ON NON-NEGATIVE SPECTRUM IN BANACH ALGEBRAS

by BERTRAM YOOD[†] (Received 20th November 1972)

1. Introduction

Let A be a complex Banach algebra with an identity 1. In this note we study the subset Γ of A consisting of all $g \in A$ such that the spectrum of g, sp(g), contains at least one non-negative real number. Clearly Γ is not, in general, a semi-group with respect to either addition or multiplication. However, Γ is an instance of a subset Q of A with the following properties, where $\rho(f)$ denotes the spectral radius of f (4, p. 30).

- (a) If $f \in Q$ and $t \ge 0$, then $tf \in Q$.
- (b) If $f \in Q$ and $\rho(f) < 1$, then $f(1-f)^{-1} \in Q$.
- (c) The distance of Q from -1 is larger than zero.
- (d) If $f \in Q$ and $\rho(f) < 1$, then $1 f \in Q$.
- (e) If $f \in Q$ and $\rho(f) < 1$, then $(1-f)^{-1} \in Q$.
- (f) If $f \in Q$ and t > 0, then $t + f \in Q$.

For our purpose (the characterisation of Γ) properties (d), (e) and (f) are not as useful as (b). To see this consider the Banach algebra B of all complexvalued functions on the compact Hausdorff space E in the sup norm. The subset Q of all $f \in B$ where Re $f(t) \ge 0$, for all $t \in E$, is a closed subset of B satisfying properties (a), (c), (d), (e) and (f). Here Q neither contains nor is contained in Γ . On the other hand, we shall see that $Q \subset \Gamma$ if Q satisfies (a), (b) and (c).

Condition (b) can be restated in the language of quasi-inverses (4, p. 16). For if g' denotes the quasi-inverse of g, then $f(1-f)^{-1} = -f'$.

2. On the properties (a), (b) and Γ

Theorem 1. Let Q be a subset of A with properties (a) and (b). Then either Q is contained in Γ or -1 lies in the closure of Q.

Proof. Notice that, for a complex number z, |z/(1-z)| < 1 if and only if Re $(z) < \frac{1}{2}$. Now let D_n be the closed disc in the complex plane with centre at $n/(n^2-1)$ and radius $1/(n^2-1)$, n = 2, Then, for these values of n,

$$|z/(1-nz)| < 1$$
 if and only if $z \notin D_n$.

† This research was supported in part by the National Science Foundation. E.M.S.-18/4-D

BERTRAM YOOD

In these terms we define a set G in the complex plane by

$$G = \{z \colon |z| < 1 \text{ and } |z/(1-nz)| < 1, n = 1, 2, ...\}$$

and can readily picture G graphically. Observe that if $z \in G$ then $z/(1-z) \in G$.

We suppose that -1 is not in the closure of Q and must show that, for each $f \in Q$, sp(f) contains a non-negative number.

To this end we show first that if $g \in Q$ and $sp(g) \subset G$, then g has no inverse in A. We define by induction a sequence $\{g_n\}$ starting with $g_1 = g(1-g)^{-1}$. Note that $g_1 \in A$ and $sp(g_1) \subset G$. Then, setting $g_{n+1} = g_n(1-g_n)^{-1}$, we see that every $g_n \in Q$ and $sp(g_n) \subset G$. We show, by induction, that $(1-ng)^{-1}$ exists in A and $g_n = g(1-ng)^{-1}$, n = 1, 2, ... This is certainly true for n = 1. Assuming this fact for n we consider

$$1 - g_n = [1 - (n+1)g](1 - ng)^{-1}.$$
 (1)

Then

$$1 - (n+1)g = (1 - g_n)(1 - ng)$$

is the product of two invertible elements. Moreover, by (1), and the induction hypothesis, we get

$$g_{n+1} = g(1-ng)^{-1}(1-g_n)^{-1} = g(1-(n+1)g)^{-1}.$$

Now that we have $g(1-ng)^{-1} \in Q$ for each positive integer n we use (a) to get

$$ng_n = g(n^{-1} - g)^{-1} \in Q.$$
 (2)

If $g^{-1} \in A$, then, from (2), we see that -1 is in the closure of Q. Therefore g^{-1} fails to exist, as claimed.

Next let $f \in Q$. Suppose that sp(f) is disjoint with $[0, \infty]$. As sp(f) is compact there is a number α , $0 < \alpha < \pi/2$, so that sp(f) is disjoint with the wedge W of complex numbers of the form $z = r \exp(i\theta)$, $-\alpha \le \theta \le \alpha$ and $0 \le r < \infty$. Moreover, sp(af) is disjoint with W for all a > 0.

Elementary computations show that D_n is contained in the interior of W for all n = 2, 3, ... such that $n > csc(\alpha)$. Let N be the smallest of these integers. Note that $|z| \ge (n+1)^{-1}$ for all $z \in D_n$. Therefore, if we choose b > 0 so that $||bf|| < (N+1)^{-1}$, we see that sp(bf) is also disjoint with D_j , $j \le N$. This ensures that $sp(bf) \subset G$. But then, as shown above, f^{-1} does not exist or $0 \in sp(f)$. This contradicts our assumption that $[0, \infty]$ is disjoint with sp(f)and completes the proof.

Suppose $g \notin \Gamma$. Since sp(g) is compact there is an open set V in the complex plane containing sp(g) and disjoint with $[0, \infty)$. By (4, Theorem 1.6.16), $sp(h) \subset V$ if $h \in A$ is sufficiently close to g. Consequently Γ is closed in A and we deduce the following result from our theorem.

Corollary 1. Γ is the unique maximal element in the collection of closed subsets of A with the properties (a), (b) and (c).

These results also hold for a real Banach algebra A as can be seen by considering the complexification (4) of A.

296

Following Bonsall (1) (see also 2) we call a subset B of A a semi-algebra if, whenever $f, g \in B$ and t is a non-negative scalar, we have $f+g \in B$, $fg \in B$ and $tf \in B$.

Corollary 2. Any closed semi-algebra B in A either contains -1 or is contained in Γ .

Proof. Let $f \in B$, $\rho(f) < 1$. Then, inasmuch as

$$f(1-f)^{-1} = \sum_{n=1}^{\infty} f^n$$

we see that $f(1-f)^{-1} \in B$. Hence B satisfies (b) and Theorem 1 applies. Corollary 2 was obtained in an entirely different way by Civin and White (3, p. 242).

Bonsall (1) and Brown (2) study type 0 semi-algebras (semi-algebras B which have the additional property that $(1+f)^{-1} \in B$ whenever $f \in B$). In this case B has the following property.

$$sp(f) \cap (-\infty, 0)$$
 is void for each $f \in B$. (3)

Property (3) is related to our earlier properties.

Proposition. Let Q be any subset of A with properties (a) and (b). Let J be the set of all $g \in Q$ such that sp(g) intersects $(-\infty, 0)$ vacuously. Then J has properties (a) and (b).

Proof. Consider $g \in J$ with $\rho(g) < 1$ and let A_0 be a maximal closed subalgebra of A containing f. We let Φ denote the carrier space of A_0 and use (4, Theorem 1.6.14).

Set $h = g(1-g)^{-1}$. If there exists some λ , $-\infty < \lambda < 0$, $\lambda \in sp(h)$ then, for some $\phi \in \Phi$ we have also

$$\hat{g}(\phi)/(1-\hat{g}(\phi)) = \lambda.$$

From this we get $\hat{g}(\phi) = \lambda - \lambda \hat{g}(\phi)$. We cannot have $\lambda = -1$. If $\lambda < -1$, then

$$\hat{g}(\phi) = \lambda(1+\lambda) > 1$$

contrary to $\rho(g) < 1$. If $-1 < \lambda < 0$ we get $g(\phi) < 0$ contrary to $g \in J$. Therefore $h \in J$.

REFERENCES

(1) F. F. BONSALL, Semi-algebras of continuous functions, *Proc. London Math. Soc.* (3) 10 (1960), 122-140.

(2) G. BROWN, Type 0 semi-algebras in Banach algebras, J. London Math. Soc. 43 (1968), 482-486.

BERTRAM YOOD

(3) P. CIVIN and C. C. WHITE, Maximal closed pre-primes in Banach algebras, *Trans. Amer. Math. Soc.* 147 (1970), 241-260.

(4) C. E. RICKART, General Theory of Banach Algebras (Van Nostrand, 1960).

PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA. 16802 U.S.A.

298