Feauveau 1992).
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In this paper, we report on the evaluation of lossy JPEG2000
as part of DWF.

The remaining of the paper is structured as follows.
Section 2 presents a brief overview of the DWF science
pipeline along with information about previous observation
runs. Section 3 describes the compression software used for
the experiments, and the rationale behind its custom design.
Section 4 investigates the effect of lossy JPEG2000 on the
DWF science pipeline. In particular, Section 4.1 presents
the methodology and experimental results, evaluating the
effect of compression on finding transient through the
DWF science pipeline. Section 4.2 presents compression,
decompression, and transmission timing results obtained
during DWF observation runs. Finally, Section 5 discusses
the results and their implications, while Section 6 concludes
and presents future work.

2 BRIEF OVERVIEW OF THE DWF SCIENCE
PIPELINE

To date, DWF has seen a total of five observation runs, two
pilot runs, and three operational runs—refining the overall
practices each time. The two pilot runs occurred during 2015
January and February, respectively (pilot-1 and 2). Since then,
three operational runs occurred from 2015 December 17-22
UT (O1), 2016 July 26 to 2016 August 7 UT (02), and 2017
February 2—7 UT (O3). The grand lines of the science pipeline
are as follows. For detailed descriptions of the many DWF
components, we refer the reader to Meade et al. (2017), An-
dreoni et al. (under review), and Cooke et al. (in preparation).

During the operational time of typical DWF run, follow-
ing three main steps are continuously being repeated for the
optical data gathered by DECam:

1. Data collection and transfer

a. Images are acquired with DECam and saved as FITS
files.
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b. Each image is compressed to JPEG2000 and pack-

aged to TAR.

c. Each TAR is transferred to the Green II supercom-

puter.

d. Each TAR is unpacked, and each resulting image is

decompressed.

2. Initial processing

a. Individual CCD images are calibrated using parts of
the PhotPipe pipeline (Rest et al. 2005).

b. Image coaddition, alignment, and subtraction is per-
formed using the Mary pipeline (Andreoni et al.

2017).

c. Mary generates a catalogue of possible transients,
along with other data products (e.g. region files, small
‘postage stamp’ images, light curves, etc.).

3. Visual inspection

a. Visual analytics of potential candidates is performed
by a group of experts and trained amateurs using an
advanced visualisation facility (see Meade etal. 2017)
and an online platform (database and other visualisa-

tion tools)?.

b. Provided that an interesting candidate is identified
with sufficient confidence, a trigger is sent to the other

telescopes for follow-up.

We note that steps 1b and 1c are executed in parallel, typi-
cally for about four files at a time on the observer’s computer
at CTIO. Similarly, the step 1D, and the initial processing
steps are executed in parallel for as many CCDs as possible
on reserved computing nodes of the SwinSTAR* component

of the Green II supercomputer.

3 SOFTWARE DESIGN RATIONALE

In the time-critical scenario of DWF, a gain in transmission
time offered by data compression is only interesting if com-
pression and decompression can be achieved quickly. To this
end, Vohl et al. (2015) demonstrated that KERLUMPH’—a
multi-threaded implementation of the JPEG2000 standard—
can compress and decompress large files quickly.

For a sample of 1 224 files, KERLUMPH achieved both
compression and decompression of a 400 megabyte (MB)
binary file in less than 10 s, with median and mean time under
3 s using the Green II supercomputer. The tests on Green II
were performed using Linux (CentOS release 6.6) running on
SGI C2110G-RP5 nodes—one node at a time—containing
two eight-core SandyBridge processors at 2.2 GHz, where
each processor is 64-bit 95W Intel Xeon E5-2660.

3 The online tools include candidates list (ranked by priority), light curves,
series of candidates ‘cut-off” images for visual inspection. The database and
visual analytics tools are under the development of Sarah Hegarty (Swin-
burne University of Technology), Chuck Horst (San Diego State Univer-

sity), and collaborators.
4 http://supercomputing.swin.edu.au/about- green-1i/
3 http://supercomputing.swin.edu.au/projects/kerlumph/
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Figure 3. Compression procedure schematic diagram. The multi-extension
FITS file from DECam is lossily compressed into multiple JPEG2000 (one
per extension), and then grouped together into a TAR file ready for trans-
mission. Note that the primary header is merged with the extension header.

We modified KERLUMPH to specifically compress the
FITS files from DECam into JPEG2000. In addition of allow-
ing the compression of FITS files, we customised the com-
pression pathway to modify the input file in a number of ways
(Figure 3). At compression, the multi-extension FITS file of
DECam is lossily compressed into multiple JPEG2000 files
(one per extension)—merging its specific extension header
with the primary header. The rationale behind this decision
is to simplify parallel processing in the next steps of the
pipeline.

To avoid having to send ~60 individual files over the in-
ternet, we group them together into a single TAR file® be-
fore transmission. To save extra space, we do not include
information relative to guide CCDs. Moreover, at the time
of observation, two CCDs (at position S2 and N30) were not
working and the amplifier of another CCD (S26) had a de-
fect leading to difficult calibration. The cumulated raw data
of these CCDs represents ~100 MB that would need to be
compressed and transmitted, to be eventually left out of the
analysis. We therefore decided to discard these extensions for
the near real-time analysis.

At decompression (Figure 4), the software recreates the
FITS file using the cfit sio library—as several of the subse-
quent processing steps, many using standard ‘off-the-shelf’
available tools, do not yet support JPEG2000. The recreation
of the FITS file enables us to proceed with the pre-processing
required by Phot Pipe. During this phase, we add and mod-
ify specific keywords in the header, avoiding the slow proce-
dure of updating the FITS header further down in the pipeline
(see Appendix A for more details).

Similar to the original version of KERLUMPH, the modified
version allows setting and modifying JPEG2000 compression
parameters (Part 1, shown in Table 1). This capability in-
cludes the coefficient quantisation step size (Qstep)—which
is used to discretise the wavelet coefficient values—and the
number of wavelet transform levels (Clevels) used to influ-
ence the wavelet domain before quantisation and encoding

® TAR is an archive format that collects any number of files, directories, and
other file system objects into a single stream of bytes. See https://www.
gnu.org/software/tar/ for more details.
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Table 1. Parameters in Part 1 of the JPEG2000 Stan-
dard, ordered as encountered in the encoder. The only
parameter for which the default value is modified during
an observation run is highlighted.

Parameter

Reconstructed image bit depth

Tile size

Colour space

Reversible or irreversible transform
Number of wavelet transform levels
Precinct size

Code-block size

Coefficient quantisation step size
Perceptual weights

Block coding parameters:

(a) Magnitude refinement coding method
(b) MQ code termination method
11. Progression order

12. Number of quality layers

13. Region of interest coding method

CORXIANN B WN =

—_

TAR file JPEG2000 file 1 FITS file 1
File 1 Header Box

File 2
File 3

Primary Header

Data Data

“a JPEG2000 file 2 FITS file 2

Header Box Primary Header

Data Data

Figure 4. Decompression procedure schematic diagram. The TAR file is
expanded to recover all JPEG2000 files; each of them is then decompressed
into a single extension FITS file. Each FITS file corresponds to a given
extension of the original file, where the primary header contains the merged
information of the original primary header and the current extension header.

(Clark 2008). In addition, it is possible to specify a target
bit-rate parameter (rate) to set an upper limit on the output
storage size. This is done via the post-compression rate al-
location, in which the compressed blocks are passed over to
the Rate Control unit. The unit determines how many bits of
the embedded bit stream of each block should be truncated
to achieve the target bit rate—aiming to minimise distortion
while still reaching the target bit-rate (Kitaeff et al. 2015).
Peters & Kitaeff (2014) show that the code block size and
precincts size had no effect on both compression and sound-
ness of their spectral cube data. Therefore, we have bypassed
these parameters for this evaluation. Vohl et al. (2015) show
that the combined use of Ostep and a high Clevels value
can increase the compression ratio while preserving a sim-
ilar root-mean-squared-error, as the wavelet decomposition
levels increase for a similar quantisation step size. However,
we do not increase Clevels from the default value of 5 in the
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context of DWF. An increased Clevels value requires a larger
amount of random access memory—as more level of wavelet
decomposition are being processed—which would penalise
us while we aim to reduce the weight of the compression on
the overall computation at CTIO.

4 EFFECT OF LOSSY JPEG2000 ON THE DWF
SCIENCE PIPELINE

In this section, we evaluate the effect of using lossy
JPEG2000 as part of the DWF science pipeline. In partic-
ular, we present an experiment evaluating how the different
levels of compression affect the process of transient finding
with the DWF science pipeline. Finally, we report on trans-
mission time recorded during the O2 and O3 run.

4.1. Effect on transient search

While we note that all raw data for DWF is archived and can
be evaluated at a later time, it is nevertheless important to
evaluate how lossy JPEG2000 affects the process of finding
transients for the near real-time analysis. As DWF uses a
custom pipeline, we use it integrally in this experiment. We
refer the reader to Andreoni et al. (2017) for details on the
Mary pipeline, based on image subtraction techniques, and
its candidate selection parameters. Furthermore, to provide a
realistic case study (e.g. instrumental noise characteristics),
we use raw images obtained with DECam during the DWF
O2 run as the starting point of the experiment. The results of
this study finds no significant loss of transient detection at
all brightnesses relevant to the DWF survey to compression
ratios ~25:1.

4.1.1. Methodology

We select three raw FITS images from DECam obtained on
2016-08-02, between 09:22:05 UTC and 09:42:08 UTC (post
exposure time). While it would be possible to identify tran-
sients within these images directly, it would also be a diffi-
cult task to assess their reliability and intrinsic parameters—a
task that we reserve for future DWF papers. Instead, we man-
ually inject artificial transient sources for which we know the
characteristics in advance (e.g. flux, position, point spread
function). We set the range of injected sources between mag-
nitudes 17 (brightest) to 26 (faintest) to probe the detection
limits of the survey—which is expected to have a minimum
source detection magnitude of ~22.3-22.5 for these images.

All three images are used as a set for transient detection. In
addition, an image taken on 2016-07-28 and processed using
the DECam Community Pipeline (Valdes, Gruendl, & DES
Project 2014) is used as template. Transients are added to
every image in the set. For each CCD in the set, we inject
273 sources (2D gaussian) drawn from a uniform distribu-
tion of magnitudes. The range is split into bins of 0.1 mag,
corresponding to threes sources per magnitude bin. Sources
locations are allocated randomly, while avoiding a 75-pixel
border around the edge of the CCD—to avoid being cropped
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Figure 5. Schematic diagram of the experiment setup. Three images taken at different epochs form a set. Transients are added
to each image of the set, using the same sky coordinates in all three images. Images of the set are coadded (median stacking)
to better detect the transients, and to eliminate cosmic rays—reflecting a transient lasting longer than three images worth of
time (about 120 s). Difference imaging is then applied between the stacked image and a template image, resulting in a residual
image. Transient detection is applied on the residual image using the Mary pipeline, which outputs a transient candidates list.
This list is cross-matched with the list of injected sources to evaluate the completeness. We note that a loss in completeness
will naturally occur when sources fall onto bright sources, making its detection difficult or impossible.

out during the alignment process. Sky coordinates are pre-
served throughout all images (e.g. a given source is found at
the same location in all images). Sources are generated using
the make gaussian_ sources function of the photu-
tils package (Bradley et al. 2016), an affiliated package of
astropy (Astropy Collaboration et al. 2013).

Each image is compressed at several fixed compression
ratio, ranging from 5:1 to 100:1, with a step of 5. To do so,
we set the ‘rate’ parameter to the ratio between the original
BITPIX value of the 32-bitimage to the desired compression
ratio (Dy € [5, 10, 15, ..., 90, 95, 100]):

BITPIX
Dy

rate = 2)

For each level of compression, we proceed with the
initial processing steps of the pipeline (Section 2). The three
images in the set are calibrated, aligned, and coadded (image
stacking) to better detect the transients, and to eliminate
cosmic rays—reflecting a transient lasting longer than three
images worth of time (about 120 s). The stacked image is
used for difference imaging with the template image. Finally,
we cross-match the Mary pipeline’s candidate list with the
list of positions for the injected sources. In this context, we
define the transient finding completeness c for compression
ratio #:1 as

Nviy

= i 3
Cy I 3)

where Ny 4 is the number of sources found by Mary for a
file compressed at a ratio of #:1, and N; is the number of
transients injected. We normalise ¢y by comparing it to the
completeness obtained with the original data c¢; (never com-
pressed) to avoid reporting biases incoming from the source
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finder that are unrelated to this work. Therefore, we report
the normalised completeness Cy¢ for compression ratio #:1 as
C
Cy=—. “
C1
An overview of the different steps of the experiment is
shown in Figure 5.

4.1.2. Results

Figure 6 shows the normalised completeness as a function
of magnitude for the different compression ratios. The four
panels split the compression ratios into groups of five (i.e.
the first panel shows results for compression between 5:1
and 25:1 inclusively, the second panel shows results between
30:1 to 50:1, and so on). Results are limited to cases where a
completeness >0.5 was found by the Mary pipeline for the
original data (never compressed)—which eliminates data be-
low our detection threshold (i.e. down to source magnitudes
of ~22.5).

A normalised completeness of 1.0 indicates that compres-
sion had no effect on the process of finding transients com-
pared to working with original data (never compressed). Re-
sults above and below this line show that compression af-
fected the findings positively (more transients were correctly
identified) or negatively (less transients were identified), re-
spectively.

As expected, as the compression ratio increases, the num-
ber of sources missed by the source finder also increases.
In general, fainter sources are more affected by compres-
sion than brighter sources, while the brightest sources are
the least affected overall. This is noticeable when comparing
the slopes of the distributions, increasing in steepness as the
compression ratio increases. We find that compression up to
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>0.5 (i.e. down to magnitude ~22.5).

about ~25:1 has a negligible effect on the process of finding
transients, and only a small affect for the faintest magnitude.
This result can be further confirmed by looking at the mean
normalised completeness.

Figure 7 shows the mean normalised completeness as a
function of compression ratio. In addition, the error bars in-
dicate the 95% confidence interval, defined as
20

ik

where o is the standard deviation, and N is the number of
sources used to evaluate the normalised completeness. The
black markers show the overall mean value per compression
ratio. Results show that a compression up to 35:1 provides
on average a normalised completenesses >95%, and >90%
for a compression ratio up to 40:1.

Figure 7 also shows the mean normalised completeness
for three magnitudes ranges. Specifically, the red markers
indicate the mean for magnitudes between 17 and 19, the
green markers for magnitudes between 19 and 21, and the
blue markers for magnitudes between 21 and 23. Breaking
down magnitude range this way highlights how bright sources
(mag = 17-19) are less affected by compression than the
faintest sources (mag = 21-23), where the mean normalised
completeness decreases faster for fainter sources. In all cases,
however, results show that a relatively high compression ratio
of 30:1 has minimal impact on source finding, where sources
of magnitudes between 21 and 23 show a mean normalised

&)

€ =
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completeness >95% in the DECam images as compared to
source identification in non-compressed data.

Another concern is that the time savings gained due to the
usage of lossy compression may be diminished if a signifi-
cant number of false positives sources are detected (requiring
human validation) compared to our fiducial baseline. From
this experiment, we find the total number of identified sources
to be within <5-8% of those found without compression at
compression ratios of <35:1, and an increase up to <20% at
higher compression ratios. Furthermore, during an observa-
tion run, the behaviour of the transients will further ‘clean’
the data of any false positive detection from compression.
DWEF only triggers other telescopes on transient sources with
~30min to h duration. Therefore, a transient must be detected
in multiple images (more than three images) to be considered
a true candidate by the campaign.

From these results, we estimate that utilising lossy
JPEG2000 compression with a compression ratio up to 25:1
enables the DWF team to efficiently retrieve transient sources
within the detection limits of the survey without significant
loss. These results are in agreement with those obtained by
Peters & Kitaeff (2014).

4.2. Timing

In this section, we evaluate how compression acceler-
ates data transmission from CTIO (Chile) to the Green II
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Figure 7. Mean normalised completeness and 95% confidence interval as a function of compression ratio. Results are limited to cases where

completeness on original data was >0.5.

supercomputer (Australia). We evaluate the speed-up factor
in data transfer time, in addition to compression and decom-
pression time. Timing data was recorded for a total of 13 081
files during the O2 (year 2016) and O3 (year 2017) observa-
tion runs. We find that the speed-up factor in transfer time out-
weigh the compression and decompression time—validating
the decision of integrating lossy data compression as part of
our pipeline.

4.2.1. Estimation of the data transfer acceleration

For each file transferred (using the unix command scp), we
record the size of the compressed file and the transfer time.
From these two measures, we evaluate the compression ratio
as defined by Equation (1), where size, is equal to 1 184 MB.
‘We also evaluate the transfer rate, defined as

size;
r=—, (6)
t

where size, is the size of the compressed file (MB), ¢ is the
transfer time (s) of the compressed file, and r is the trans-
fer rate (MB s~'). The compression ratio, transfer time, and
transfer rate distributions for each day of the O2 and O3 ob-
servation runs are provided in Figure 8. Compression ratio
was varied by the team during each run to provide data with
visual quality as high as possible, while providing fast enough
transfer time. As the transfer rate varies during an observa-
tion run, we proceed with the following method to evaluate

the speed-up factor provided by compression.
For each transferred file, we estimate the transfer time 7 (s)
that would have been required without compression, assum-
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ing the transfer rate at the time of transmission:

. sizeg . @

r

Using 7, we estimate the speed-up factor § for a given file,
defined as

1=

§:t, (®)

Similarly, we estimate the saved transmission time 0 (s) for
this file:

~>

6=7-1. )

Figure 9 shows the mean estimated speed-up factor §
and 95% confidence interval [Equation (5)] as a function
of compression ratio. The summary of results obtained
during the O2 and O3 runs are shown in Table 2. From
these results, we note a linear relation between compres-
sion ratio and the estimated speed-up factor. During the
two observation runs evaluated (O2 and O3), we obtained
a mean compression ratio of 13:1 (targeted ‘on-the-fly’ by
the team), which provided a mean estimated speed-up factor
of 13.04—equivalent to an estimated 14.60 min saved per file
transfer.

4.2.2. Compression and decompression time

We also recorded the time required to compress the data
at CTIO during both runs. Compression was performed on
the observer computer at CTIO. The computer includes an
ASUS P6X58D LGA 1366 motherboard with 24 GB of
DDR3 1600 memory, an i7-950 quad core processor in
the LGA 1366 form factor, and 3 TB of hard disk drive
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Figure 8. Box and whiskers plot showing distributions of transfer rate (MB s, top panel), transfer time (s, central panel), and compression ratio
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quartiles range (IQR = Q3 — Q1). The whiskers are Q1 — 1.5 x IQR and Q3 + 1.5 x IQR. Beyond the whiskers, values are considered outliers
and are plotted as diamonds. We note that transfer rate varied greatly from day to day. Compression ratio was varied by the team during each run

to provide data with visual quality as high as possible, while providing fast enough transfer time.

(HDD) for storage. We note that compression is only one of
many processes running on the observer computer—where it
is common to have multiple internet browser windows opened
onto SISPI’ (the DECam software), weather stations, etc., in
addition to any other software used by the observer. We ob-
tain a mean, median, minimum, and maximum compression
time of 42.49, 37.75, 33.27, and 84.81 s, respectively, with a
standard deviation of 9.95 s.

Decompression is performed on the Green II supercom-
puter. Contrary to the experiment performed by Vohl et al.
(2015)—which proceeded with decompression on the Lustre
File System® directly—we perform the decompression via
the local storage of Green II (using PBS_JOBFS) to obtain
fast read and write access to HDD storage. We obtain a mean
and median of 1.82 s, minimum of 1.57 s, and maximum
of 1.86 s, with a standard deviation of 0.03 s. This timing

7 https://des.mps.ohio-state.edu/Tools/sispi_main.htm
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8 Lustre File System, [online]. Available: http://www.lustre.org.
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Table 2. Summary of transmission timing results for the combined (Both) and individual (02, O3) observation
runs. Columns show compression ratio (#), transfer rate (r), estimated speed-up factor (§), and estimated transfer
time saved (0). Rows show minimum, maximum, mean, median, and standard deviation of the distribution.

#:1 r(MB s~ § 6 (min)
Both 02 03 Both 02 03 Both 02 03 Both 02 03
Min 5.02 5.02 6.00 0.08 0.08 0.39 5.02 5.02 6.01 0.10 0.10 4.76
Max 53.82 5382 1500 170.00 170.00 346 53.82 53.82 15,58 250.01 250.01 46.14
Mean 13.00 13.18 10.45 5.09 532 1.61 13.04 13.18 11.01 14.60 14.71 13.02
Median 10.21 10.12 11.00 2.05 2.11 1.44 10.21 10.12 11.72 8.74 8.41 12.43
Std 7.26 7.46 1.80 13.56 13.97 0.66 7.25 7.46 1.82 20.93 21.58 5.26
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Figure 9. Mean estimated speed-up factor (§) and 95% confidence interval as a function of compression ratio for 13 081 files transferred during the

02 run (2016) and O3 run (2017).

represents the decompression of a single CCD. Therefore,
one needs to cumulate the time for all the 57 CCDs. However,
as this is performed in parallel on Green II , this cumulated

time does not reflect user wait time.

5 DISCUSSION

For projects dealing with very large datasets, a perfect sce-
nario would be that all data processing would be done on
site at the data acquisition location, with minimal data move-
ment. However, as it is still common for international teams
to post-process their data on local computing and super-
computing resources, the need to transfer data is unlikely
to be removed completely on short timescale. In this context,
lossy compression provides faster data transfer to execute
science otherwise not possible in fast targeted timescales, in-
cluding the near real-time data processing required for the

DWEF survey.
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While the addition of lossy compression to the science
pipeline of DWF introduces an additional need for care by
the team, the discovery of potential transients, including
supernova shock breakouts, off-axis GRBs, counterparts to
FRBs and gravitational waves, and other highly sought-after
sources, along with flare stars, cataclysmic variables, X-ray
binaries, etc., highlight its ability to accelerate discovery in
time-critical scenarios.

As the steps between data acquisition and transient con-
firmation are dependent on one another, the transfer time
speed-up factor provided by data compression reduces the
overall time before a trigger can be sent to other observa-
tories. Further comparative investigation of the process of
transient finding—comparing results obtained with and with-
out lossy compression—should provide insights on the ne-
cessity of using raw data.

During run O2 and O3, file transfer to Australia was faster
than the rate in which the data could be processed using the
version of the reduction pipeline used at that time. Hence,
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the compression ratio was manually set by a member of the
observatory team at CTIO, using the Qstep parameter in or-
der to regulate transfer time. Regulation considered current
empirical internet speeds and data processing status in Aus-
tralia. Doing so, creates data with the highest visual qual-
ity as possible, while providing the necessary fast transfer
time. During O2 and O3, the team aimed for transfer time
~1-2 min. A compression ratio <20:1 was judged to be a
comfortable upper limit for transfer time, and a safe choice
in term of loss and visual quality.

The timing results show however that transfer rates can
vary significantly during an observation run, and hence,
the compression ratio is not the only factor that influ-
ences the total transfer time. Future work should evaluate
methods to automatise the compression parameters selec-
tion (e.g. Ostep, CLevels) to provide the minimal loss for
a targeted bit rate selected for a targeted optimal transfer
time (based on criteria defined by the team). Future in-
vestigation to further accelerate data transmission should
consider tracking individual packet transmission to identify
bottlenecks.

6 CONCLUSIONS AND FUTURE WORK

When considering the three Vs of ‘Big Data’ (variety, vol-
ume, velocity), volume and velocity have a direct impact
on modern astronomy endeavours, such as time domain sci-
ence. In recent years, the DWF initiative—a collaborative,
remote, and time-critical observation programme—has been
detecting and identifying, in near real-time, fast transient
events on millisecond-to-hours timescales using DECam and
~20 other telescopes. Data files generated with DECam are
large (~1.2 GB per FITS file) and the high volume of short-
exposure images provide data of imposing size.

To search for transient candidates in near real-time imposes
computational requirements exceeding the processing capac-
ity available on-site at the observatory in Chile. Instead, data
files need to be constantly transmitted to the Green II super-
computer in Australia for post-processing, source finding, vi-
sualisation, and analysis. To reduce the stress imposed by the
transmission of large amount of raw data, we integrate lossy
data compression as part of the science pipeline—keeping in
mind that raw data is archived and can be evaluated at a later
time.

In this paper, we present an evaluation of the impact of
lossy JPEG2000 on the DWF pipeline. In particular, we es-
timate that the compression ratio is linearly related to the
speed-up factor. In particular, the average measured file com-
pression ratio of ~13:1 during two DWF observation runs,
resulted in a mean estimated speed-up factor of 13.04. In ad-
dition, we find that the speed-up factor outweighs the added
compression and decompression time.

We also presented an experiment evaluating the impact of
lossy JPEG2000 on the process of finding transient sources.
We find that utilising compression ratios up to 30:1 will en-
able transient source detection to the detection limits of the
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survey with negligible efficiency losses, and ~10-15 min
saved per file transfer—enabling rapid transient science that
would otherwise not be possible. These results validate the
choice of integrating lossy data compression to accelerate the
overall DWF scientific pipeline.
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A DETAILS OF FITS HEADER MODIFICATIONS

We modify the OBSTYPE value following equation (A1), and add
three keywords based on the current header’s content: RDNOISE,
GAIN, and SATURATE. The definitions of these keywords are ex-
pressed in Equations (A2)—(A4).

bias, if OBSTYPE = zero

OBSTYPE = { domeflat, if OBSTYPE = dome flat (AD
1
RDNOTSE = 5 x (RDNOISEA + RDNOISEB) (A2)
1
GAIN = - X (GAINA + GAINB) (A3)
SATURATE = min(SATURATA, SATURATB) (A4)
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