ON FUNCTIONAL CESÀRO AND HÖLDER METHODS OF SUMMABILITY

D. BORWEIN AND B. L. R. SHAWYER

1. Cesàro and Hölder-type methods of summability. Suppose that f(x) is integrable L in every finite interval [0, X], and that $\delta > 0$. Define

$$f_{\delta}(x) = \{\Gamma(\delta)\}^{-1} \int_{0}^{x} (x-t)^{\delta-1} f(t) dt$$
, and $g(x) = e^{x} f(x)$.

Definition. If $\Gamma(\delta + 1)x^{-\delta}f_{\delta}(x) \to \sigma$ as $x \to \infty$, then we say that the (C, δ) limit of f(x) is σ , and write $f(x) \to \sigma(C, \delta)$.

Definition. If $e^{-x}g_{\delta}(x) \to \sigma$ as $x \to \infty$, then we say that the (\hat{C}, δ) limit of f(x) is σ , and write $f(x) \to \sigma(\hat{C}, \delta)$.

Note that (C, δ) is the standard Cesàro method of summability, that

$$e^{-x}g_{\delta}(x) = \{\Gamma(\delta)\}^{-1}e^{-x}\int_{0}^{x} (x-t)^{\delta-1}e^{t}f(t)dt$$
$$= \{\Gamma(\delta)\}^{-1}X^{-1}\int_{1}^{X} (\log X/T)^{\delta-1}f(\log T)dT$$

and that this final integral is the functional Hölder transform of $f(\log T)$.

It is well known [4] that $f(x) \to \sigma(C, \delta)$ if and only if $f(e^x) \to \sigma(\hat{C}, \delta)$. Our primary objective is to prove that if $f(x) \to \sigma(\hat{C}, \delta)$ then $f(x) \to \sigma(C, \delta)$, and that there is a function whose (C, δ) limit exists but whose (\hat{C}, δ) limit does not exist.

We need two lemmas. The first is due to M. Riesz [3].

LEMMA 1. For x > t > 0 and $0 < \delta < 1$,

$$\Gamma(1-\delta)\int_{0}^{t}(x-v)^{\delta-1}f(v)dv = \delta\int_{0}^{t}f_{\delta}(v)dv\int_{t}^{x}(x-w)^{\delta-1}(w-v)^{-\delta-1}dw.$$

Lemma 2. If $0 < \delta \leq 1$ and $e^{-x} g_{\delta}(x) \rightarrow \sigma$ as $x \rightarrow \infty$, then

$$\delta x^{-\delta} \int_0^x (x-t)^{\delta-1} e^{-t} g(t) dt \to \sigma \quad as \ x \to \infty$$

Received October 21, 1975.

1058

Proof. Suppose first that $0 < \delta < 1$. Using the result of Lemma 1, we have

$$\begin{split} &\int_{0}^{x} (x-t)^{\delta-1} e^{-t} g(t) dt - \Gamma(\delta) e^{-x} g_{\delta}(x) \\ &= \int_{0}^{x} e^{-t} dt \int_{0}^{t} (x-u)^{\delta-1} g(u) du \\ &= \frac{\delta}{\Gamma(1-\delta)} \int_{0}^{x} e^{-t} dt \int_{0}^{t} g_{\delta}(v) dv \int_{t}^{x} (x-w)^{\delta-1} (w-v)^{-\delta-1} dw \\ &= \frac{\delta}{\Gamma(1-\delta)} \int_{0}^{x} e^{-v} g_{\delta}(v) dv \int_{v}^{x} (x-w)^{\delta-1} (w-v)^{-\delta-1} dw \int_{v}^{w} e^{-(t-v)} dt \\ &= \int_{0}^{x} J(x-v) e^{-v} g_{\delta}(v) dv, \text{ where} \\ &J(y) = \frac{\delta}{\Gamma(1-\delta)} \int_{0}^{y} (y-u)^{\delta-1} u^{-\delta-1} (1-e^{-u}) du. \end{split}$$

It now suffices to show that

$$\delta x^{-\delta} \int_0^x J(x-v) \phi(v) dv \to \sigma$$

whenever $\phi(x)$ is integrable *L* in every finite interval [0, X] and tends to σ as $x \to \infty$. This is true since (see, for example [2, Theorem 6])

$$\delta x^{-\delta} \int_0^x J(x-v) dv = \frac{\delta}{\Gamma(1-\delta)} x^{-\delta} \int_0^x (x-u)^{\delta} u^{-\delta-1} (1-e^{-u}) du$$
$$\rightarrow \frac{\delta}{\Gamma(1-\delta)} \int_0^\infty u^{-\delta-1} (1-e^{-u}) du = 1 \quad \text{as } x \to \infty,$$

and since, for each fixed y > 0,

$$\delta x^{-\delta} \int_0^y J(x-v) dv \to 0 \quad \text{as } x \to \infty$$

When $\delta = 1$, we have

$$x^{-1}\int_0^x e^{-t}g(t)dt - x^{-1}e^{-x}g_1(x) = x^{-1}\int_0^x e^{-t}g_1(t)dt,$$

and the desired result now follows from the regularity of the (C, 1) method.

We now prove two theorems which show the relation between the methods (\hat{C}, α) and (C, α) .

THEOREM 1. For $\alpha > 0$, if $f(x) \to \sigma(\hat{C}, \alpha)$ then $f(x) \to \sigma(C, \alpha)$.

Proof. First suppose that $0 < \alpha \leq 1$. Since

$$\Gamma(\alpha)f_{\alpha}(x) = \int_0^x (x-t)^{\alpha-1} e^{-t}g(t)dt,$$

the result follows from Lemma 2.

Now suppose that $\alpha > 1$. Set $\alpha = k + \delta$ where $0 < \delta \leq 1$ and k = 1, 2, ...Integration by parts k times yields

$$\begin{split} \Gamma(\alpha)f_{\alpha}(x) &= (-1)^{k} \int_{0}^{x} g_{k}(t) \left(\frac{d}{dt}\right)^{k} [e^{-t}(x-t)^{\alpha-1}] dt \\ &= a_{0} \int_{0}^{x} g_{k}(t) e^{-t}(x-t)^{\delta-1} dt + \sum_{\tau=1}^{k} a_{\tau} \int_{0}^{x} g_{k}(t) e^{-t}(x-t)^{\delta-1+\tau} dt \\ &= a_{0} \int_{0}^{x} g_{k}(t) e^{-t}(x-t)^{\delta-1} dt + \sum_{\tau=0}^{k-1} b_{\tau} \int_{0}^{x} g_{k+1}(t) e^{-t}(x-t)^{\delta-1+\tau} dt \\ &+ \int_{0}^{x} g_{k+1}(t) e^{-t}(x-t)^{\alpha-1} dt, \end{split}$$

where the a_r and b_r are constants.

By assumption, $e^{-x}g_{\alpha}(x) \to \sigma$ as $x \to \infty$, and so since $k + 1 \ge \alpha$, it is easy to show that $e^{-x}g_{k+1}(x) \to \sigma$ as $x \to \infty$. Thus using Lemma 1 for the term involving a_0 and the regularity of the Cesàro methods for the other terms, it follows that $\Gamma(\alpha + 1)x^{-\alpha}f_{\alpha}(x) \to \sigma$ as $x \to \infty$. This completes the proof of Theorem 1.

THEOREM 2. For $\alpha > 0$, $e^{ix} \to 0(C, \alpha)$, but the (\hat{C}, α) limit of e^{ix} does not exist.

Proof. By the Riemann-Lebesgue theorem,

$$x^{-\alpha} \int_0^x (x-t)^{\alpha-1} e^{it} dt = \int_0^1 (1-u)^{\alpha-1} e^{iux} du \to 0 \quad \text{as } x \to \infty,$$

so that $e^{ix} \rightarrow O(C, \alpha)$. On the other hand,

$$e^{-x} \int_{0}^{x} (x-t)^{\alpha-1} e^{t} e^{it} dt = e^{ix} \int_{0}^{x} t^{\alpha-1} e^{-t(1+i)} dt$$
$$= e^{ix} \int_{0}^{\infty} t^{\alpha-1} e^{-t(1+i)} dt + o(1) = \frac{e^{ix} \Gamma(\alpha)}{(1+i)^{\alpha}} + o(1),$$

which does not tend to a limit as $x \to \infty$; that is, the (\hat{C}, α) limit of e^{ix} does not exist.

2. Application to the Borel-type methods of summability. Suppose that $\lambda > 0$, that μ is real and that *N* is a non-negative integer greater than $-\mu/\lambda$. Let ρ , s_n (n = 0, 1, ...) be complex numbers. Define

$$S_{\lambda,\mu}(x) = \lambda e^{-x} \sum_{n=N}^{\infty} \frac{S_n x^{\lambda n+\mu-1}}{\Gamma(\lambda n+\mu)}$$

Definition [1]. If $S_{\lambda,\mu}(x) \to \rho$ as $x \to \infty$, then we say that the (B, λ, μ) limit of the sequence $\{s_n\}$ is ρ , and writes $s_n \to \rho(B, \lambda, \mu)$.

The following two theorems are known.

1060

THEOREM 3 [5]. The (\hat{C}, α) (B, λ, μ) transform of the sequence $\{s_n\}$ is equal to the $(B, \lambda, \mu + \delta)$ transform of the sequence $\{s_n\}$; that is

$$e^{-x}\int_0^x(x-t)^{\delta-1}e^tS_{\lambda,\mu}(t)dt = S_{\lambda,\mu+\delta}(x).$$

From this it follows that $s_n \to \rho(\hat{C}, \delta)$ (B, λ, μ) if and only if $s_n \to \rho(B, \lambda, \mu + \delta)$.

THEOREM 4. If $s_n \to \rho(B, \lambda, \mu)$ then $s_n \to \rho(C, \delta)$ (B, λ, μ) .

This is trivial since (C, δ) is a regular method. See also [6].

The following theorem, which follows immediately from Theorem 3 and the results of §1, extends Theorem 4.

THEOREM 5. (i) If $s_n \to \rho(B, \lambda, \mu + \delta)$ then $s_n \to \rho(C, \delta)$ (B, λ, μ) ;

(ii) There is a sequence whose (C, δ) (B, λ, μ) limit exists but whose $(B, \lambda, \mu + \delta)$ limit does not exist.

References

- 1. D. Borwein, On methods of summability based on integral functions, II, Proc. Cambridge Philos. Soc. 56 (1960), 125-131.
- 2. G. H. Hardy, Divergent series (Oxford, 1949).
- 3. M. Riesz, Sur un théorème de la moyenne et ses applications, Acta Sci. Math. (Szeged) 1 (1923), 114–126.
- 4. W. W. Rogosinski, On Hausdorff's methods of summability, II, Proc. Cambridge Philos. Soc. 38 (1942), 344–363.
- 5. B. L. R. Shawyer, Iteration products of methods of summability and natural scales, Manuscripta Math. 13 (1974), 355-364.
- 6. ——— On the product of the Cesàro and Borel-type methods of summability, J. London Math. Soc. (2) 7 (1973), 111–116.

The University of Western Ontario, London, Ontario