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Abstract. LetK be a quadratic extension of a fieldk which is either local field or a finite field. Let
G be an algebraic group overk. The aim of the present paper is to understand when a representation
of G(K) has aG(k) invariant linear form. We are able to accomplish this in the case whenG is the
group of invertible elements of a division algebra overk of odd index ifk is a local field, and for
general connected groups over finite fields.
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1. Introduction

A representationπ of a groupG is said to be distinguished with respect to a
subgroupH if the space ofH -invariant linear forms onπ is non-zero. Usually, one
considers this whenH is the subgroup of the fixed points of an involution onG,
and when one can prove that the space ofH -invariant linear forms on any irredu-
cible representation ofG is at most one-dimensional. This concept has been much
studied in recent times by H. Jacquet and his collaborators, cf. [7–10], and makes
sense for representations ofp-adic groups as well as automorphic representations
where the requirement on a nonzeroH -invariant linear form is replaced by the
nonvanishing of a period integral onH . From several of these works as well as the
work of Flicker [3], it appears that in many contexts distinguished representations
are classified as those representations ofG which are obtained via a functorial lift
from some other group.

The aim of this article is to discuss a simple situation involving compactp-
adic groups where representations of a group having fixed vector under a subgroup
are identified exactly to those representations which are obtained via a functorial
lifting. The group involved is the group of invertible elements of a division algebra
over a quadratic extensionK of a local fieldk, the subgroup being the group of
invertible elements of the division algebra overk, and the functorial lifting is from
a Unitary group.
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The principle we employ to prove our main theorem proves a general result
about representations ofG(Fq2) which haveG(Fq)-invariant vector whereG is
any connected algebraic group over the finite fieldFq . It also proves a result about
triple products of representations of GL(2) over ap-adic field which was earlier
proved only in odd residue characteristic by an explicit character calculation, cf.
Theorem E of [12].

It should be noted that the results we prove aboutG(k)-invariant forms on a
representation space ofG(K) reduces to a rather trivial statement ifK = k⊕ k. In
this case our results reduce to say that a representationπ1⊗π2 ofG(k)×G(k) has
aG(k)-invariant form if and only ifπ∗1 ∼= π2, and that ifπ∗1 ∼= π2, then the space
of G(k)-invariant forms onπ1 ⊗ π2 is exactly 1 dimensional. The present paper
attempts to prove the twisted analogue of this.

2. Distinguished Representations for a Division Algebra

We begin by fixing some notation. LetDk be a division algebra of indexn, an odd
integer, over a local fieldk, and withk as its center. LetK be a separable quadratic
extension ofk. LetV be an irreducible representation ofD∗K for DK = Dk ⊗k K,
and letV σ denote the irreducible representation ofD∗K obtained fromV by using
the automorphism of order 2 ofDK induced by the nontrivial automorphismσ of
K overk. We abuse notation to denote byσ the automorphism ofDK also.

THEOREM 1.LetV be an irreducible representation ofD∗K which is trivial onk∗.
ThenV has aD∗k -invariant vector if and only if there is an isomorphismV ∗ ∼= V σ
of representations ofD∗K .

Proof. The idea of the proof is to extend the representationV ⊗ V σ of D∗K
to a groupE containingD∗K as a subgroup of index 2, and try to see when this
representation ofE has anE-invariant vector. SinceE modulo center is a compact
group, this we can do by character theory. The main point of the proof is that the
character of this representation ofE on the non-trivial coset ofD∗K is related to the
character ofV at an element of the subgroupD∗k , in exactly the same way as the
character identity of Shintani in the theory of base change, cf. Definition 6.1 of [1].

We now define the groupE and its representation onV ⊗ V σ . Let e be an
element ofk∗ which is not a norm fromK∗. Using the elemente, one can construct
an extension of groups

0→ D∗K → E→ Z/2→ 0,

such that the groupE has an elementτ with the property that

τxτ−1 = xσ for all x ∈ D∗K, and τ 2 = e.
(Since we are considering only those representations ofD∗K which are trivial on

k∗, we could have takenE to be a semi-direct product; however, this construction
in the style of the Weil group ofK overk is more general and natural.)
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It is easy to see that the representationV ⊗ V σ of D∗K can be extended to a
representation ofE by τ(v1 ⊗ v2) = ev2⊗ v1 = v2 ⊗ v1.

We now calculate the character of the representationV ⊗ V σ at an element of
the formd · τ whered ∈ D∗K . Let {v1, . . . , vn} be a basis ofV . By definition,

(d · τ)(vi ⊗ vj ) = d(vj ⊗ vi)
= dvj ⊗ dσ vi

=
(∑

l

djlvl

)
⊗
(∑

m

dσimvm

)

=
∑
l,m

djl · dσimvl ⊗ vm.

Therefore

2V⊗V σ (d · τ) =
∑
i,j

dji · dσij = 2V (d
σ d).

By Schur’s lemma,V ⊗ V σ can have at most one-dimensional subspace ofD∗K-
invariant vectors, and therefore at most one-dimensional subspace ofE-invariant
vectors. It follows that if we fix a Haar measure onE/K∗ such thatD∗K/K

∗ has
volume 1∫

D∗K/K∗
2V ·2Vσ +

∫
D∗K/K∗

2V (d
σd) = 2 or 0,

depending on whetherV ⊗ V σ has anE-invariant vector or not. Since∫
D∗K/K∗

2V ·2Vσ = 1, or 0

depending on whetherV ⊗ V σ contains the trivial representation ofD∗K/K∗ or
not, if V ⊗V σ contains the trivial representation ofD∗K/K∗ but not ofE, it follows
that

∫
2V (d

σd) = −1 but by Lemma 1 below,
∫
2V (d

σ d), being the dimension
of D∗k -invariant vectors inV , can never be negative. So ifV ⊗ V σ has aD∗K-
invariant vector, it has anE-invariant vector and by Lemma 1,

∫
D∗K/K∗

2V (d
σd) =∫

D∗k /k∗
2V (d) = 1. If, on the other hand,V ⊗ V σ does not haveD∗K/K∗-invariant

vector, then in particular it will not haveE-invariant vector, and therefore∫
D∗K/K∗

2V · 2Vσ =
∫
D∗k /k∗

2V (d) = 0. We therefore find that for any irreducible
representationV of D∗K which is trivial onk∗,∫

D∗K/K∗
2V ·2Vσ =

∫
D∗k /k∗

2V (d),
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as the two sides of the equation are either both 0 or both 1. This completes the
proof of the theorem except that we still need to prove the following lemma.

LEMMA 1. Let f be any class function onD∗K/k
∗. Then for Haar measures on

D∗k/k
∗ andD∗K/K

∗ giving these groups measure1, one has∫
D∗k /k∗

f (x) =
∫
D∗K/K∗

f (xσ x).

Proof. The proof of this lemma will be accomplished by the Weyl integration
formula which is available for both conjugacy invariant function, such asf restric-
ted toD∗k/k∗, andσ -conjugacy invariant function such asf (xσ x) onD∗K/K∗. (A
functionF onD∗K is calledσ -conjugacy invariant function if

F(x−1yxσ ) = F(y), for all x, y ∈ D∗K.)
The Weyl integration formula forσ -conjugacy invariant functions says that∫

D∗K/K∗
F(g) =

∑ 1

W(T, k)

1

vol(T (k))

∫
T 1−σ (K)\T (K)

F (t)12(Nt),

where the summation is over all the conjugacy classes of maximal tori inD∗k (i.e.
invertible elements of maximal subfields inDk); W(T, k) denotes the cardinality
of the corresponding Weyl group (i.e., the order of the group of automorphisms of
the corresponding field);Nt = tσ t ; 1 is the usual Weyl denominator;T 1−σ (K) is
the subgroup ofT (K) consisting of elements of the formxσ (x−1) for x ∈ T (K);
the measure onT 1−σ (K)\T (K) is defined using an arbitrary measure onT (k) via
the exact sequence

1→ T 1−σ (K)→ T (K)→ T (k).

We note that this formula on page 36 of [1] is only for GL(n). However the proof
for GL(n)works also for a division algebra once one has noticed that an element of
D∗K whose conjugacy class is defined overk, i.e., an element whose characteristic
polynomial is defined overk is conjugate by an element ofD∗K to an element
of D∗k . This follows by Skolem–Noether theorem combined with the fact that a
division algebra of indexn over a local fieldk contains a root of all the irreducible
polynomials overk of degree dividingn.

The Weyl integration formula applied tof (xσ x) gives,∫
D∗K/K∗

f (xσ x) =
∑ 1

W(T, k)

1

vol(T (k))

∫
T 1−σ (K)\T (K)

f (Nt)12(Nt).

Notice that ifL is any degreen extension ofk contained inDk giving rise to
T (k) = L∗, thenT (K) = (L⊗k K)∗, and the norm mapping fromT (K) to T (k)
is surjective as we are going modulo the center(= k∗). Therefore∫

D∗K/K∗
f (xσ x) =

∑ 1

W(T, k)

1

vol(T (k))

∫
T (k)

f (t)12(t),
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which is exactly the Weyl integration formula applied to the class functionf

restricted toD∗k∫
D∗k /k∗

f (g) =
∑ 1

W(T, k)

1

vol(T (k))

∫
T (k)

f (t)12(t).

Remark1. RepresentationsV of D∗K which have the property thatV ∗ ∼= V σ

are precisely those representations ofD∗K whose Langlands parameter comes via
base change of the Langlands parameter of a Unitary group overk defined in terms
of a Hermitian form inn variables overK, cf. Lemma 15.1.2 [13]. We refer to
conjecture on page 143, and Proposition 12 of [3] for related matter.

In the process of the proof of Theorem 1, we have also proved the following
proposition for which one can also supply a simple and direct proof by the method
of Gelfand pairs. We refer to the article of B. Gross [5] for an exposition on Gelfand
pairs.

PROPOSITION 1.For any irreducible representationV of D∗K , the dimension of
D∗k invariant vectors is at most one-dimensional.

3. Finite Groups of Lie Type

LetG be a connected algebraic group over a finite fieldFq . The argument that we
have employed to study representations ofD∗K which have aD∗k -invariant vector
is a rather formal one depending crucially on Lemma 1. A form of this lemma is
actually available for theFq2 rational points of any connected algebraic group over
Fq, cf. Proposition 1.6 of [2]. Before we state this form, we fix some notation. All
the notions in the following paragraph are borrowed from [2].

Let E be an extension of degreen of a finite field F. Let G be a connected
algebraic group overF. Letσ denote the Frobenius automorphism ofF overF. Two
elementsx andy of G(E) are said to beσ -conjugate if there existsz in G(E) such
thatx = zyσ (z)−1. An elementz ∈ G(E) is said to be aσ -centraliser ofy ∈ G(E)
if zyσ (z)−1 = y. Write any element ofG(E) asy−1σ (y) for somey inG(F). This
is possible by Lang’s theorem. Define a mappingN , called the norm mapping, from
the set ofσ -conjugacy classes inG(E) to the set of conjugacy classes inG(F) by
N(y−1σ (y)) = yσ n(y)−1. It can be seen that the norm mappingN is a bijection
from the set ofσ -conjugacy classes inG(E) to the set of conjugacy classes in
G(F). It is easy to see thatx ∈ G(E) is a σ -centraliser ofy−1σ (y) ∈ G(E) if
and only ifyxy−1 ∈ G(F). If x ∈ G(E) andyxy−1 ∈ G(F), it can be seen that
yxy−1 commutes withyσ n(y)−1. Therefore there exists a bijection between the
σ -centraliser ofx ∈ G(E) and the centraliser ofN(x) in G(F). This proves the
following lemma.

LEMMA 2. LetG be a connected algebraic group over a finite fieldF. Suppose
that E is a degreen extension ofF, andN the mapping introduced above from the
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set ofσ -conjugacy classes inG(E) to the set of conjugacy classes inG(F). Letf
be a class function onG(E). Then

1

|G(F)|
∑
G(F)

f (x) = 1

|G(E)|
∑
G(E)

f (N(x)).

For our application, we need a form of this lemma in which instead of the norm
mapping, one takes the closely related mappingx → xσ (x) for E quadratic over
F. If x = y−1σ (y), thenxσ (x) = y−1σ 2(y). It follows thatxσ (x) is conjugate to
N(x)−1 by an element fromG(F). This brings us to the following definition.

DEFINITION. LetG be a connected algebraic group over a finite fieldF. A rep-
resentation ofG(F) is calledstableif its character takes the same value on any two
conjugacy classes ofG(F) which become the same inG(F). A class function is
calledstableif it takes the same value on any two conjugacy classes ofG(F)which
become the same inG(F). A conjugacy class inG(F) containing an elementx of
G(F) is calledstableif the intersection of the conjugacy class inG(F) containing
x with G(F) is the conjugacy class inG(F) containingx.

QUESTION 1. What is the relationship between the number of unstable characters
and unstable conjugacy classes? We note that for SLn(F), stable characters are
exactly those which are left invariant under the conjugation action of GLn(F),
and similarly stable conjugacy classes are those which are left invariant under the
inner conjugation action of GLn(F). Therefore for SLn(F), the number of unstable
characters and the number of unstable conjugacy classes is the same.

Remark2. Since the centraliser of any element of GLn(F) is connected, it
follows from Lang’s theorem that any class function on GLn(Fq) or Un(Fq) is
stable.

Sincexσ (x) and henceσ (x)x is conjugate toN(x)−1 by an element fromG(F),
our previous lemma gives the following for a stable class function.

LEMMA 3. LetG be a connected algebraic group over a finite fieldFq . Letf be a
stable class function onG(Fq2). Then for the automorphismσ ofG(Fq2) induced
by the nontrivial Galois automorphism ofFq2 overFq , one has

1

|G(Fq)|
∑
G(Fq)

f (x) = 1

|G(Fq2)|
∑
G(F

q2)

f (xσx).

As in the proof of Theorem 1, this lemma implies that one has the following
theorem in which for a representationV of G(Fq2), V σ denotes the representa-
tion of G(Fq2) obtained by applying the nontrivial Galois automorphism ofFq2

overFq .
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THEOREM 2.LetG be a connected algebraic group over a finite fieldFq . LetV
be an irreducible stable representation ofG(Fq2). ThenV has aG(Fq)-invariant
vector if and only if there is an isomorphismV ∗ ∼= V σ of representations of
G(Fq2).

Remark3. Theorem 2 is not true for all representations ofG(Fq2). For instance,
it is false for some (unstable) representations of SL2(Fq2). We recall that to a non-
trivial charactersθ of the group of norm 1 elements ofFq4 overFq2 which is not of
order 2 there is associated a discrete series representation of SL2(Fq2); a character
and its inverse giving the same representation of SL2(Fq2). If θ is nontrivial but
of order 2, there are two representations of SL2(Fq2) associated toθ which are
permuted by any element of GL2(Fq2) whose determinant is not a square inFq2.
The sum of these two representations, say51 and52, is invariant underV → V ∗σ ,
as θ is. This means that to check51

∼= 5∗σ1 , all we need to check is that the

characters of51 and5∗σ1 are the same on the unipotent element
(

1
0

a

1

)
where

a is any element ofFq2 which is not a square. Since−1 is always a square in
Fq2, and the Galois automorphism ofFq2 takes squares to squares, it follows that

51 and5∗σ1 have the same character values on the element
(

1
0

a

1

)
, and therefore

51
∼= 5∗σ1 . On the other hand, since the group of norm one elements ofFq4 has

q2 + 1 elements, the nontrivial character of order 2 on it is nontrivial on±1, and
therefore on the center of SL2(Fq2). In particular, these representations of SL2(Fq2)

will not have a SL2(Fq)-invariant vector.

Our proof of Theorem 2 gives also the following multiplicity 1 theorem.

THEOREM 3.Let G be a connected algebraic group over a finite fieldFq. An
irreducible stable representation ofG(Fq2) has at most1 dimensional space of
G(Fq) invariant vectors.

Remark4. Theorem 3 is not true for all representations ofG(Fq2). For instance
it is false for a (unstable) representation of SL2(Fq2). We recall that the principal
series representation of SL2(Fq2) associated to the unique character of order 2 of its
maximal torus which is isomorphic toF∗

q2 is sum of two irreducible representations.
One of these does not have SL2(Fq)-invariant vector whereas the other has a 2-
dimensional subspace of SL2(Fq)-invariant vectors.

Remark5. The referee has pointed out that our Theorems 2 and 3 for GLn and
Un are known, and are due to R. Gow, cf. [4].

4. Generalp-adic Case

Since the statement of Theorem 2 is rather general, and makes sense for all groups
G over ap-adic fieldk withK as a quadratic extension, it is natural to investigate if

https://doi.org/10.1023/A:1001735724945 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001735724945


342 DIPENDRA PRASAD

something similar might be true in thep-adic case too. It seems very likely that this
will be the case, except that we need to take extra care about certain things which
are evident in the finite field case, and indeed as we illustrate for GL2, the situation
is not quite as in the finite field case. If our Lemma 1 is to have any analogue at all
for generalp-adic groups, then the image of the norm mapping fromG(K) toG(k)
should be a subgroup ofG(k). From Lemma 1.4 of [1] it follows that the regular
elliptic elements in the image of the norm mapping from GLn(K) to GLn(k) is
exactly those whose determinant is a norm fromK∗, and an element of the diagonal
torus is a norm if and only if each of its entries is a norm. One can make a general
statement for any semi-simple element in any quasi-split reductivep-adic group
with simply-connected derived group along similar direction. It follows that even
if we did not worry about convergence problems, the integral

∫
G(K)

f (xσ x) will
not be an integral over a subgroup ofG(k). However, there might be cases where
the character might be zero at elements of a particular subgroup ofG(k) which do
not come from norms ofG(K), and in those cases the integral

∫
G(K)

f (xσ x) can
be written as an integral over a subgroup ofG(k), and the existence of an invariant
form on a representation5 ofG(K) for that subgroup ofG(k)might be equivalent
to5∗ ∼= 5σ . One can in any case ask the following question in which we use the
notion of a stable character which is defined forp-adic groups too, but we do not
define it here.

QUESTION 2. LetG be a connected reductive quasi-split group over a local field
k whose derived group is simply-connected. LetK be a quadratic extension ofk
and5 an irreducible admissiblestablerepresentation ofG(K). Prove that5 has at
most one-dimensional space ofG(k)-invariant forms, and if5 has aG(k)-invariant
linear form,5∗ ∼= 5σ .

Here is a theorem due to Jacquet, Hakim and Flicker, cf. [3], in this direction
for GL(2). It is the local version of a global theorem proved in [6].

THEOREM 4. An irreducible discrete series representation5 of GL2(K) with
trivial central character has aGL2(k) invariant linear form if and only if5 is
a base change of a representation ofGL2(k) with nontrivial central character. A
principal series representation5 of GL2(K) with trivial central character has a
GL2(k) invariant linear form if and only if5 is either a base change of a prin-
cipal series representation ofGL2(k), or is the base change of a discrete series
representation ofGL2(k) with nontrivial central character.

We remark that for a representation5 of GL2(K) with trivial central character
5∗ ∼= 5, and therefore the analogue of Theorem 2 will ask for an isomorphism
between5 and5σ as the necessary and sufficient condition for5 to have GL2(k)
invariant form, which is exactly the condition for5 to be a base change from a rep-
resentation of GL2(k). However, Theorem 3 requires this condition on base change
together with an extra condition on the central character of the representation it is
a base change of, if5 is a discrete series representation.
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Remark6. The referee has pointed out a rather precise conjecture in the case of
GLn which is that a representation5 of GLn(K)/k∗ for n even has a linear form
on which GLn(k) operates trivially or via the quadratic character ofk∗ associated
to K if and only if 5∗ ∼= 5σ . If n is odd,5∗ ∼= 5σ if and only if 5 has a
GLn(k)-invariant form.

We end this section with the following general criterion for the existence of
invariant forms which is a simple consequence of Mackey theory.

LEMMA 4. If a cuspidal representation5 of ap-adic groupG is obtained from a
finite dimensional representationW of a compact open subgroupK by induction,
then5 has an invariant form for a subgroupH ofG if and only if

∫
H
f g 6= 0, for

someg ∈ G, andf a matrix coefficient of the representationW of K thought of
as a matrix coefficient ofG; heref g(h) = f (ghg−1).

5. Triple Product for GL (2)

By a method similar to the one we employed in the proof of our Theorem 1, we
can also prove the following theorem. The analogue of this theorem for GL(2) was
stated without proof in [12] as Theorem E and it was noted there that it sufficed
to prove the theorem for division algebras. At that time the author had proved this
result only in odd residue characteristic by an explicit calculation with the character
formula but did not publish that proof in the hope for a more conceptual proof.

THEOREM 5. Let K be a cubic cyclic extension of a local fieldk. Let D be
a quaternion division algebra overk. Let π be an irreducible representation of
D∗K/k∗ whereDK = D ⊗k K. Let σ be a generator of the Galois group ofK
over k. Extend the automorphismσ of K over k to an automorphism ofDK and
denote the resulting automorphism ofDK again byσ . Letπσ andπσ

2
denote the

representations ofD∗K obtained fromπ by applying the automorphismσ andσ 2 of
D∗K . Thenπ has aD∗-invariant vector if and only if the representationπ⊗πσ⊗πσ2

ofD∗K has aD∗K -invariant form.
Proof. LetE be the semi-direct product ofD∗K with Z/3 such that the inner con-

jugation action of a generator, sayτ , of Z/3 acts onD∗K via σ . The representation
π ⊗ πσ ⊗ πσ2

of D∗K can be extended to a representation of the groupE such that

τ(v1⊗ v2⊗ v3) = (v3⊗ v1⊗ v2).

Let {v1, . . . , vn} be a basis ofπ . By definition

(d · τ)(vi ⊗ vj ⊗ vk) = d(vk ⊗ vi ⊗ vj )
= dvk ⊗ dσvi ⊗ dσ2

vj

=
(∑

l

dklvl

)
⊗
(∑

m

dσimvm

)
⊗
(∑

n

dσ
2

jn vn

)
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=
∑
l,m,n

dkl · dσim · dσ2

jn vl ⊗ vm ⊗ vn.

Therefore

2
V⊗V σ⊗V σ2(d · τ) =

∑
i,j,k

dki · dσij · dσ
2

jk = 2V (d
σdσ

2
d).

Similarly

2
V⊗V σ⊗V σ2(d · τ 2) = 2V (d

σ2
dσd).

SinceV ⊗ V σ ⊗ V σ2
can have at most one-dimensional subspace ofD∗K -invariant

vectors by Theorem 1.1 of [11], the dimension ofE-invariant vectors inV ⊗V σ ⊗
V σ2

is also at most one-dimensional. If we therefore fix a Haar measure onE/K∗
such thatD∗K/K

∗ has volume 1∫
D∗K/K∗

2V2Vσ2V σ
2 +

∫
D∗K/K∗

2V (d
σ dσ

2
d)+

∫
D∗K/K∗

2V (d
σ2
dσd)

is equal to 3 or 0 depending on whetherV ⊗ V σ ⊗ V σ2
has anE-invariant vector

or not.
By the analogue of Lemma 1 in the present situation (with Haar measures on

D∗K/K
∗ andD∗k /k

∗ to have volume 1),∫
D∗K/K∗

2V (d
σdσ

2
d) =

∫
D∗K/K∗

2V (d
σ2
dσd) =

∫
D∗k /k∗

2V (d).

We would like to observe here that iff is a class function onD∗K , thenF1(x) =
f (xσ xσ

2
x) is σ conjugacy invariant, andF2(x) = f (xσ

2
xσ x) is σ 2 conjugacy

invariant functions. There seems no simple relationship betweenF1 andF2, and
therefore the fact that the first two integrals are equal follows only after the ana-
logue of Lemma 1 is proved, and not apriori. (Theσ -conjugacy form of Weyl integ-
ration formula is used for theσ -conjugacy invariant functionF1(x) = f (xσ xσ2

x)

just as in Lemma 1 to compare the integral ofF1(x) = f (xσxσ2
x) onD∗K/K∗ with

the usual Weyl integration formula for the integral off (x) onD∗k /k∗.)
It follows that∫

D∗K/K∗
2V2Vσ2V σ

2 + 2
∫
D∗k /k∗

2V (d) = 3 or 0, (∗)

depending on whetherV ⊗ V σ ⊗ V σ2
has anE-invariant vector or not. Because∫

D∗k /k∗
2V (x) is a nonnegative integer, it follows from the equation(∗) that∫
D∗k /k∗

2V (x) = 0 or 1
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and, moreover,∫
D∗K/K∗

2V2Vσ2V σ
2 =

∫
D∗k /k∗

2V (d),

completing the proof of the theorem.
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