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Abstract. Let K be a quadratic extension of a figddvhich is either local field or a finite field. Let

G be an algebraic group ovér The aim of the present paper is to understand when a representation
of G(K) has aG (k) invariant linear form. We are able to accomplish this in the case whanthe
group of invertible elements of a division algebra oxesf odd index ifk is a local field, and for
general connected groups over finite fields.
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1. Introduction

A representationt of a groupG is said to be distinguished with respect to a
subgroupH if the space off -invariant linear forms orr is non-zero. Usually, one
considers this whei/ is the subgroup of the fixed points of an involution Gn
and when one can prove that the spacéfeiinvariant linear forms on any irredu-
cible representation af is at most one-dimensional. This concept has been much
studied in recent times by H. Jacquet and his collaborators, cf. [7-10], and makes
sense for representations pfadic groups as well as automorphic representations
where the requirement on a nonzetkinvariant linear form is replaced by the
nonvanishing of a period integral dih. From several of these works as well as the
work of Flicker [3], it appears that in many contexts distinguished representations
are classified as those representation§ efhich are obtained via a functorial lift
from some other group.

The aim of this article is to discuss a simple situation involving compact
adic groups where representations of a group having fixed vector under a subgroup
are identified exactly to those representations which are obtained via a functorial
lifting. The group involved is the group of invertible elements of a division algebra
over a quadratic extensioki of a local fieldk, the subgroup being the group of
invertible elements of the division algebra o¥egland the functorial lifting is from
a Unitary group.

https://doi.org/10.1023/A:1001735724945 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001735724945

336 DIPENDRA PRASAD

The principle we employ to prove our main theorem proves a general result
about representations @f(F,2) which haveG (F,)-invariant vector wheres is
any connected algebraic group over the finite figjdIt also proves a result about
triple products of representations of @) over ap-adic field which was earlier
proved only in odd residue characteristic by an explicit character calculation, cf.
Theorem E of [12].

It should be noted that the results we prove ab@@)-invariant forms on a
representation space 6f(K) reduces to a rather trivial statemenkif=k ® k. In
this case our results reduce to say that a representati@nt, of G (k) x G (k) has
a G (k)-invariant form if and only ifr; = m,, and that ifz; = 5, then the space
of G(k)-invariant forms onr; ® 7, is exactly 1 dimensional. The present paper
attempts to prove the twisted analogue of this.

2. Distinguished Representations for a Division Algebra

We begin by fixing some notation. L&Y, be a division algebra of index, an odd
integer, over a local field, and withk as its center. Lek be a separable quadratic
extension ofk. Let V be an irreducible representation bf, for Dx = D; ®; K,
and letV? denote the irreducible representationZzif obtained fromV by using
the automorphism of order 2 @y induced by the nontrivial automorphissnof

K overk. We abuse notation to denote &ythe automorphism oD also.

THEOREM 1.LetV be an irreducible representation @y which is trivial onk*.
ThenV has aD;-invariant vector if and only if there is an isomorphigii = V°
of representations ab .
Proof. The idea of the proof is to extend the representafio® vV’ of D%
to a groupE containing D} as a subgroup of index 2, and try to see when this
representation of has anE-invariant vector. Sinc& modulo center is a compact
group, this we can do by character theory. The main point of the proof is that the
character of this representation Bfon the non-trivial coset ab% is related to the
character ofV at an element of the subgroup;, in exactly the same way as the
character identity of Shintani in the theory of base change, cf. Definition 6.1 of [1].
We now define the groufr and its representation ovi ® V7. Let e be an
element ofc* which is not a norm fronk *. Using the element, one can construct
an extension of groups

0—- Dy - E—Z/2—0,
such that the groufy has an element with the property that
-1 o 2

xt - =x7 forall x e Dy, and t°=e.

(Since we are considering only those representatiod3;ofvhich are trivial on
k*, we could have takef to be a semi-direct product; however, this construction
in the style of the Weil group oK overk is more general and natural.)
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It is easy to see that the representatior® V° of D} can be extended to a
representation of by (v ® v2) = ev, ® V1 = V2 ® V1.

We now calculate the character of the representatiag V° at an element of
the formd - r whered € D%. Let{v, ..., v,} be a basis o¥. By definition,

d-1)(vi®v;) = dv; ®v;)
= dl)j ®dUU,'

(B ()

= Zdjl . d;fmvl ® U -

I,m

Therefore

Ovgve(d-1) =Y dji-d; = Oy(d°d).
iJ

By Schur's lemmaV ® V° can have at most one-dimensional subspacs jpf
invariant vectors, and therefore at most one-dimensional subspacenvhriant
vectors. It follows that if we fix a Haar measure & K* such thatD} /K* has
volume 1

/ Oy - Ops +/ @V(dad) =2 orQ
DL /K* DL /K*

depending on whethéf ® V? has anE-invariant vector or not. Since

/ Oy -BOpy.=1, or0
DL /K*

depending on whethe¥ ® V° contains the trivial representation éf /K* or
not, if V. ® V7 contains the trivial representation bf;, /K * but not of £, it follows
that [ ©y(d°d) = —1 but by Lemma 1 below/ ©y(d°d), being the dimension
of Dj-invariant vectors inV, can never be negative. SoW ® V? has aDx-
invariant vector, it has af-invariant vector and by Lemma ;[D,*( /K Oy (d°d) =
sz/k* Oy (d) = 1. If, on the other handy ® V? does not havé} /K *-invariant
vector, then in particular it will not haveE-invariant vector, and therefore
fD;‘(/K* Oy - Oypo = fD:/k* Oy (d) = 0. We therefore find that for any irreducible
representatiory of D} which is trivial onk*,

/ ®v-®w=/ O (d),
D% /K* D} /k*
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as the two sides of the equation are either both 0 or both 1. This completes the
proof of the theorem except that we still need to prove the following lemma.

LEMMA 1. Let f be any class function o} /k*. Then for Haar measures on
D} /k* and D% /K* giving these groups measuteone has

/ Flx) = / £ ).
D /k* DL /K*

Proof. The proof of this lemma will be accomplished by the Weyl integration
formula which is available for both conjugacy invariant function, suclf asstric-
ted to D}/ k*, ando-conjugacy invariant function such gx°x) on D% /K*. (A
function F on D% is calledo -conjugacy invariant function if

F(x Yyx°) = F(y), forall x,ye D)
The Weyl integration formula fos -conjugacy invariant functions says that

/ F@=), ! ! F(H)A*(N1),
D% /K* W(T, k) vol(T (k)) Jr1-o(k)\7(K)

where the summation is over all the conjugacy classes of maximal t@j i.e.
invertible elements of maximal subfields in); W (T, k) denotes the cardinality

of the corresponding Wey! group (i.e., the order of the group of automorphisms of
the corresponding field)yr = t°¢; A is the usual Weyl denominatof:'— (K) is

the subgroup of" (K) consisting of elements of the formw (x 1) for x € T(K);

the measure offi 1= (K)\T (K) is defined using an arbitrary measure®fk) via

the exact sequence

1— TY(K) > T(K) = T k).

We note that this formula on page 36 of [1] is only for Gl However the proof
for GL(n) works also for a division algebra once one has noticed that an element of
D% whose conjugacy class is defined okger.e., an element whose characteristic
polynomial is defined ovek is conjugate by an element @} to an element
of D. This follows by Skolem—Noether theorem combined with the fact that a
division algebra of index over a local fieldk contains a root of all the irreducible
polynomials ovek of degree dividing:.

The Weyl integration formula applied t6(x° x) gives,

/ fa7x0) =" ! ! FINDAZ(NY).
Dy /K* W(T, k) vol(T (k)) Jr1-okynr(x)

Notice that if L is any degree: extension ofk contained inD, giving rise to
T (k) = L*, thenT(K) = (L ®; K)*, and the norm mapping frofi(K) to T (k)
is surjective as we are going modulo the ceriterk*). Therefore

1 1
o — AZ ,
/D;(/K*f O = ) T D VT @) gy T OO
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which is exactly the Weyl integration formula applied to the class funcifon
restricted toD;

1 1
= A%(1).
/D;/k*f ®© =2 T B IT@) Jry OO

Remarkl. Representation¥ of D which have the property that* = V°
are precisely those representationsigf whose Langlands parameter comes via
base change of the Langlands parameter of a Unitary grougcaafined in terms
of a Hermitian form inn variables overk, cf. Lemma 15.1.2 [13]. We refer to
conjecture on page 143, and Proposition 12 of [3] for related matter.

In the process of the proof of Theorem 1, we have also proved the following
proposition for which one can also supply a simple and direct proof by the method
of Gelfand pairs. We refer to the article of B. Gross [5] for an exposition on Gelfand
pairs.

PROPOSITION 1For any irreducible representatiol of D%, the dimension of
Dy invariant vectors is at most one-dimensianal

3. Finite Groups of Lie Type

Let G be a connected algebraic group over a finite figJdThe argument that we
have employed to study representationsDgf which have aD}-invariant vector

is a rather formal one depending crucially on Lemma 1. A form of this lemma is
actually available for th& 2 rational points of any connected algebraic group over
F,, cf. Proposition 1.6 of [2]. Before we state this form, we fix some notation. All
the notions in the following paragraph are borrowed from [2].

Let E be an extension of degreeof a finite fieldF. Let G be a connected
algebraic group ovef. Leto denote the Frobenius automorphisniaiverF. Two
elementsc andy of G(E) are said to be-conjugate if there existsin G(E) such
thatx = zyo (z) 1. An element; € G(E) is said to be a -centraliser ofy € G(E)
if zyo (z)~* = y. Write any element o6 (E) asy 1o (y) for somey in G(F). This
is possible by Lang’s theorem. Define a mappMgealled the norm mapping, from
the set ofo-conjugacy classes i@ (E) to the set of conjugacy classesGiF) by
Ny to(y)) = yo"(y)~L. It can be seen that the norm mappiNgis a bijection
from the set ofo-conjugacy classes i (E) to the set of conjugacy classes in
G(F). It is easy to see that € G(E) is ac-centraliser ofy~lo (y) € G(E) if
and only ifyxy™! € G(F). If x € G(E) andyxy~! € G(F), it can be seen that
yxy~t commutes withys"(y)~1. Therefore there exists a bijection between the
o-centraliser ofv € G(E) and the centraliser oV (x) in G(F). This proves the
following lemma.

LEMMA 2. Let G be a connected algebraic group over a finite fiEldSuppose
thatE is a degreen extension ofF, and N the mapping introduced above from the
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set ofo-conjugacy classes i6'(E) to the set of conjugacy classesanF). Let f
be a class function oG (E). Then

1 1
— = N(x)).
GO > @ GO > FN@)

G(F) G(E)

For our application, we need a form of this lemma in which instead of the norm
mapping, one takes the closely related mapping xo (x) for E quadratic over
F.If x = y“lo(y), thenxo (x) = y~to?(y). It follows thatxo (x) is conjugate to

N (x)~! by an element fron& (F). This brings us to the following definition.

DEFINITION. Let G be a connected algebraic group over a finite fleld\ rep-
resentation of5 (F) is calledstableif its character takes the same value on any two
conjugacy classes a (F) which become the same G(F). A class function is
calledstableif it takes the same value on any two conjugacy class&s(B) which
become the same i@ (F). A conjugacy class ifG (F) containing an element of

G (F) is calledstableif the intersection of the conjugacy classGriF) containing

x with G(F) is the conjugacy class &' (F) containingx.

QUESTION 1. What is the relationship between the number of unstable characters
and unstable conjugacy classes? We note that fQFSL stable characters are
exactly those which are left invariant under the conjugation action of(BL.

and similarly stable conjugacy classes are those which are left invariant under the
inner conjugation action of GI(F). Therefore for S|,.(F), the number of unstable
characters and the number of unstable conjugacy classes is the same.

Remark2. Since the centraliser of any element of /@) is connected, it
follows from Lang’'s theorem that any class function on,@,) or U,(F,) is
stable.

Sincexo (x) and hence (x)x is conjugate taV (x)~* by an element fronG (F),
our previous lemma gives the following for a stable class function.

LEMMA 3. Let G be a connected algebraic group over a finite fijd Let f be a
stable class function o6 (F,2). Then for the automorphism of G(F,2) induced
by the nontrivial Galois automorphism &, overF,, one has

1 (e
2 0 =5 2 .

As in the proof of Theorem 1, this lemma implies that one has the following
theorem in which for a representatidn of G(F,2), V7 denotes the representa-
tion of G(F,2) obtained by applying the nontrivial Galois automorphismFof
overF,.
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THEOREM 2.Let G be a connected algebraic group over a finite field Let V
be an irreducible stable representation G{F,2). ThenV has aG(F,)-invariant
vector if and only if there is an isomorphisit* = V° of representations of
G(qu).

Remark3. Theorem 2 is not true for all representationsG(Qqu). For instance,
itis false for some (unstable) representations of(§|2). We recall that to a non-
trivial characters® of the group of norm 1 elements Bf4 overF 2 which is not of
order 2 there is associated a discrete series representation @&f,5t.a character
and its inverse giving the same representation of(Blz). If 6 is nontrivial but
of order 2, there are two representations ob&l,2) associated t@ which are
permuted by any element of G{F2) whose determinant is not a squareFj.
The sum of these two representations, HayandIl,, is invariant unde¥’ — V*7,
as6 is. This means that to chedd; = II;?, all we need to check is that the

characters of1; and IT;° are the same on the unipotent eIeméﬂ;t ‘{) where

a is any element of,> which is not a square. Sincel is always a square in
F,2, and the Galois automorphism Bf. takes squares to squares, it follows that
I1; andIT;® have the same character values on the eler@ni), and therefore

I1; = I17°. On the other hand, since the group of norm one elemenf.dfas
g% + 1 elements, the nontrivial character of order 2 on it is nontriviatdn and
therefore on the center of $(F,2). In particular, these representations 0%8%,2)
will not have a Sk(F,)-invariant vector.

Our proof of Theorem 2 gives also the following multiplicity 1 theorem.

THEOREM 3.Let G be a connected algebraic group over a finite field An
irreducible stable representation @ (F,2) has at mostl dimensional space of
G (F,) invariant vectors

Remarkd. Theorem 3 is not true for all representationssaf,2). For instance
it is false for a (unstable) representation of,8E,2). We recall that the principal
series representation of JE 2) associated to the unique character of order 2 of its
maximal torus which is isomorphic t@;z is sum of two irreducible representations.
One of these does not have SE,)-invariant vector whereas the other has a 2-
dimensional subspace of §IF,)-invariant vectors.

Remark5. The referee has pointed out that our Theorems 2 and 3 fpra@d
U, are known, and are due to R. Gow, cf. [4].

4. General p-adic Case

Since the statement of Theorem 2 is rather general, and makes sense for all groups
G over ap-adic fieldk with K as a quadratic extension, it is natural to investigate if
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something similar might be true in theadic case too. It seems very likely that this
will be the case, except that we need to take extra care about certain things which
are evident in the finite field case, and indeed as we illustrate for fB& situation

is not quite as in the finite field case. If our Lemma 1 is to have any analogue at all
for generalp-adic groups, then the image of the norm mapping fl®(k") to G (k)
should be a subgroup @f (k). From Lemma 1.4 of [1] it follows that the regular
elliptic elements in the image of the norm mapping from, &) to GL, (k) is
exactly those whose determinant is a norm fr&ir and an element of the diagonal
torus is a norm if and only if each of its entries is a norm. One can make a general
statement for any semi-simple element in any quasi-split redugtig€ic group

with simply-connected derived group along similar direction. It follows that even
if we did not worry about convergence problems, the integ”g,qj() f(xx) will

not be an integral over a subgroup@fk). However, there might be cases where
the character might be zero at elements of a particular subgroGkofwhich do

not come from norms of; (K), and in those cases the integfgI(K) f(x°x) can

be written as an integral over a subgroupak), and the existence of an invariant
form on a representatiorni of G (K) for that subgroup of; (k) might be equivalent

to IT* = I1°. One can in any case ask the following guestion in which we use the
notion of a stable character which is defined foadic groups too, but we do not
define it here.

QUESTION 2. LetG be a connected reductive quasi-split group over a local field
k whose derived group is simply-connected. [kebe a quadratic extension ff
andIT an irreducible admissibletablerepresentation off (K). Prove thafl has at
most one-dimensional space@tk)-invariant forms, and ifT has aG (k)-invariant
linear form,IT* = I1°.

Here is a theorem due to Jacquet, Hakim and Flicker, cf. [3], in this direction
for GL(2). It is the local version of a global theorem proved in [6].

THEOREM 4. An irreducible discrete series representatidh of GL,(K) with
trivial central character has aGL,(k) invariant linear form if and only iflT is

a base change of a representation@if, (k) with nontrivial central character. A
principal series representatiofil of GL,(K) with trivial central character has a
GL, (k) invariant linear form if and only iflT is either a base change of a prin-
cipal series representation @L,(k), or is the base change of a discrete series
representation oGL,(k) with nontrivial central character

We remark that for a representatidbhof GL,(K) with trivial central character
IT* = II, and therefore the analogue of Theorem 2 will ask for an isomorphism
betweenlT andI1” as the necessary and sufficient conditionIfioto have Gla(k)
invariant form, which is exactly the condition fdf to be a base change from a rep-
resentation of GL(k). However, Theorem 3 requires this condition on base change
together with an extra condition on the central character of the representation it is
a base change of, If is a discrete series representation.
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Remarks. The referee has pointed out a rather precise conjecture in the case of
GL, which is that a representatidi of GL,(K)/k* for n even has a linear form
on which GL, (k) operates trivially or via the quadratic charactekbdfassociated
to K if and only if IT* = I1°. If n is odd, IT* = T1° if and only if IT has a
GL, (k)-invariant form.

We end this section with the following general criterion for the existence of
invariant forms which is a simple consequence of Mackey theory.

LEMMA 4. If a cuspidal representatiofl of a p-adic groupG is obtained from a
finite dimensional representatioi of a compact open subgrouf by induction,
thenTI has an invariant form for a subgroufi of G if and only if [,, f¢ # O, for
someg € G, and f a matrix coefficient of the representatid¥i of X thought of
as a matrix coefficient off; here f¢(h) = f(ghg™?).

5. Triple Product for GL (2)

By a method similar to the one we employed in the proof of our Theorem 1, we
can also prove the following theorem. The analogue of this theorem f(2)Glas
stated without proof in [12] as Theorem E and it was noted there that it sufficed
to prove the theorem for division algebras. At that time the author had proved this
result only in odd residue characteristic by an explicit calculation with the character
formula but did not publish that proof in the hope for a more conceptual proof.

THEOREM 5.Let K be a cubic cyclic extension of a local field Let D be
a quaternion division algebra ovet. Let 7 be an irreducible representation of
D} /k* where Dy = D ®; K. Leto be a generator of the Galois group &f
over k. Extend the automorphism of K over k to an automorphism oby and
denote the resulting automorphism Bf, again byo. Letz“ and 7°° denote the
representations ab obtained fromr by applying the automorphismando? of

D% . Thenr has aD*-invariant vector if and only if the representatiq?cmzw"(Xm"2
of D} has aDj-invariant form.

Proof. Let E be the semi-direct product &}, with Z /3 such that the inner con-
jugation action of a generator, sayof Z/3 acts onD} via . The representation

TQn° @n° of D% can be extended to a representation of the g@®wgpich that
T(11 @ V2 ® v3) = (V3 ® V1 ® V2).
Let{vs, ..., v,} be abasis ofr. By definition
d-1)(vi®v;®@u) = dv ®v; ;)
= dy, ®d°v; ® d"zvj

= (Z dklvl> ® (Z dgﬂvm) 2y (Z d;:v'1>
1 m n
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2
o o
= dkl-dim-djnvl@)vm@vn.

Therefore
Opgyogye2(d - T) = dei -d; dsz — Oy (d°d°°d).
ij.k
Similarly
O gyogyez(d -T2 = Oy d°d).

SinceV ® V° ® V°° can have at most one-dimensional subspad@joinvariant
vectors by Theorem 1.1 of [11], the dimensionBinvariant vectors iV Q V ®
v’ is also at most one-dimensional. If we therefore fix a Haar measure/ &t
such thatD} /K* has volume 1

/ Oy0y: 0,2 +/ ®V(d”d"2d)+/ Oy (d°°d°d)
D% /K DL /K

DY /K*

is equal to 3 or 0 depending on whetHér® V° ® V°° has anE-invariant vector
or not.

By the analogue of Lemma 1 in the present situation (with Haar measures on
D% /K* andD;/k* to have volume 1),

/ Oy (d°d°’d) = / Oy (d°°d°d) = / Oy (d).
D% /K* Dy /K* D} /k*

We would like to observe here that ff is a class function oD%, then F1(x) =
f(x"xf’zx) is o conjugacy invariant, ands(x) = f(x"zx"x) is o2 conjugacy
invariant functions. There seems no simple relationship betw&eand F», and
therefore the fact that the first two integrals are equal follows only after the ana-
logue of Lemma 1 is proved, and not apriori. (Theonjugacy form of Weyl integ-
ration formula is used for the-conjugacy invariant functio’; (x) = f(x"x"zx)
justas in Lemma 1 to compare the integrafatx) = f(x"x"zx) on D% /K* with
the usual Weyl integration formula for the integral fx) on D} /k*.)

It follows that

/ ®V®V“®V02 + 2/ ®yd) =3 or( (*)
D% /K*

Dy/k*

depending on whethef ® V° ® v°® has anE-invariant vector or not. Because
sz/k* Oy (x) is a nonnegative integer, it follows from the equatiei that

/ Oyx)=0 or1l
D}/ k*
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and, moreover,

/ ®V®V”®Vr72 = / ®V(d)’
Dy /K* Dj/ k*

completing the proof of the theorem.
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