Can. J. Math., Vol. XXVIII, No. 5, 1976, pp. 1058-1061

ON FUNCTIONAL CESARO AND HOLDER METHODS
OF SUMMABILITY

D. BORWEIN AND B. L. R. SHAWYER

1. Cesaro and Hoélder-type methods of summability. Suppose that
f(x) is integrable L in every finite interval [0, X], and that § > 0. Define

1@ = r@1 [ 6 -0 0s, wd g6 = ).

Definition. If T(8 + 1)x~%;(x) — ¢ as x — 0, then we say that the (C, §)
limit of f(x) is ¢, and write f(x) — o(C, 9).

Definition. If e%g;(x) — o as x — o0, then we say that the (C, §) limit of
f(x) is o, and write f(x) — o(C, 8).

Note that (C, 6) is the standard Cesaro method of summability, that

eg(x) = (T(3)} e fo " — 0 el

Il

b. ¢
fre)x f (log X/T)""f (log T)d,
1
and that this final integral is the functional Hélder transform of f(log 7).

It is well known [4] that f(x) — o(C, §) if and only if f(e*) — o(C, §). Our
primary objective is to prove that if f(x) — o(C, 8) then f(x) — o(C, ), and
that there is a function whose (C, 8) limit exists but whose (C,8) limit does not
exist.

We need two lemmas. The first is due to M. Riesz [3].

LEMMA 1. Forx >t > 0and 0 < 6 < 1,

Tt~ f (& — 0)" Y @)dv = & f i@ [ 6= w0 — o

LEMMA 2. If 0 < 6 = 1 and e™* gs(x) — o as x — 0, then
6x_"f (x — e g(t)dt > ¢ asx— 0.
0
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Proof. Suppose first that 0 < § < 1. Using the result of Lemma 1, we have
f (@ — 1) e'g(t)dt — T(6)e "gs(x)
0
z t
=f e_’dtf (x — )" g (u)du
A ~1 — ) — v)"*
I‘(l s f dtf g.;(v)dvf (x — w) v)" dw

- W_—(;) fo e_"ga(v)dva  — ) (w — o) dw f:’ gy

= f J(x — v)e ’gs; (v)dv, where
0

T0) = T =% f = (L = e,

It now suffices to show that

_Bfoz Jx —v)¢p@)do— 0

whenever ¢(x) is integrable L in every finite interval [0, X] and tends to ¢ as
x — oo, This is true since (see, for example [2, Theorem 6])

~ " —_ ____5__—8[1 NG sl
ox Lj(x v)dv—r(1_6>x O(x w)'u" (1 — e ")du

5 f‘” Sty oy
—)I‘(l—é) . u A—e")du =1 asx — 0,

and since, for each fixed y > 0,
v
6x_5f J(x —v)dv—0 asx—0.
0
When § = 1, we have

x—lf e lg()dt — x e g1 (x) = x‘lf e ‘g1 (t)dt,
0 0
and the desired result now follows from the regularity of the (C, 1) method.

We now prove two theorems which show the relation between the methods
(C, @) and (C, a).

THEOREM 1. For a > 0, if f(x) — o(C, @) then f(x) — o¢(C, a).
Proof. First suppose that 0 < & < 1. Since

T (e)fa(x) = f: (@ — 1) e 'g()d

the result follows from Lemma 2.
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Now suppose thata > 1.Seta = k + d where0 < § < landk =1,2,....
Integration by parts k times yields

r@het) = <0 [ (2) e = o

x

e 3
“°f g — 0+ Y ar | @)e e — 0"
0 r=1 0

e k=1 z
a"f IAOLNCENNE DY brf gD e — 0
0 r=0 0

+ f g (e — £,

where the @, and b, are constants.

By assumption, e~%g,(x) — ¢ as x — o, and so since k + 1 = «, it is easy
to show that e~%g;,1(x) — o as x — 0. Thus using Lemma 1 for the term in-
volving aq and the regularity of the Cesaro methods for the other terms, it fol-
lows that T'(a + 1)x™f,(x) — ¢ as x — . This completes the proof of Theo-
rem 1.

THEOREM 2. For a > 0, ¢ — 0(C, a), but the (C, &) limit of e does not exist.
Proof. By the Riemann-Lebesgue theorem,
T 1
x_“f (x — ) et = f A —u)"e™du—0 asx—0,
0 0

so that e — 0(C, ). On the other hand,

z T
e—’f (x — ) eletdt = e”f £l gy
0 0

© iz
iz a—1 —1(141) 4 F(Ol)
= e t e dt 1) = —% 1),
J, ol =3 o
which does not tend to a limit as x — 00 ; that is, the (C, a) limit of e™ does not

exist.

2. Application to the Borel-type methods of summability. Suppose
that A > 0, that pisreal and that IV is a non-negative integer greater than —pu/\.
Let p, s, (n = 0, 1,...) be complex numbers. Define

M4p—1

Su) =2 2 e

Definition [1]. If S\ .(x) — p as x — o0, then we say that the (B, A\, p) limit
of the sequence {s,} is p, and writes s, — p(B, \, p).

The following two theorems are known.
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THEOREM 3 [5]. The (C, a) (B, \, 1) transform of the sequence {s,} is equal to
the (B, \, u + 8) transform of the sequence {s,}; that is

e—zf (@ — )" S\u(B)dt = Syurs(x).

0

From this it follows that s, — p(C, 8) (B, \, u) if and only if s, — p(B, \, u + 8).
THEOREM 4. If s, — p(B, \, u) then s, — p(C, 8) (B, \, p).

This is trivial since (C, §) is a regular method. See also [6].
The following theorem, which follows immediately from Theorem 3 and the
results of §1, extends Theorem 4.

TaEOREM 5. (i) If 5, = p(B, N\, p + 8) then s, — p(C, 8) (B, \, p);
(ii) There 1s a sequence whose (C, ) (B, N\, p) limit exists but whose
(B, \, u + 0) limit does not exist.
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