
Received 10 October 2018
Revised 27 November 2019
Accepted 3 December 2019

Corresponding author
A. Bertoni
alessandro.bertoni@bth.se

Published by Cambridge
University Press
c© The Author(s), 2020

This is an Open Access article,
distributed under the terms of the
Creative Commons Attribution-
NonCommercial-ShareAlike
licence (http://creativecommons.
org/licenses/by-nc-sa/4.0/), which
permits non-commercial re-use,
distribution, and reproduction in
any medium, provided the same
Creative Commons licence is
included and the original work is
properly cited. The written
permission of Cambridge
University Press must be obtained
for commercial re-use.

Des. Sci., vol. 6, e2
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2019.29

Integration of value and
sustainability assessment in design
space exploration by machine
learning: an aerospace application
Alessandro Bertoni 1, Sophie I. Hallstedt 2, Siva Krishna Dasari 3,4 and
Petter Andersson 4

1Blekinge Institute of Technology, Department of Mechanical Engineering, Karlskrona, 37179,
Sweden

2Blekinge Institute of Technology, Department of Strategic Sustainable Development,
Karlskrona, 37179, Sweden

3Blekinge Institute of Technology, Department of Computer Science, Karlskrona, 37179,
Sweden

4GKN Aerospace Sweden AB, Trollhättan, 46138, Sweden

Abstract
The use of decision-making models in the early stages of the development of complex
products and technologies is a well-established practice in industry. Engineers rely on
well-established statistical and mathematical models to explore the feasible design space
and make early decisions on future design configurations. At the same time, researchers in
both value-driven design and sustainable product development areas have stressed the need
to expand the design space exploration by encompassing value and sustainability-related
considerations. A portfolio of methods and tools for decision support regarding value
and sustainability integration has been proposed in literature, but very few have seen an
integration in engineering practices. This paper proposes an approach, developed and
tested in collaborationwith an aerospace subsystemmanufacturer, featuring the integration
of value-driven design and sustainable product development models in the established
practices for design space exploration. The proposed approach uses early simulation
results as input for value and sustainability models, automatically computing value and
sustainability criteria as an integral part of the design space exploration. Machine learning
is applied to deal with the different levels of granularity andmaturity of information among
early simulations, value models, and sustainability models, as well as for the creation of
reliable surrogate models for multidimensional design analysis. The paper describes the
logic and rationale of the proposed approach and its application to the case of a turbine
rear structure for commercial aircraft engines. Finally, the paper discusses the challenges
of the approach implementation and highlights relevant research directions across the
value-driven design, sustainable product development, and machine learning research
fields.
Key words: decision-making, value-driven design, sustainable product development,
design space exploration, machine learning, surrogate models

1. Introduction
During the last decades, both academia and industry have developed practices,
methods, and tools for decision support centered on technical and engineering
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quantifiable aspects, such as product performance, robustness, and producibility.
The use of model-based decision support systems is common in engineering
design environments, especially in those embedding a high level of complexity,
such as the aerospace, automobile, and naval industry (Wierzbicki, Makowski &
Wessels 2000). The exploration of the design space is often enabled by methods
and tools based on well-established statistical and mathematical analysis, whose
validity is independent of the context of the application (Dépincé,Guédas&Picard
2007; Tedford&Martins 2010). The application ofmultiple simulation techniques
allows engineers to systematically narrow down the design space by eliminating
undesirable solutions (Malak, Aughenbaugh& Paredis 2009). Such an approach is
commonly described in literature with the term set-based concurrent engineering
(Sobek, Ward & Liker 1999).

Recently, researchers in the area of value-driven design (VDD) and sustainable
product development (SPD) have recognized the need to include models for
value and sustainability assessment in early design concept evaluation in order to
expand the design space exploration tomore than product feasibility and technical
performances (Ross et al. 2004; Steiner & Harmon 2009; Bertoni, Hallstedt &
Isaksson 2015b; Bertoni et al. 2016; Hallstedt 2017).

The term ‘value’ is nowadays increasingly used to refer to a large and
heterogeneous set of needs from multiple stakeholders (Bertoni, Bertoni &
Isaksson 2013; Matschewsky, Lindahl & Sakao 2018). VDD has become an
umbrella term that collects several methodologies using value models to balance
performance, cost, schedule, and other measures important to the stakeholders
to produce the best possible outcome. The spirit of VDD is to open the solution
space for consideration by designers, systems engineers, program managers, and
customers by promoting quick what-if analyses that use a value function asmetric
to judge the goodness of a design (Collopy & Hollingsworth 2011).

Integrating the breadth of sustainability into product development is labeled
sustainable product development or sustainable design (Gagnon, Leduc &
Savard 2012). The concept of SPD refers to a strategic sustainability perspective
that is integrated and implemented into the early phases of the product
innovation process, including life-cycle thinking (Hallstedt & Isaksson 2017).
The term sustainability refers to the definition of socio-ecological sustainability
using overarching sustainability principles at the basis of a backcasting
perspective. These principles are the key parts in the Framework for Strategic
Sustainable Development presented in (Broman & Robèrt 2017). Sustainability
implementation refers to the practical usage and application of tools, methods,
processes, approaches, and practices that aim to improve an organization’s
contribution to sustainable development and provide opportunities for enhancing
product competitiveness (Chiu & Chu 2012; Choi, Nies & Ramani 2008).

In early design space exploration, it is a challenge tomodel the link between the
mechanical performance of multiple design variants, the value generated for the
stakeholders, and the derived sustainability implications. Commonly, engineers
strive to work with requirements that are clear, concise, and unambiguous to
translate the original design intent (Monceaux & Kossmann 2012; Isaksson et al.
2013). However, it is difficult to explicitly formalize value and sustainability into
transparent and quantifiable terms. Poor availability and high uncertainty of data
are commonly recognized as critical issues when using VDD and SPD models.
Value and sustainability implications are often tacitly and subjectively perceived
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by engineers and rarely populate any kind of computational model (Soban, Price
& Hollingsworth 2012; Isaksson et al. 2015; Bertoni, Bertoni & Isaksson 2018a).

Concurrently, the evolution of data science and information communication
technologies has opened the possibility of collecting, analyzing, and using data in
different decision-making contexts. Data science is applied in a variety of contexts,
such as remote monitoring, failure prediction, preventive maintenance, and fleet
management (Murthy, Atrens & Eccleston 2002; Painter et al. 2006; Tango& Botta
2013). In these fields, the application of machine learning (ML) (Mitchell 1997)
and data mining (Fayyad, Piatetsky-Shapiro & Smyth 1996) allows engineers and
analysts to create, manage, correlate, and forecast a large amount of data with a
relatively low effort with respect to time and resources (e.g., Akhavian&Behzadan
2013; Pouliezos & Stavrakakis 2013). In aerospace product development, ML
has been used to approximate the results of expensive simulations by creating
surrogate models. Research studies have proven the effectiveness of the use
of ML to reduce the computational cost for design optimization, design space
exploration, and sensitivity analysis. For instance, Huang et al. (2011) have built
a model that approximates the computational mechanical analysis of engine
components to reduce the computational cost. Jeong, Chiba & Obayashi (2005)
have used data mining approaches for aerodynamic design space to identify
the effect of design parameters on design objectives. ML has been also used
to explore the design space and to identify the rationale of the improved
performance of an optimal solution (Jeong et al. 2005;Mack et al. 2007). Similarly,
experimental investigations have been performed using linear regression, support
vector machine (SVM), and tree models (Dasari et al. 2015). Besides these initial
attempts, the application of ML to early design space exploration is still in its
infancy. Limited research has been done in understanding how to derive design
indications for new product development, and the challenge of how to support the
assessment of value and sustainability remains largely unexplored.

The aim of the research presented in this paper is to enable a more complete
and effective exploration of the design space by developing an approach
integrating the assessment of value and sustainability in a decision support
environment. The use of ML to deal with the heterogeneity of data of VDD
and SPD models is proposed as an enabler of wider and faster evaluations of
the design space. The approach was developed in collaboration with a first-tier
aerospace subsystem manufacturer and applied in the case of the development of
a component for a commercial aircraft engine.

The paper is structured as follows: the next section describes the research
approach. Section 3 discusses the challenges of assessing value and sustainability
in aerospace product development. Section 4 presents the design support
requirements derived from the empirical study, the role of ML as a technology
enabler, and describes in detail all the steps of the proposed approach. Section 5
presents the application of the approach in the case of the development of a turbine
rear structure (TRS) for a commercial aircraft engine. Section 6 discusses the
findings in relation to the actual theory and practice and Section 7 draws the final
conclusions highlighting the next steps to be taken in research.

2. Research approach
The research presented is based on a participatory action research (PAR) (Whyte,
Greenwood & Lazes 1989) approach applied in the frame of the Design Research
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Methodology (DRM) (Blessing & Chakrabarti 2009). The aim of PAR is to solve
practical problems that also have theoretical implications by directly involving
researchers and practitioners in the research design. A PAR approach involves
cycles of actions where researchers plan an action, act in relation to the plan,
observe the effects, and reflect on the observations, ultimately leading to a
new plan or solution. PAR has been criticized in literature for the limitation
in researchers’ independence because of the biases introduced by the direct
collaboration between researchers and practitioners and has also been criticized
for lacking academic standards (McNiff 2014). This exposes the approach to the
risk of lacking rigor and technical validity. To mitigate such a risk, the application
of PAR has been steered by the DRM proposed by (Blessing & Chakrabarti 2009).
The DRM consists of four nonlinear stages encompassing a research clarification
stage, the definition of an AS-IS model of a specific design situation (Descriptive
Study I), the design and development of the desired design support (prescriptive
study), and the evaluation of the effectiveness of such support (Descriptive Study
II). The difference between PAR and the DRM consists in the fact that PAR
draws conclusions about a specific support in a specific situation, aiming for a
continuous improvement until an optimized implementation is achieved, while
the DRM stresses the importance of the validation of a design support in terms of
generic statements of partial implementation. The two approaches can mutually
nurture each other, with the PAR cycles that mostly concern the prescriptive study
and its validation, and the DRM that stresses the rigor in the problem definition
and in the generalization of the research statements (Blessing & Chakrabarti
2009).

During the research, the focus of the investigation was initially divided into
three streams, the first related to VDD, the second related to SPD, and the third
related to the use ofML in early aerospace development. The division of the topics
of investigation eased the identification of relevant stakeholders at the partner
company that could easily relate the topic of investigation to their own working
responsibilities, those involved, respectively, systems engineering practitioners,
sustainability experts, and data science experts. The coordination of the activities
and the sharing of the intermediate results happened through bi-weekly research
team meetings.

The descriptive study was based on the data collected from a five-year research
program encompassing multiple project studies and involving several researchers
in the VDD, SPD, and ML domain. Data were collected through the constant
interaction between researchers and practitioners facilitated by focus groups,
workshops, and semi-structured interviews, complemented by internal document
reading and literature review. The semi-structured interviews were organized
around a set of predetermined open-ended questions, with additional questions
emerging from the dialog. The choice of this form of interviews, instead of
using pre-defined specific questions, served the purpose of collecting information
from individuals with different roles in the company giving the freedom to the
participants to raise emerging issues and challenges, individually perceived as
important but not identified in the interview protocol (see DiCicco-Bloom &
Crabtree 2006). Some of the intermediate results from the descriptive study were
formalized in a scientific publication in 2015 (Isaksson et al. 2015), proposing
an overall framework for the development of model-based decision support for
value and sustainability. The formalization of such a framework was functional
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to the definition of the high-level requirements of the approach proposed in
this paper and served as a boundary object around which the researchers from
VDD, SPD, and ML domains have coordinated the subsequent research work. A
consistent part of the descriptive study took place in parallel with the prescriptive
study and focused on collecting data about the case of the development of a
hot-structure component for a commercial aircraft engine component. With
such focus, interviews took place to narrow the investigation into aspects that
would have otherwise been difficult to capture through informal conversations.
Focus groups were organized to complement the findings of the interviews by
capitalizing ‘on communication between the research participants in order to
generate data’ (Kitzinger 1995, p. 299). The enrollment to the focus groups was
managed by direct invitation to the participants issued by the research team, with
the recommendation to extend the invitation to any other company employee
who could have an interest in the topic. The results from the focus groups were
collected either by summarizing the producedmaterial or by taking pictures. Field
notes were occasionally collected when taking part in project meetings at the
company facilities in the role of either project participant or observer. In such
cases, the researchers had the chance to capture the context and the setting in
which the problem was discussed and to record behaviors and reactions. Internal
company documents and publicly available information (including academic
theses, presentations, and reports) describing the existing engineering challenges
related to the development of hot-structure components were also analyzed for a
triangulation purpose.

In the prescriptive study, the development of the proposed approach focused
on the case of the design of a TRS. Different versions of the proposed approach
were developed through a series of cycles in which different prototypes were
defined and presented to practitioners to obtain feedback and evaluations. They
served to incrementally improve the approach and converge toward the final
solution. The feedback was collected both during bi-weekly project meetings
between academic researchers and industrial practitioners and during ad hoc
organized seminars involving the practitioners directly impacted by the possible
introduction of the new approach. The data populating the models of the case
study were partially obtained as a result of computer-aided engineering (CAE)
simulations on real design cases and partially complemented with realistic, but
artificial, data to avoid issues of industrial secrecy.

During Descriptive Study II, the computational capabilities of the approach
were tested. A partial test of the applicability of the approach was performed in
relation to the usability of the proposed approach by engineers, and the delivery
of the desired performances, corresponding to the application evaluation stage of
the DRM. The latter evaluation did not encompass the integration of ML. Both
the evaluations did not happen sequentially, but they were part of the continuous
improvement activities during the development of the support. Figure 1 provides
a visual representation of the focus, deliverables, and methods used for data
collection in the different stages of the research.
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Figure 1. Visual representation of the research approach and data collection methods used in the frame of
the Design Research Methodology.

3. Value and sustainability challenges in aerospace
product development

Aerospace product development is a long process involving companies at different
levels of the supply chain, and it is commonly steered by set-based concurrent
engineering (Sobek et al. 1999). The process starts with a set of assumptions and
requirements that mature and are adjusted as time goes by and decisions are made
on specific product features. The long lead time creates a challenging situation for
subsystem and component manufacturers. They need to start the development
process long before requirements are signed. They need to deal with requirements
uncertainty while being constantly pushed to increase design robustness, reduce
weight and cost, and improve product performances. Normally, multidisciplinary
design optimization is used early in the process to consider an open set of feasible
design solutions, rather than focusing on specific solution points in the design
space. This is to enable engineers to understand the implications of decisions
made in early design stages, considering products featuring several decades of
operations and production periods of about 20 years.

The VDD research field has its origin in aerospace product development
and it is based on the idea of optimizing a system toward its best value,
rather than toward the fulfillment of requirements, by proposing an innovative
process to either replace or complement traditional design methods (Collopy &
Hollingsworth 2011; Soban et al. 2012). VDD methods are based on the use of
the so-called ‘value functions’ to drive the multidisciplinary optimization of a
design. Authors have argued about the need for having a single value function
or a combination of multiple value functions to use for design concept trade-off
(Soban et al. 2012). The use of value functions has been often linked to the
need to monetary quantify the profits, or losses, linked to a specific design
solution (e.g., Castagne, Curran & Collopy 2009; Cheung et al. 2012). In these
cases, the value function took the form of a net present value assessment or
of surplus-value calculation (e.g., Price et al. 2012; Selva & Crawley 2013).
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In other cases, VDD models featured a qualitative nature, aiming to increase
decision-makers’ awareness during multidisciplinary trade-off analysis, rather
than providing optimization results (e.g., Ross et al. 2004; McManus et al. 2007;
Bertoni et al. 2018a).

SPD is based on the idea that the product development teammust know what
sustainability means, how sustainability can be achieved, and how sustainability
can bemeasured to reachmore sustainable solutions (Arena et al. 2009). Research
in SPD has combined a forecasting approach with a backcasting approach.
Backcasting means imagining success in the future and then looking back to the
present to assess the current situation through the lens of this success definition,
ultimately exploring ways to reach that success (Vergragt & Quist 2011; Quist,
Thissen & Vergragt 2011). This includes an understanding of how a design
solution influences social and environmental sustainability from raw material
acquisition to disposal phase (Joung et al. 2013; Hallstedt 2017) and how to
define the most prioritized sustainability criteria from a backcasting perspective.
This led to the formulation of the so-called sustainability design space (SDS)
(Hallstedt 2017), including the definition of criteria and indicators to support
SPD. A criterion is defined as a target of a prioritized aspect or as the level of the
aspect that we strive for (e.g., ‘no raw material used’ and ‘no hazardous chemicals
used’). An indicator is defined as a measurement (qualitative or quantitative)
that can indicate the state or level of the related criterion (e.g., ‘material used
in total and per unit of product’ and ‘kilograms of persistent bio-accumulative
and toxic chemicals used’) in line with the definitions presented in Renn et al.
(2009). The SDS as described by Hallstedt (2017) consists of three parts. The
first part is the strategic sustainability criteria based on overarching sustainability
principles at the basis of a backcasting perspective (Broman & Robèrt 2017). This
defines the ideal long-term sustainability targets for each product life-cycle phase.
The second part consists of the tactical sustainability design guideline to support
the development toward the related long-term strategic sustainability criteria,
including current and short-term, industry-specific and company-specific
requirements and expectations. The third part is a qualitative measurement
scale, called sustainability compliance index (SCI), linked to each of the strategic
criteria to assess to what degree a product concept performs in relation to a
sustainable solution. All three parts of the SDS have been applied separately
and used in different combinations with other support tools in case studies
in aerospace product development, e.g., when integrating sustainability in the
product innovation process through a technology readiness assessment method
(Hallstedt & Pigosso 2017) or when assessing critical alloys in the early design
stages (Hallstedt & Isaksson 2017). Material selection is one example of a design
feature that needs to be decided early in the innovation process and can be
linked to sustainability risk as it has a direct impact on upstream decisions
(e.g., extraction activities in rural areas) and downstream decisions (e.g., the
selection of manufacturing processes and end-of-life solutions) (Giudice, La
Rosa & Risitano 2005), and thereby has an impact on business success in the
long run. Sustainability risk is defined as ‘threats and opportunities that are due
to an organization’s contribution or counteraction to society’s transition toward
strategic sustainable development’ (Schulte & Hallstedt 2018, p. 11).

The high heterogeneity, poor maturity, and scarce availability of data are the
common denominators when combining VDD and SPD models for design space
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exploration. Despite the examples of applications of VDD and SPD models in
different aerospace development stages, little effort has been spent in integrating
VDD and SPD models into design space exploration, combining them with
the numerical results of the product structural simulations. Three challenges
make the use of computational models for value and sustainability particularly
cumbersome. First, the availability of first-hand data is limited because the data
that populate VDD and SPDmodels reside not only within the product definition
but also within the product life cycle and usage environment (Gautam & Singh
2008; Curran 2010; Hallstedt, Thompson & Lindahl 2013). Second, the relations
between the design variables that have an impact on value and sustainability
are difficult to identify (Bertoni et al. 2018a; Watz & Hallstedt 2018). Third,
value and sustainability models need to be coupled with effective approaches to
communicate the results to engineers, who may not be accustomed to this type of
information (Bertoni et al. 2013). Such communication shall be done in a form
as close as possible to the ‘natural thinking pattern’ of engineers, which is a key
factor for the acceptance of a new formal method (López-Mesa & Bylund 2011).
The consequence of not addressing these challenges in current decision situations
is the weakness in clarifying and understanding the value and sustainability
implications compared to, for instance, the mechanical, thermal, or fluid dynamic
performance of an engine. In other words, engineers have poor model support to
answer questions like: ‘Which is the most valuable component to develop?’, ‘What
would its sustainability profile look like?’, and ‘What is the sustainability impact
of the product during its life cycle and how does this affect stakeholders in the
value chain?’ Such questions would need to be answered before committing high
resources on a development project; however, computational models to be used in
the design space exploration are nowadays missing.

4. Value and sustainability assessment in design
space exploration enabled by machine learning –
the proposed approach

Based on the challenges described in Section 3, a list of ‘design support
requirements’ to guide the development of the proposed approachwas formulated.
In accordance with the DRM, those requirements were intended as high-level
indications for the definition of the ideal design support. Three aspects were
identified as relevant to effectively develop and implement the approach. First,
the proposed approach needs to be able to deal with data of different natures and
levels of granularity. Second, the integration of the model in the current working
practices needs to be as smooth as possible to overcome the resistance to changes
of an established development context and to not prolong the computational
time. Third, the reliability of the models and data used in the approach need to be
evident.

Based on such reflections, a list of design support requirements was defined as
follows.

(i) The support shall aggregate into a uniquemodel the results of both VDD and
SPD models despite their multidimensionality.

(ii) The support shall be able to deal with both qualitative and quantitative data.
(iii) The support shall be easily integrated into the current working practices at

the partner company.
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(iv) The support shall provide results that are easy to read and trade off with
traditional structural analysis.

(v) The support shall present the results in terms of seconds for hundreds of
potential design concepts.

(vi) The support shall be able to quantify the uncertainties and assumptions
related to the use of VDD and SPD models.

(vii) The support shall not provide a false impression of accuracy in the results
when accuracy is not present.

In order to deal with such requirements, the use of ML emerged as a technological
enabler to support value and sustainability assessment, as further described in
Section 4.1.

4.1. Machine learning as a technological enabler
ML comes into play as a possible technique to support the prediction of value and
sustainability performances. ML enables the identification of hidden correlations
on extensive sets of multidisciplinary and multidimensional data (encompassing
both categorical and numerical variables), discovering correlations otherwise
difficult to be found with traditional statistical analysis techniques. The use of
ML algorithms is identified as an opportunity to lower the uncertainty of the
decision-making by populating models with data-driven information rather than
experience-driven assumptions. The incompleteness and lowmaturity of the data
in early design space exploration introduce large uncertainties in VDD and SPD
models. Engineers’ experience and intuition are often the main decision drivers
since data to populate VDD and SPD are missing. Historical databases are the key
source of data for such applications and, despite being based on data collected
from previous products, they can provide important information for engineers
to reduce the uncertainty of their assumptions. ML emerged in the study as an
approach to analyze the data related to customer revenue, maintenance cost,
and manufacturing costs and to explore the correlation with more qualitative
value aspects. Similarly, sustainability models could be built by analyzing the
actual sustainability performance, looking in retrospect to the correlation with
the engineering configurations of the products already on the market.

The use of ML was further identified as useful in allowing the creation of
predictive models approximating the results of those areas of the design space
where limited data is available. This approximation analysis mimics the complex
behavior of the underlying simulation analysis and provides a great opportunity
for engineers to explore many design variations without the need to set up
computationally expensive simulations. This is commonly referred to as the
development of approximation models, also known as response surface models,
surrogate models, and meta-models (Mack et al. 2007). Statistical methods, such
as Kriging and polynomial methods, were identified as relevant to construct
surrogate models. Furthermore, the literature review showed that ML methods,
such as support vector machines, tree-based models, artificial neural networks,
and radial basis functions, have been successfully used to construct response
models in aerospace product development (e.g., Queipo et al. 2005; Shan &Wang
2010; Dasari et al. 2015). In general, surrogate models deal with quantitative data;
however, in the proposed approach, surrogate models need to deal with both
quantitative and qualitative data, including value and sustainability data which
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Figure 2.Overall logic on themodel-based approach for value and sustainability enabled bymachine learning.

are not numerically quantifiable. Hence, a suitable method needs to be selected
to construct surrogate models. While linear regression or polynomial methods
cannot be used for the purpose, a tree-based method is more suitable to handle
both quantitative and qualitative data and is also capable of fitting nonlinear and
high dimensional data.

4.2. Overview of the proposed approach
The proposed approach consists of an extension of the design space exploration
process commonly in use during the early stages of product development. Figure 2
provides an overview of the logic of the approach showing the role of VDD and
SPD models in relation to the CAE simulation results.

The design space exploration begins with the definition of design parameter
variations in the CAE environment (e.g., geometrical variations in between a
range of values). Based on such parameters, the structural analysis, the modal
analysis, and the thermal analysis of different design cases are normally run in
the CAE environment. Here a design of experiments (DOE) analysis is performed
on the CAE simulations to determine the relationships between the inputs and the
outputs of the CAE simulations. At this point, the outputs of the CAE simulations
are used to populate the value models and sustainability models. The assessment
of value is divided into two parallel activities: the qualitative assessment and the
quantitative assessment. Concurrently, the assessment of sustainability models
is conditioned by the definition of strategic long-term criteria, which give a set
of leading criteria from which sustainability indicators are identified with data
intervals. Only after those steps are conducted and the indicators defined, more
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specific sustainability models can be performed in relation to a defined product.
The outputs from the sustainability models and the value models are finally
integratedwith the original outputs from theCAE simulation. This is referred to as
post-analysis data and it is used to generate surrogatemodels to expand the design
space exploration while embedding value and sustainability considerations. The
following sections describe in detail the logic and rationale of all the steps of the
proposed approach.

4.3. Value modeling
As presented in Section 3, research in VDD has long discussed the identification
of the most suitable criteria to be used in aerospace product development, also
developing customized solutions to specific situations (e.g., Ross et al. 2004;
Steiner & Harmon 2009; Bertoni, Eres & Isaksson 2011b). Among those, a
framework of reference for value model development, encompassing qualitative
and quantitative criteria, has been proposed by Bertoni, Amnell & Isaksson
(2015a), studying the specific case of aerospace components development. This
framework has been used as a starting point for the identification of the value
criteria.

The value criteria are divided into two main families: those quantifiable
numerically encompassing operational performances, production, and servicing,
and those quantifiable qualitatively, using categorical variables, encompassing
‘ilities’ such as commonality, survivability, and scalability (see McManus et al.
2007). The context dependency of the methods used for the computation is the
main difference between the two families of criteria; while the quantitative criteria
can be computed using numerical functions that are context-independent, and
thus generalizable (e.g., the cost of raw material does not depend on its final
application), the qualitative criteria assessment is based on judgments that are
dependent from the specific industrial context in which a new design is developed
(e.g., the commonality in technology is dependent on the technology development
of a specific company at a specific moment in time).

As shown in Figure 3, the quantitative criteria included in the approach are
divided into three macro-categories: operational performances, production, and
servicing. The first includes the assessment of fuel savings and reduction of CO2
emissions granted by each single design case. The production criteria include the
cost of raw material and the cost of manufacturing. The latter includes a trade-off
analysis between the cost of welding, the cost of the casting, and the use of an
additive manufacturing process. The maintainability of a product is instead the
criterion linked to the servicing. Based on such criteria, three different models
are identified as relevant for quantitative value modeling, which are a customer
revenue model (including the modeling of operational savings), a maintenance
cost model, and a manufacturing feasibility and cost model.

The customer revenue model reflects the monetary value created for
the customer for each specific design case. In the aerospace business, fuel
consumption is the main driver of operational cost and has a large impact on the
revenues of the airlines. By consequence, the customer revenue model depends
on the possible savings in fuel consumption granted by each specific design case,
which is highly correlated with the reduction of the aircraft weight. To be able
to create such a model, three aspects need to be considered: (1) the cascading
impact on the overall weight of the aircraft of marginally reducing the weight of
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Figure 3. Value criteria identified in the study.

a component, (2) the models of the aircrafts in which the new component will
be installed, and (3) the impact on the overall fuel consumption of an aircraft
of marginally reducing its weight. Addressing the first point, the model needs
to include a system of weight reduction multipliers to project the impact of a
component change to the overall weight of the aircraft. This part of the model
uses as input the value of the design parameters related to different components
mass obtained from the simulations, and it is highly dependent on the type of
component or subsystem under redesign. To include the impact of a marginal
weight reduction of an aircraft on its overall fuel consumption, ML is applied to
the publicly available datasets. To this concern, the dataset made available by the
International Civil Aviation Organization (ICAO 2017) is identified as a relevant
source of data to build multilinear regression analysis on fuel consumption data
classified by the aircraft type and the aircraft flight range. The link between
the component mass calculated in the simulation, the ad hoc defined weight
multipliers, and the multilinear regression analysis on ICAO fuel consumption
data allows to provide an estimation of the impact of a specific design case on
the customer revenues. Eventually, the impact on customer revenue model can
be projected to a life-cycle perspective. This is possible if the expected life of
the component obtained from the simulations is considered critical to product
life. The reason for this condition is that other components might have sensibly
shorter expected life than the one under investigation, making the expected life
of the latter not corresponding with the realistic length of the product life cycle.

The proposed approach for modeling the maintenance cost is in line with
the one described by Seemann et al. (2010), who proposed a surrogate function
to model the life-cycle cost of jet engine maintenance based on a large set of
historical data related to aircraft maintenance operations. Their findings found a
correlation between the maintenance cost of life-limited parts, the take-off thrust,
and the weight. This approach implies the extensive collection and classification
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of aircraft specifications, performance, and maintenance data to explore and
quantify emerging correlations through data mining algorithms.

The assessment of supplier costs impacting the manufacturing feasibility
and cost model is proposed by applying ML on a suppliers’ deliveries database,
investigating the correlations between the design specifications (e.g., geometrical
features, material types, and mass) and the historical dataset of supplier
performances (e.g., cost, delays, and supplier criticality). Additionally, the model
can be improved by exploring the correlation between geometrical properties
(e.g., angles, thickness, length, and positioning of welding) of the components
and a database of information about casting and additive manufacturing in terms
of cost, time, and material scrap.

The approach deals with the modeling of qualitative value aspects by focusing
on three main areas, namely, commonality, survivability, and scalability of
solutions. Commonality evaluation consists of analyzing the design cases from
a technology perspective (e.g., reuse of material type or reuse of qualified
welding), from a product perspective (e.g., number of features shared with other
components), and from a system architecture perspective (e.g., common features
in relation to the system in which the product/component will be integrated).
The survivability of a design is defined as the ability to avoid or withstand a
hostile environment (e.g., the ability to fly into an ash cloud). The scalability of a
design is instead defined as the ability to change the level of one or more system
specification parameters while maintaining the product value.

4.4. Sustainability modeling
Sustainability modeling starts with a sustainability identification process, leading
to the definition of a SDS, based on a combined forecasting and backcasting
approaches (Hallstedt 2017). This SDS was used as a starting point for the
identification of leading criteria and indicators with the purpose to inform
sustainability models to be used in an automated decision support environment.
In the proposed approach, the computation of sustainabilitymodels is conditioned
to the identification of sustainability criteria. They need to be in line with the
industry’s strategic long-term development criteria and set the basis for the
quantification of sustainability consequences related to different design cases. The
last step of the sustainability identification process is the definition of indicators
for sustainability. An indicator makes it possible to compare and measure the
relative differences between solutions and allows such indications to be included
in simulation models. This means that to understand how a design solution
influences social and environmental sustainability aspects, and vice versa, a key
step is to identify which socio-ecological criteria and indicators are relevant for a
product throughout its whole life cycle.

Table 1 lists the sustainability indicators identified in the study, representing
the early life-cycle phases of a product. The indicators are defined as
measurements or facts (qualitative or quantitative) that indicate the state or level
of the leading criteria.

After the sustainability identification process, three sustainability models
are proposed to clarify what sustainability data to be included, how they are
weighted, and how they relate to other design variables in a model-based
approach for value and sustainability. One proposed model is ‘sustainability
criteria and product life-cycle data simulation – SCADS model’ that aims to
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Table 1. Leading sustainability criteria and indicators for each leading criterion at the case company

Life cycle Leading criteria – main aspects Indicators

Rawmaterials
acquisition and
extraction

Critical materials SCI score for alloys according to the
criticality assessment method presented in
Hallstedt & Isaksson (2017)

Production Recycled materials Percentage of materials used that are
recycled input materials

Scrap recyclability Recycling rate of scrap
Risk of remanufacturing Robustness index: corresponding to

emissions per sale, e.g., CO2 SOx, VOC
and other greenhouse gas emissions

Health and safety Number of injuries, risk of exposure,
leakages

Emissions, waste products and
chemicals listed in
REACH*/IAEG** lists

Number of chemicals/hazardous materials
used/generated in the production and
included in the REACH and IAEG lists

Distribution Risk of being exposed to
dangerous substances

Risk of injuries due to exposure to
dangerous substances during distribution
(per year)

Use and
maintenance

Optimized product weight Weight reduction (for each component) in
percentage compared to previous solution

Noise to the surroundings Noise level reduction (for engine used in
real life) in % compared to previous
solution

End of Life Materials/components returned
for remanufacturing and
recycling.

Percentage of components possible to
remanufacture and percentage of
components recycled

*REACH: Registration, Evaluation, Authorization, and restriction of chemicals candidate list.
**IAEG: chemical list for the aerospace industry, 3000 substances include global requirements.

connect identified sustainability criteria and relevant indicators to concept data
such as geometric design, manufacturing process, and materials. The model
aims to automatically calculate a ‘sustainability merit’ for each concept design
that is generated and thereby give an indication of the sustainability profile
for each concept. The ‘System analysis model of sustainability indicators and
functional design requirements’ is meant to guide the weighting of the different
sustainability indicators in the SCADS model. Finally, the ‘Correlation studies
and system analysis studies between sustainability indicators and design variables’
step aims to give a better understanding of the relationships to support the
development of algorithms in amodel-based approach for value and sustainability
assessment in design space exploration. When the sustainability indicators, its
intervals, and relationships to other criteria are decided, correct models and
algorithms can be developed. ML can thereby be used to predict sustainability
profiles and find patterns of concept solutions.

14/32

https://doi.org/10.1017/dsj.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2019.29


4.5. Digital model integration and use of machine learning
Due to the multidisciplinary objectives of the design analysis, aerospace product
simulations can take up to weeks depending on the complexity of the problem
of interest. This is because the multidisciplinary analysis can include several
tasks that may require a large number of simulations (hundreds or thousands).
Since simulations are expensive, both in terms of time and resources, those are
commonly run on a small set of design cases. To expand the analysis of the design
space, ML is used to build surrogate models, also called meta-models or response
surfacemodels, that canmimic the complex behavior of the underlying simulation
models. Through surrogate models, many more design concepts can be analyzed
without the need to run more computationally expensive simulations. However,
surrogate models are generated based on an original dataset of known input and
output and, given the complexity of the simulation activities, such a dataset is often
of relatively small size, making it cumbersome to generate accurate and robust
models. Thus, the challenge is to generate surrogatemodels as accurate as possible
despite the small size of the datasets.

For this reason, different algorithms to generate surrogate models have been
studied, as extensively reported by Shan & Wang (2010) and Dasari, Cheddad
& Andersson (2019). Black-box models, such as linear regression or support
vector machines, have been compared to ‘decision tree’ methods, such as random
forest (RF) and M5P, to conclude that tree models perform as similar as black-
box models when building surrogate models. The relevance of this finding in
an engineering design context lies in the fact that tree models can provide ‘if–
then’ rules, enhancing the comprehensibility of the model behavior. In other
words, tree models allow mapping the procedures linking input parameters to
output parameters, thus helping to understand the design space better and make
informed decisions about design parameters. Among the tree models, RF is an
ensemble method, that is, a combination of multiple methods, and can handle
nominal, categorical, and continuous data; thus, it is used for both classification
and regression (Breiman 2001). RF contains several decision trees and each tree
in the forest represents a model. Furthermore, it has been proven to be the one
providing the higher accuracy with small samples (Dasari et al. 2015, 2019).

The proposed approach generates prediction models for design space
exploration integrating the use of RF for the creation of surrogate models. The
first step concerns the setup of a design study, identifying the key design variables
to investigate and create computer-aided design (CAD) models. Step 2 concerns
the generation of the surrogate model, starting with the definition of the DOE
(thus of the systematic variation of input variables). This phase is followed by the
numerical simulation of selected points in the design space to build a consistent
dataset to train and validate the surrogate model. For this activity, different
sampling strategies can be used, and Latin Hypercube sampling is one of the
most common sampling strategies applied (Zhao & Xue 2010). The surrogate
model is then built using the analysis results from simulations with RF. Each of
the trees in RF is built using a deterministic algorithm by selecting a random set of
variables and random samples from the training set. Two of the hyperparameters
of RF are needed to build a forest: Ntree, i.e., the number of trees to grow in the
forest, based on a bootstrap sample of observations, and Mtry, i.e., a number of
features which are randomly selected for all split in the tree. The following steps
allow the creation of the surrogate model.
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(i) From the dataset D, a bootstrap sample D′ is drawn randomly with
replacement for each tree construction.

(ii) A tree T using the bootstrap sample is built, at each node, choosing the
best split among a randomly selected subset of Mtry descriptors. The tree
is constructed until no further splits are possible or reaching a given node
size limit.

(iii) The second step is repeated until the user-defined number of trees is reached.

Both quantitative and qualitative variables are considered to build the forest. For
RF model generation, two-thirds of all training samples are used to build a tree
model, whereas one-third forms the out-of-bag samples to test for the accuracy of
the tree.

The third step in the study consists of the improvement of the RF model
performances, which is obtained by the tuning of the hyperparameters, which is by
testing the possible combinations of Ntree andMtry and selecting the one with the
least root mean square error (RMSE) in the prediction. From this model, ‘if–then’
rules are extracted to understand the reasoning for the predictions. Furthermore,
design parameter importance is extracted to analyze which parameters have high
importance in the model.

The final step of the approach is to visualize the performance level of different
variables based on specific trade-off analyses performed by engineers. Engineers
need to concurrently visualize, and trade off, the results of hundreds of design
cases for a long list of variables. The use of dynamic parallel diagrams emerged as
a powerful tool to navigate through the design cases and generate visual feedback
on trends and trade-off between the mechanical performance and value and
sustainability scores. The choice of dynamic parallel diagrams is in line with
the literature presenting them as an established practice for the visualization of
mechanical performances obtained from CAE simulation (Kipouros & Isaksson
2014). In this way, the results are visualized in a way that easily integrates in the
current working practice.

Figure 4 summarizes the process of digital model integration using machine
learning indicating the five steps of the process (on the left-hand side), detailing
the steps to generate the surrogate model (a), visually showing the structure of the
different decision trees (b) and providing an example of a possible ‘if–then’ rules
extracted from the RF model (c).

5. Application of the approach for the case of a
turbine rear structure

The proposed approach has been applied to the case of the development of an
aircraft engine component, namely a TRS. The TRS attaches the rear part of the
engine to the wing of the aircraft. The component provides the load path from
the engine mounts to the core engine and access for service utilities. In addition,
the TRS component contributes to directing the airflow as it passes through
the engine. The multidisciplinary design problem with high temperatures and
complex manufacturing solutions provide a complex design challenge. Figure 5
illustrates the cross-section of a jet engine with the TRS at the rear end.

In this case, different geometric design parameters were varied with the
purpose to explore the design space and understand the impact of design
parameters on value and sustainability performance.
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Figure 4. The approach applying random forest to create a surrogate model of the design space (adapted from
Dasari et al. 2019).

Figure 5. The cross-section of a jet engine and the location of the TRS.

The first step of the approach consisted of verifying, through DOE, the
engineering performance of a high number of design variants (called design cases)
in the CAE environment. In total, 56 design cases were used to investigate the
design space for the TRS. Each design case contained 21 design variables. A typical
example of a key design question for such kind of design is represented by the
shape of the outer case of the TRS. As shown in Figure 6, the outer case can
be either circular or polygonal. The latter has advantages in the stiffness of the
component but can bring disadvantages in aerodynamics and manufacturability.
The variations in performances of the design cases in relation to the other design
parameters could be investigated in the DOE. Those outputs served as inputs for
both value and sustainabilitymodeling. Customer revenuemodels,manufacturing
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Figure 6. A TRS concept with a polygonal outer case (on the left) and a TRS concept with a rounded outer
case (on the right).

feasibility and cost (in particular related to the welding process), andmaintenance
cost models were run as quantitative value assessment models.

5.1. Generation of VDD model in the TRS case
In the TRS study, some of the outputs of early simulations (i.e., mass, volume,
geometrical dimensions, and the length and thickness of the weld) were used as
inputs for the computation of the quantitative criteria by developing specific value
functions. The computation of qualitative criteria was based on the possibility to
access specific databases to compute the value of categorical variables. Table 2
describes how the quantitative value criteria were computed in the TRS case and
how qualitative value criteria could be computed based on data availability. The
first column of Table 2 lists the criteria used, the second column lists the inputs
from the simulations, the third column shows the external sources that have been
collected to populate the models, and the fourth column describes the specific
method used for the quantification of the criteria. The lack of availability of data
recorded about commonality, scalability, and survivability caused the qualitative
assessmentmodels not to be fully implemented in the case study. Estimations were
therefore based on assumptions rather than real data.

The calculation of the customer revenue model depended on the possible
savings in fuel consumption granted by each specific design case. In order
to calculate such savings, an aircraft fuel performance model was created,
considering the aircraft fuel consumption to be directly proportional to the
weight of the aircraft. The model also included a system of weight reduction
multipliers to project the impact of a change in weight of the TRS component
on the overall weight of the aircraft, as described in Section 4.3. Two aircraft
types were considered: the Airbus A380 and the Boeing 787 Dreamliner. The
aircraft models were, respectively, introduced in 2007 and in 2011 and have been
operating long enough to obtain reliable fuel consumption data made available by
the ICAO (2017). Multilinear regression analysis was applied to fuel consumption
data to derive aircraft fuel consumption models based on the aircraft flight range
and type. Maintenance cost model analysis in the case study was limited to the
maintenance cost linked to the life-limited parts and assumed the take-off thrust
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Table 2. List of quantitative and qualitative value criteria, data collected, and computational methods

Quantitative value criteria
Criteria Inputs from simulation External data source Specific methods

Fuel cost saved - TRS mass - Aircraft fuel
consumption model
(ICAO)
- Aircraft weight–fuel
consumption relation
- Expected life
- Fuel cost

- Regression analysis
of ICAO data

CO2 emission saved - TRS mass - CO2 production per
kilogram of fuel (ICAO)

- Linear relation with
fuel reduction

Cost of raw material - TRS mass - Percentage of scrap
from production

Cost of casting - TRS mass
- Cube surface area
- Shape complexity

- Casting practice
database
- Plant and overhead cost
estimate

- Activity-based
costing

Cost of additive
manufacturing

- TRS mass - Additive manufacturing
practices
- Plant and overhead cost
estimate

- Activity-based
costing

Cost of feasible
welding technologies

- Weld length
- Weld thickness

- Welding technology
capabilities
(EWB/TIG/Plasma/LBW)

- Regression analysis
- Activity-based
costing

Maintainability - TRS mass - Life-limited parts model
(Seemann et al. 2010)

- Data mining on
maintenance
database

Qualitative value criteria
Criteria Proxy parameters Data to be accessed Method to be

applied
Survivability Component behavior in

relation to:
- Unexpected higher
temperature
- Fly into an ash cloud
- Ice formation

- Database of
performances during
tests
- Database of unexpected
behavior during
operation

- Data mining

Scalability - Number of the
components to modify if
engine diameter changes
- Efficiency of
components in case of
engine weight change

- Number of constraints
in CAD models
- Tolerances and critical
level in FEA

- Finite element
analysis

Commonality in
technology

Percentage of reuse of:
- Welding fixtures
- Qualified welding
- Tested material
Technology Readiness
Level

- Database of qualified
welding
- Database of tested
material

- Data mining
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Table 2. (continued)

Commonality in
product

- Percentage features
shared with other
components
- Percentage of raw
material already in use

- Database of used
features
- Database of material
used

- Database search

Commonality in
system architecture

- Engine by-pass ratio
- Engine overall pressure
ratio
- Engine thrust to weight
ration
- Engine electrical
generation

- Engines performances
and feature database

- Database search

not to be impacted by the different TRS designs. The assessment of supplier costs
suffered from the unavailability of a structured and large enough set of data; thus,
such an activity was performed on a demonstrative database with the intent to
demonstrate the approach rather than providing verified results for the case study.

Themanufacturingmodel was based on data aboutmachine performances for
different technologies and operations available in literature. Themodel compared
casting versus additive manufacturing technologies and investigated feasible
welding technologies. Correlations between geometrical properties and a database
of information about casting and additive manufacturing performances were
explored using realistic data.

The qualitative models suffered from a general lack of data records in the case
study. Data about performances during product test and unexpected behavior
in operations were not directly available to the engineering dealing with design
space exploration. This is because such data were normally collected at different
organizational levels and are typically not requested and shared unless a clear
request is done and a need for those is evident. Similarly, data about commonality
and scalability would need to be collected, structured, and stored for a certain
period of time before allowing the investigation of possible correlations in the
data. From this perspective, the case study application of the approach did not
reach an ideal implementation, rather it raised the awareness of the necessity to
allow such kind of data to be collected in an accessible format to be used during
design space exploration.

5.2. Generation of SPD models in the TRS case study
A sustainability assessment was performed on the design case by first identifying
strategic long-term and leading sustainability criteria to define sustainability
indicators and the related data intervals. An interval between an acceptable
and a minimum level, including a target value, was defined for each leading
criterion. These intervals were derived from dialogs with company experts
and from information and data found in documents such as sustainability
reporting guidelines, environmental sustainability index reports, and strategies
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Figure 7. Illustration of the material criticality assessment method generating a
sustainability compliance index score. (Hallstedt & Isaksson 2017).

and guidelines from the Advisory Council for Aviation Research and Innovation
in Europe (ACARE 2011).

The indicators and related intervals are presented in Table 3. For the TRS case,
one of the sustainability indicators, SCI, was derived from a material criticality
assessment method based on values characterized by qualitative assessments
translated into a quantitative indicator, i.e., an SCI score. This method was
presented in Hallstedt & Isaksson (2017) and is shown in Figure 7.

5.3. Generation of surrogate models in the TRS case study
ML was applied in the case study both to generate descriptive models, thus to
populate value as described in Section 4.1, and to create predictive digital models
of performances.

Approaching the design of complex components like the TRS. Many design
studies are incrementally built to investigate different design aspects and identify
behavior and constraints. The case study focused, in particular, on investigating
four design parameters (inputs) of hub configuration such as hub rear stiffener
height, forward hub wall angle, hub knee point radial position, and bearing flange
axil position. Based on those, 17 geometrical and thickness parameters were
studied. In total, 21 design parameters were used in generating the CAD model
analyzed through finite element analysis. Using a Latin Hypercube strategy, a total
of 56 concepts were generated and simulated and were used as a dataset to build
the surrogate models following the steps previously shown in Figure 4.
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Table 3. Indicators with a suggested interval for each leading criterion for the case are presented. The
intervals go from acceptable to a minimum level (worst level), including a target level

Life cycle Indicators Intervals for the TRS case

Rawmaterials
acquisition and
extraction

SCI score for alloys according to the
criticality assessment method presented in
Hallstedt & Isaksson (2017)

Hot structures
Target: SCI 6–9;
Acceptable: SCI 1–3:
SCI score 0–40
Minimum: SCI 1: SCI score 76

Production Percentage of materials used that are
recycled input materials

Target: 100%;
Acceptable: 50%
Minimum: 25%

Recycling rate of scrap (%) Target: 100%
Acceptable: 95%
Minimum: 80%

Robustness index: corresponding to
emissions per sale, e.g., CO2, SOx, VOC,
and other greenhouse gas emissions

Target: no
Acceptable: yes, 5%
Minimum: yes, more than 5%

Number of injuries, risk of exposure, and
leakages

Target: 0
Acceptable: 10%
Minimum: 60%

Number of chemicals/hazardous materials
used/generated in the production and
included in the REACH* and IAEG** lists

Target: 0, i.e., no
chemicals/materials in REACH or
IAEG lists
Acceptable: chemicals/materials in
IAEG lists occur
Minimum: one or more
chemicals/materials in REACH list
occur

Distribution Percentage of health risk due to exposure to
dangerous substances during distribution
(per year)

Target: 0
Acceptable: 0 work-related fatalities,
2 injuries, 30 lost days
Minimum: 0 work-related fatalities,
4 injuries, 60 lost days

Use and
maintenance

Weight reduction (for each component) in
percentage compared to previous solution

Target: 30% weight reduction
Acceptable: 15%
Minimum: 5%

Noise level reduction (for the engine used
in real life) in percentage compared to the
previous solution

Target: 65% reduction of noise
Acceptable: 50% reduction of noise
Minimum: 10%

End of life Percentage of components possible to
remanufacture and percentage of
components recycled

Target: 100% of components
remanufactured
Acceptable: 90% of components
remanufactured and 10% recycled
Minimum: 85% of components
remanufactured and 15% of
components recycled
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Table 4. Extract from the analysis of the normalized RMSE of the prediction of
TRS mass and welding life from the simulation (adapted from Dasari et al. 2019)

Simulation output Root mean square error
Before tuning After tuning

Welding life 0.1248 0.1169
TRS mass 5.5322 3.4871

The dataset obtained from the simulation was combined with value and
sustainability into one combined dataset to build a prediction model using RF.
The RMSE for each predicted variable was calculated before and after applying
hyperparameter tuning. Table 4 provides an extract from the analysis of the
normalized RMSE of the prediction of some key design variables.

The accuracy of the prediction of variable ‘TRS mass’ had particular
importance for value and sustainability assessment. This is because, as shown
in Tables 2 and 3, the TRS mass was the main variable for the computation of six
out of seven quantitative value criteria, while also being a sustainability indicator
for ‘use and maintenance’.

The use of the RFmodel also allowed not only the creation of surrogatemodels
for predictions but also the analysis of the importance of the design parameters
with respect to the TRS performances. Figure 8 shows the difference in relative
importance (on the y-axis) of the 21 different design parameters (on the x-axis).
For issues related to industrial secrecy, the names of the design parameters have
been substituted with an indicative Design Parameter ID.

Finally, the results were visualized by means of dynamic parallel coordinated.
Figure 9 shows an example of such a visualization. In the visualization, a selection
of variables is included, and the results are evaluated with respect to performance
metrics such as mass, cost, and SCI score (named Sust_Compliance in Figure 9).
Each line of Figure 9 describes a single design case and its performance in
terms of mechanical properties, value, and sustainability. The first column
indicates the nature of the data differentiating those obtained from real simulation
results (bottom-left corner) and those generated by the surrogate model (top-left
corner). The other columns indicate different design parameters and value and
sustainability scores, such as, for instance, if the design case considered has a
circular or polygonal outer case (third column). It has to be noted that Figure 9 has
a demonstrative purpose and visualizes only a partial set of the design parameters
possible to evaluate.

6. Discussion
Early phases of product development are sometimes described as ‘fuzzy’ as they
are characterized by incomplete information about both the product solution and
the factual conditionswherein the product will be ultimately used. Literature often
cites the design process paradox (Ullman 1992) as the founding rationale of many
design decision support methods, underlying the need of making relevant design
decisions in amoment in timewhere limited information about the future product
is available. Both VDD and SPD literature describe how such a challenge escalates
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Figure 8. Visual representation of the relative importance of each design parameter
with respect to the TRS performances (note that the name of the parameters has been
omitted for industrial secrecy issues).

Figure 9. Illustration of the dynamic parallel diagram, which has a demonstrative purpose and visualizes only
a partial set of the design parameters possible to evaluate.

in complexity in the presence of value and sustainability considerations. The poor
availability of data, combined with their heterogeneous and cross-disciplinary
nature, causes value and sustainability considerations to be poorly integrated
into the decision models. Value and sustainability evaluations often fall outside
the technical horizon of the engineers, whose activities and design decisions are
rather driven by what they best perceive as reliable and understandable (Charnley,
Lemon& Evans 2011; Bertoni et al. 2016). Initial works on data science in product
development (e.g., Tseng & Jiao 1997; Kusiak 2006; Geng, Chu & Zhang 2012)
have presented some applications of data mining and ML to support early design
decision-making. Although, there is a need for smoother integration of data
science methods in traditional engineering working practices to obtain effective
use of data.

The approach presented in this paper moves a step toward a seamless
integration of ML into a CAE-based decision support environment. This is meant
to have an impact on the design practice by providing value and sustainability
assessment as part of the results of a design space exploration, rather than as
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external complementary models, with different levels of detail, used at different
moments in time during the development process.

From the perspective of the development of VDD models, the proposed
approach contributes to the theory presenting the capability to link the value
models to parametric variations of the CADmodels, thus allowing the automatic
calculation of the value of hundreds of different product configurations in a
restricted time frame. This allows the application of VDD models to subsystem
parts and components, limiting the application to the feasible design space
obtained from structural simulations and avoiding the need to test specific
objective functions decided a priori (such as in Castagne et al. (2009)). At the
same time, it allows an engineer to perform the analysis on his/her own, being
the owner of the results (thus avoiding the need of the figure of a ‘value analyst’
as previously proposed by Bertoni, Bertoni & Johansson (2011a) and Panarotto,
Larsson & Larsson (2013)).

From the SPD perspective, this approach is a unique way to include
sustainability aspects early in the design process. What makes it unique is the
systematic process to identify the sustainability criteria to focus on and to include
those in the assessment. The SDS method supports the identification of a set of
sustainability indicators that covers all dimensions, i.e., social, ecological, and
economic, of sustainability and thereby avoid a suboptimization. This approach is
different from other eco-design assessments or life-cycle assessment as it is based
on a strategic sustainability perspective using overarching sustainability principles
from a backcasting perspective.

The approach presented was also developed with the intention tomove toward
an integration of the VDD and the SPD models, which have been historically
developed in different research streams. VDD and SPD share the common goal to
estimate the impact of a design decision from a life cycle and system perspective;
however, the results of value and sustainability models have traditionally been
considered separately. While recognizing similarities in the nature and logic of
the formulation of value criteria and sustainability criteria and indicators, a deeper
theoretical discussion about differences and similarities of VDD and SPDmodels
is outside the scope of this paper.

The work does not claim to contribute to the advancement of the ML research
field in terms of the development of new algorithms, but it proposes a novel
application area forML techniques to support integrating VDD and SPS in design
space exploration.

The needs and challenges at the basis of the logic of the approach were
identified as relevant to the design space explorations of different components
in aerospace development. The generalization of the approach in other industrial
contexts cannot be claimed since extensive research was not performed. A
limitation to consider in terms of generalization is that the presented approach
is particularly suitable for a product with a relatively static architecture, that
is, for design concepts with a defined number of parts and a geometry that
can be parametrically changed in the CAD environment. In the presence of
design alternatives radically different in the number of parts and geometry, the
need for different CAD models and the need to study new correlations between
different variables escalate the complexity of the calculation. This would most
likely negatively impact the usability of the approach as decision-making support.
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The proposed approachwas applied in the case of the development of a TRS for
a commercial aircraft engine. As described in Section 5, the case study application
slightly differed from the ideal proposed approach described in Section 4.
Such discrepancy is in line with the DRM theory describing the emergence of
possible misalignment between the ideal design support and the actual design
support. The main reason for not achieving the ideal implementation of the
approach was the limited availability of data that were accessible to the engineers.
In some situations, data were stored in databases that were not readily accessible
but were possible to integrate into the case study after a short screening (such as in
the case of revenues per flights or maintenance or manufacturing cost). In other
situations, data did not exist not because of the presence of technological barriers,
rather because the need of collecting and storing such data was not perceived
and the effective way to use those data was never planned (this is, for instance,
the case for product commonality and scalability). Similarly, data concerning the
environmental impact and sustainability implications are increasingly collected
in response to the needs from governments and society, but they are at a level of
granularity that did not allow them to be effectively integrated into the TRS case.

Concerning the communication of the results of the models, the visualization
bymeans of dynamic parallel diagrams allowed the integration of the results in an
environment which was familiar with the working methods of the engineers.
However, such a visualization did not provide any indication in terms of
effectiveness toward reducing the risk of providing a false sense of accuracy in
the results. Concerning the reliability of the results, the measurement of the
errors of the ML algorithm provided good indications on the accuracy of the
surrogatemodels (Table 4), while the application of the approach did not integrate
a method to quantify the assumptions and uncertainties ingrained in the value
and sustainability assessment.

The validation of the proposed approach (i.e., the support evaluation activity
according to the DRM) was performed making use of a simplified parametric
model of a TRS tested through hundreds of design variations by researchers in
the university laboratory. The objective of the support evaluation was to verify
the process logic by testing the consistency of the mathematical results in terms
of the order of magnitude. A simplified parametric model, only consisting of
four components, was developed and DOE was run to simulate the mass, the
volume, and the weld length and thickness of 160 design alternatives. Those
results were used to populate the quantitative value models and obtain a final
result for the 160 fictitious designs. This evaluation was performed to test the
functionalities and the limitations of the approach prior to the application in the
case study. As a result, the mathematical logic of the computational algorithmwas
improved. Later in the case study, the so-called ‘application evaluation’ took place
by verifying the usability of the approach in relation to the desired performance. At
this stage, industrial practitioners from the case company were invited to provide
feedback on the utility and usability of the approach that was introduced through
interactive presentations and demonstrative videos. This stage was enabled by
the implementation of the proposed approach in the so-called model-driven
decision arena (Bertoni, Wall & Bertoni 2018b), which is an interactive visual
environment designed to support group decision-making, by computing and
visualizing the results ofmultidisciplinary analyses. The presentation of the results
to the industrial practitioners happened in an iterative fashion through bi-weekly
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distance meetings and occasional physical meetings. The aim of such activities
was to collect and implement constructive feedback both about the structure
and reliability of the approach and about its ability to support decision-making.
In terms of the verification of industrial benefits introduced by the approach, the
long development process of aerospace products renders a situation in which it
is difficult to practically verify the impact of the approach in terms of lead time
reduction, customer satisfaction, or revenue generation, whose complete effects
will need to be verified in future research.

7. Conclusion
The paper has presented a prescriptive approach toward exploiting the use
of ML in combination with value and sustainability assessment to create a
model-driven approach to support engineers in the design space exploration.
The approach allows integrating value and sustainability assessment models in a
unique modeling environment, enabling the automatic computation of VDD and
SPD models for a high number of design cases, encompassing the estimation of
both numerical and categorical variables by means of ML.

The approach presented supports engineers in performing multidisciplinary
design space, allowing the identification of design solutions with poor value
contribution or low sustainability performance early in the development process.
This generates savings in time and resources, reducing the risk to further develop
design concepts that would most likely show poor value for the stakeholders, or
bad sustainability performances, later in the design process. From a theoretical
perspective, the paper showed an example of the possible integration of the
VDD and SPD models in a unique approach. The combined use of VDD models
and SPD models is proposed as a complementary approach supporting CAE
simulations in design space exploration and ML is presented as a technology
enabler for model results integration. The use of ML allows reducing the time
for simulating design variations using surrogate modeling. To this concern, a
novelty of the approach is the creation of surrogate models including value and
sustainability criteria, enabling a multidisciplinary analysis of hundreds of design
alternatives guiding the selection of the more promising solutions.

The work is part of a larger research initiative aiming at the development
of an integrated model-driven methodology for early design decision support.
The application in the TRS case study was an intermediate step toward the final
development of the methodology, and it was performed to test the applicability
and effectiveness of the proposed model-based approach in a limited scenario.
More research challenges still need to be addressed focusing on the following:

(i) Investigate the definition ofmore specific parameters to be used as proxies for
the quantification of ‘ilities’ (e.g., survivability, commonality, and scalability),
concepts otherwise perceived as too vague by engineers. This would make it
easier to identify relevant datasets to explore in the search of correlationswith
design parameters.

(ii) Perform correlation studies between sustainability indicators and value
criteria to give a better understanding and clarify what sustainability
indicators to include in the models and how sustainability risks are related to
value criteria, e.g., fuel cost saved, CO2 emissions saved, cost of rawmaterial,
commonality in product, and commonality in production.
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(iii) Develop the proposed SCADS model and perform system analysis of
sustainability indicators and functional design requirements to guide the
weighting of the different sustainability indicators in the SCADS model.

(iv) Performcorrelation studies and systemanalysis studies between sustainability
indicators and design variables. There is a need to have a better
understanding of the relationships and the influences between sustainability
indicators and design variables to support the development of algorithms in
the model.

(v) Investigate the use of ML in the sustainability assessment models with the
purpose to predict and estimate the sustainability profiles of numerous
variants of solutions within the constraints defined by the intervals for each
sustainability indicator. This could allow the identification of an optimal
solution from a sustainability perspective.
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