ON \(k\)-QUASIHYPONORMAL OPERATORS II

B.C. GUPTA AND P.B. RAMANUJAN

An operator \(T\) on a Hilbert space is in the class of \(k\)-quasi-
hyponormal operators \(Q(k)\), if \(T^* (T^*T - TT^*)T^k \geq 0\). It is
shown that if \(T\) is in \(Q(k)\) and \(S\) is normal such that
\(TX = XS\), where \(X\) is one to one with dense range, then \(T\) is
normal; and is unitarily equivalent to \(S\). It is proved that \(S\) can be replaced by a cohyponormal operator, if \(T\) in \(Q(1)\)
is one to one. It is also shown that two quasisimilar operators
in \(Q(k)\) have equal spectra, and every reductive operator quasi-
similar to a normal operator is normal.

A bounded linear operator \(T\) on a Hilbert space \(H\) is called
\(k\)-quasihyponormal if \(T^* (T^*T - TT^*)T^k \geq 0\), or equivalently,
\[\|T^k x\| \leq \|T^k+1 x\| \] for every \(x \in H\), where \(k\) is a positive integer.
Clearly, the class \(Q(k)\) of all \(k\)-quasihyponormal operators on \(H\)
contains all hyponormal operators and forms a strictly increasing sequence
in \(k\). The class \(Q(1)\) is the class of quasihyponormal operators [10].
For an operator \(T \in Q(k)\) the following representation was obtained in
[4].

THEOREM A. An operator \(T\) is in \(Q(k)\) if and only if \(T\) has
matrix representation

\[
T = \begin{pmatrix}
T_1 & T_2 \\
0 & T_3
\end{pmatrix}
\]

Received 16 February 1981. The authors gratefully acknowledge the
support of the University Grants Commission of India.
with respect to a pair of complementary orthogonal subspaces of the Hilbert space H, where

\[(a) \quad T^* T_1 - T_1 T^*_1 \geq T^*_1 T_1, \quad \text{and} \]

\[(b) \quad T^k_3 = 0.\]

The representation (*) is not unique; however, we can always take

$T_1 = T[R(T^k)], \quad T$ restricted to $R(T^k).$

Using the representation (*) it was shown that eigenspaces corresponding to non-zero eigenvalues are reducing and several structure theorems for operators in $Q(k)$ were proved. Further, it was shown that there is a non-hyponormal operator in $Q(1)$ with reducing kernel; and since restriction of an operator $T \in Q(1)$ to an invariant subspace is again in $Q(1)$, this also gives a one to one non-hyponormal operator in $Q(1)$. In this paper, we continue the study of operators in $Q(k)$.

We denote the kernel, the range, the spectrum and the closure of the numerical range of an operator T by $N(T)$, $R(T)$, $\sigma(T)$ and $\overline{W(T)}$, respectively. The norm closure of a subspace M of H is denoted by \overline{M} and the Banach algebra of all operators on a Hilbert space H by $B(H)$.

It is shown in this paper that if $T \in Q(k)$ and S is normal such that $TX = XS$ where $N(X) = N(X^*) = \{0\}$ then T is normal, and is unitarily equivalent to S. If in addition, T is in $Q(1)$ with $N(T) = \{0\}$ then the normal operator S can be replaced by a cohyponormal operator without affecting the conclusion. In case T is an arbitrary hyponormal operator these results are due to Stampfli and Wadhwa [11] and Radjabali pour [8].

It is known that two quasimilar hyponormal operators have equal spectra [5], and every reductive operator similar to a normal operator is normal [6]. We show that two quasisimilar operators in $Q(k)$ have equal spectra, and every reductive operator which is quasisimilar to a normal operator is normal.

For our purpose, we mention the following which is an easy modification of Theorem 1 in [11].

Theorem B. Let $T \in B(H)$ be hyponormal and let $S \in B(K)$ be
normal. If $TX = XS$ where $X : K \rightarrow H$ is a one to one bounded linear operator with dense range then T is normal and is unitarily equivalent to S.

THEOREM 1. Let $T \in Q(k)$, S a normal operator and let $TX = XS$ where X is a one to one operator with dense range. Then T is a normal operator unitarily equivalent to S.

Proof. Let $T_1 = T|R(T^k)$ and $S_1 = S|R(S^k)$. Then by Theorem A, we have

$$T = \begin{bmatrix} T_1 & T_2 \\ 0 & T_3 \end{bmatrix}$$

and

$$S = \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix},$$

where S_1 is normal, $T_3^* = 0$ and $T_1^* T_1 - T_1 T_1^* \geq T_2 T_2^*$. Since $T^k X = XS^k$ and X has dense range, $X(R(S^k)) = R(T^k)$. If we denote the restriction of X to $R(S^k)$ by X_1 then $X_1 : R(S^k) \rightarrow R(T^k)$ is one to one and has dense range and for every $x \in R(S^k)$, $X_1 S_1 x = XSx = TXx = T_1 X_1 x$ so that $X_1 S_1 = T_1 X_1$. Now since T_1 is hyponormal it follows from Theorem B that T_1 is a normal operator unitarily equivalent to S_1. But then

$$T_2 T_2^* = 0,$$

which implies that $T_2 = 0$ and therefore $R(T^k)$ reduces T.

Since $X^*(R(T^k)) \subset N(S^k)$, for each $x \in N(T^*)$, we have $X^* T_3 x = X^* T_3 x = S x x x = 0$. But X has dense range and so X^* is one to one. Therefore $T_3^* x = 0$ for every $x \in N(T^k)$. Thus $T_3 = 0$. Hence $T = T_1 \oplus 0$. This completes the proof.

As an application, we get the following version of [8, Corollary 1] for operators in $Q(1)$.

THEOREM 2. Let $T \in Q(1)$ be one to one, S a cohyponormal operator and let X be a one to one operator with dense range such that $TX = XS$. Then T and S are unitarily equivalent normal operators.

Proof. Suppose S is not normal. Then by Theorem 1 of [7] there exists a non-zero vector $x \in H$ and a bounded function $f : \mathbb{C} \rightarrow H$ such
that \((S-\lambda I)f(\lambda) \equiv x\). Then it follows that \(Xf : \mathbb{C} \to H\) is a bounded function such that \((T-\lambda I)Xf(\lambda) = Xx\). Let \(Xf(\lambda) = f_1(\lambda) \oplus f_2(\lambda)\) and \(Xx = x_1 \oplus x_2\) be the decompositions of \(Xf(\lambda)\) and \(Xx\) relative to the decomposition \(H = \overline{R(T)} \oplus N(T^4)\). Then Theorem A gives
\[
\left(T_1 - \lambda I \right) f_1(\lambda) + T_2 f_2(\lambda) = x_1
\]
and
\[
-\lambda f_2(\lambda) = x_2
\]
for all \(\lambda \in \mathbb{C}\).

In particular, if \(\lambda = 0\) then \(x_2 = 0\). Therefore \(f_2(\lambda) = 0\) if \(\lambda \neq 0\) and \(x_1\) is a non-zero vector. So \(\left(T_1 - \lambda I \right) f_1(\lambda) = x_1\) for all \(\lambda \neq 0\). Now Theorem 1 and Proposition 2 of [8] imply that
\[
\chi^{T_1}_1(0) = \{x \in H : \text{there exists an analytic function } f_x : \mathbb{C} \setminus \{0\} \to H \text{ such that } (T_1 - \lambda I) f_x(\lambda) = x \}
\]
is a closed invariant subspace of \(T_1\) containing the non-zero vector \(x_1\) and \(\sigma(T_1 | \chi^{T_1}_1(0)) = \{0\}\). Since \(T_1\) is hyponormal, \(T_1 | \chi^{T_1}_1(0) = 0\). So \(T x_1 = T_1 x_1 = 0\). But \(T\) is one to one and therefore \(x_1 = 0\), a contradiction. Hence \(S\) must be normal and the result follows from Theorem 1. //

If \(T\) and \(T^4\) both are hyponormal then \(T\) is normal. For \(T \in Q(k)\), we have the following:

THEOREM 3. If \(T \in Q(k)\) is cohyponormal then \(T\) is normal.

Proof. Since \(T\) is cohyponormal, \(N(T^4) = N(T^4)^{\perp}\) reduces \(T\). Therefore \(T = T_1 \oplus T_3\), where \(T_1 = T | \overline{R(T^k)}\) and \(T_3\) both are hyponormal. Also \(T_3^4\) is nilpotent and hyponormal. Hence \(T_3 = 0\) and \(T\) is normal. //

Let \(0\) be the class of all operators \(T\) on \(H\) for which \(T^4 T\) and \(T + T^4\) commute. In [2] Campbell proved the following:

THEOREM C. If \(T \in 0\) and \(T^4\) is hyponormal then \(T\) is normal.
THEOREM D. If \(T \in \Theta \) is hyponormal then \(T \) is subnormal.

Theorem C remains valid even if \(T^* \in Q(1) \).

THEOREM 4. If \(T^* \in Q(1) \) and \(T \in \Theta \) then \(T \) is normal.

Proof. Let \(R = T^* | R(T^*) \). Then \(R \) is hyponormal. Also since \(T \in \Theta \), \(N(T) \) is reducing [3] and therefore Theorem A implies that \(T^* = R \oplus 0 \) is hyponormal. Hence by Theorem C, \(T \) is normal. //

Question. If \(T \in \Theta \cap Q(1) \), must it be subnormal?

THEOREM 5. If \(A, B \in Q(k) \) are quasisimilar then they have equal spectra.

Proof. Suppose \(X \) and \(Y \) are one to one operators on \(H \) with dense range such that \(XA = BX \) and \(YB = AY \). Let \(A_1 = A \upharpoonright R(A_1^k) \) and \(B_1 = B \upharpoonright R(B_1^k) \). Then

\[
A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix}
\]

where \(A_1, B_1 \) are hyponormal and \(A_3, B_3 \) are nilpotents. Therefore \(\sigma(A) = \sigma(A_1) \cup \{0\} \) and \(\sigma(B) = \sigma(B_1) \cup \{0\} \). In view of the fact that quasisimilar hyponormal operators have equal spectra [5], it suffices to show that \(A_1 \) and \(B_1 \) are quasisimilar.

Since \(XA_1^k = B_1^kX \) and \(YB_1^k = A_1^kY \), it follows that the restrictions \(X : R(A_1^k) \to R(B_1^k) \) and \(Y : R(B_1^k) \to R(A_1^k) \) are one to one and have dense range. Now for any \(x \in R(A_1^k) \), \(XA_1x = XAx = BXx = B_1x \) and similarly for any \(y \in R(B_1^k) \), \(YB_1y = A_1y \). Thus \(A_1 \) and \(B_1 \) are quasisimilar.

Hence the result. //

In [9], Sheth proved that if \(T \) is hyponormal and \(S^{-1}TS = T^* \) where \(0 \notin \overline{W(S)} \) then \(T \) is self-adjoint. We prove the following:

THEOREM 6. If \(T \in Q(k) \) is such that \(S^{-1}TS = T^* \) where \(0 \notin \overline{W(S)} \) then \(T \) is direct sum of a self-adjoint operator and a nilpotent operator.
Proof. Write

\[T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \]

as usual. Then \(\sigma(T) = \sigma(T_1) \cup \{0\} \). Since \(S^{-1}TS = T^* \) and \(0 \notin \overline{W(S)} \), by Theorem 1 of [12], \(\sigma(T) \) and hence \(\sigma(T_1) \) is real. Thus \(T_1 \) is self-adjoint. But then \(T_2 = 0 \), and we are done. \(/\)

Recall that an operator \(T \) is reductive if every invariant subspace of \(T \) is reducing. Every reductive operator similar to a normal operator is normal [6, Lemma 2.4]. The following shows that in this result similarity condition can be weakened to quasisimilarity.

THEOREM 7. If \(T \) is reductive and quasisimilar to a normal operator then \(T \) is normal.

Proof. Since \(T \) is reductive and quasisimilar to a normal operator by a result of Apostol [1] there exists a basic system \(\{X_n\} \) of reducing subspaces such that each \(S_n = T|X_n \) is reductive and similar to a normal operator and therefore \(S_n \) itself is normal for each \(n \). Since

\[\bigvee_{n=1}^\infty X_n = H \], for each \(x \in H \), we have \(x = \lim_{m \to \infty} \left(\sum_{n=1}^\infty x_{mn} \right) \), where \(x_{mn} \in X_n \)

and for each \(m \), \(x_{mn} = 0 \) for all but finitely many \(n \)'s. Therefore for each \(x \in H \),

\[TT^*x = \lim_{m \to \infty} \left(\sum_{n=1}^\infty TT^*x_{mn} \right) \]

\[= \lim_{m \to \infty} \left(\sum_{n=1}^\infty S_n S^*_n x_{mn} \right) \]

\[= \lim_{m \to \infty} \left(\sum_{n=1}^\infty T^*T x_{mn} \right) \]

\[= T^*Tx. \]

Thus \(T \) is normal. \(/\)
k-quasihipo-normal operators

References

Department of Mathematics, Sadar Patel University, Vallabhbh Vidyanagar 388 120, Gujarat, India.

Department of Mathematics, Saurashtra University, Rajkot 360 005, Gujarat, India.