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1. Introduction

Let A be a complex Banach algebra with an identity 1. In this note we study
the subset I" of 4 consisting of all g € 4 such that the spectrum of g, sp(g),
contains at least one non-negative real number. Clearly I' is not, in general, a
semi-group with respect to either addition or multiplication. However, I is an
instance of a subset Q of 4 with the following properties, where p(f) denotes the
spectral radius of f (4, p. 30).

(@) If fe Qand t = 0, then tfe Q.

(b) If fe Q and p(f)<]1, then f(1—f)"' e Q.

(¢) The distance of Q from —1 is larger than zero.

(d) If fe Q and p(f)<1, then 1 —f€ Q.

(e) If fe Q and p(f)<]1, then 1—f)"1e Q.

(f) If fe Q and >0, then t+f€ Q.

For our purpose (the characterisation of I') properties (d), (¢) and (f) are
not as useful as (b). To see this consider the Banach algebra B of all complex-
valued functions on the compact Hausdorff space F in the sup norm. The
subset Q of all fe B where Re f(¢) = 0, for all € E, is a closed subset of B satis-
fying properties (a), (¢), (d), (¢) and (). Here Q neither contains nor is contained
in I".  On the other hand, we shall see that Q<T if Q satisfies (a), (b) and (¢).

Condition (b) can be restated in the language of quasi-inverses (4, p. 16).
For if g’ denotes the quasi-inverse of g, then f(1—f)"! = —f".

2. On the properties (a), (b) and T

Theorem 1. Let Q be a subset of A with properties (a) and (b). Then either Q
is contained in T or —1 lies in the closure of Q.

Proof. Notice that, for a complex number z, | z/(1—-2z) | <1 if and only if
Re (z)<%. Now let D, be the closed disc in the complex plane with centre at
n/(n*—1) and radius 1/(n>—1), n = 2, .... Then, for these values of n,

| z/(1—nz)|<1 if and only if z¢D,.
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In these terms we define a set G in the complex plane by
G={z:|z|<land |z/(l-n2)|<]l, n=1,2,..}

and can readily picture G graphically. Observe that if z € G then z/(1 —z) € G.

We suppose that —1 is not in the closure of Q and must show that, for each
f€ 0O, sp(f) contains a non-negative number.

To this end we show first that if g € Q and sp(g) =G, then g has no inverse in
A. We define by induction a sequence {g,} starting withg, = g(1—g)~*. Note
that g, € 4 and sp(g,)<=G. Then, setting g,., = g.(1—g,)" ", we see that every
g, € Q and sp(g,)=G. We show, by induction, that (1—ng)™* exists in 4 and
g, =9g(1—ng)~',n = 1,2, .... Thisis certainly true for n = 1. Assuming this
fact for n we consider

1—g,=[1—(n+1)gl(t—ng)~". 1)
Then
I—(n+1)g = (1-g,)X1—ng)

is the product of two invertible elements. Moreover, by (1), and the induction
hypothesis, we get

g1 =9(1—ng)"(1-g,)"! = g(l~(n+g)~".
Now that we have g(1—ng)~! e Q for each positive integer n we use (a) to get

ng,=g(n™'—g)"'eQ. ()]
If g~ e A, then, from (2), we see that —1 is in the closure of Q. Therefore
~1 fails to exist, as claimed.

Next let fe Q. Suppose that sp( f) is disjoint with [0, 00]. As sp(f) is com-
pact there is a number o, 0 <a<7/2, so that sp(f) is disjoint with the wedge W
of complex numbers of the form z = rexp (i), —«a £ 0 < 2 and 0 £ r<o.
Moreover, sp(af) is disjoint with ¥ for all a>0.

Elementary computations show that D, is contained in the interior of W for
all n = 2, 3, ... such that n>csc(x). Let N be the smallest of these integers.
Note that | z| = (n+1)"* for all ze D,. Therefore, if we choose >0 so that
| & I <(N+1)~%, we see that sp(bf) is also disjoint with D;, j < N. This
ensures that sp(bf)=G. But then, as shown above, £~ does not exist or
0 e sp(f). This contradicts our assumption that [0, o0] is disjoint with sp(f)
and completes the proof.

Suppose g ¢ I'.  Since sp(g) is compact there is an open set ¥ in the complex
plane containing sp(g) and disjoint with [0, ). By (4, Theorem 1.6.16),
sp(h)< V if he A is sufficiently close to g. Consequently I is closed in 4 and
we deduce the following result from our theorem.

Corollary 1. T is the unique maximal element in the collection of closed
subsets of A with the properties (a), (b) and (c).

These results also hold for a real Banach algebra A4 as can be seen by con-
sidering the complexification (4) of 4.
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Following Bonsall (1) (see also 2) we call a subset B of A a semi-algebra if,
whenever f, g € B and ¢ is a non-negative scalar, we have f+g € B, fg € B and
tfe B.

Corollary 2. Any closed semi-algebra B in A either contains —1 or is con-
tained in T'.

Proof. Let fe B, p(f)<1. Then, inasmuch as

o0

fa-n7t= 3 s

we see that f(1—f)"'e B. Hence B satisfies (b) and Theorem 1 applies.
Corollary 2 was obtained in an entirely different way by Civin and White
3, p. 242).

Bonsall (1) and Brown (2) study type O semi-algebras (semi-algebras B
which have the additional property that (14f)”' € B whenever fe B). In this
case B has the following property.

sp(f)n(—o0, 0) is void for each fe B. 3)
Property (3) is related to our earlier properties.
Proposition. Let Q be any subset of A with properties (a) and (b). Let J

be the set of all g € Q such that sp(g) intersects (— o0, 0) vacuously. Then J has
properties (@) and (b).

Proof. Consider g € J with p(g)<1 and let 4, be a maximal closed sub-
algebra of A containing /. We let ® denote the carrier space of A4, and use
(4, Theorem 1.6.14).

Set & = g(1—g)~ 1. If there exists some A, —o0 <A<0, 4 € sp(h) then, for
some ¢ € ® we have also

4(9)/(1—-4(¢)) = 4.
From this we get §(¢) = 1—1§(¢). We cannot have 1 = —1. If A< —1, then
9(¢) = (1+21)>1

contrary to p(g)<1. If —1<A<0 we get g(¢)<O0 contrary to g € J. Therefore
hel.
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