ON FUNGTIONAL GESÀRO AND HÖLDER METHODS OF SUMMABILITY

D. BORWEIN AND B. L. R. SHAWYER

1. Cesàro and Hölder-type methods of summability. Suppose that $f(x)$ is integrable L in every finite interval $[0, X]$, and that $\delta>0$. Define

$$
f_{\delta}(x)=\{\Gamma(\delta)\}^{-1} \int_{0}^{x}(x-t)^{\delta-1} f(t) d t, \quad \text { and } \quad g(x)=e^{x} f(x)
$$

Definition. If $\Gamma(\delta+1) x^{-\delta} f_{\delta}(x) \rightarrow \sigma$ as $x \rightarrow \infty$, then we say that the (C, δ) limit of $f(x)$ is σ, and write $f(x) \rightarrow \sigma(C, \delta)$.

Definition. If $e^{-x} g_{\delta}(x) \rightarrow \sigma$ as $x \rightarrow \infty$, then we say that the ($\left.\hat{C}, \delta\right)$ limit of $f(x)$ is σ, and write $f(x) \rightarrow \sigma(\hat{C}, \delta)$.

Note that (C, δ) is the standard Cesàro method of summability, that

$$
\begin{aligned}
e^{-x} g_{\delta}(x) & =\{\Gamma(\delta)\}^{-1} e^{-x} \int_{0}^{x}(x-t)^{\delta-1} e^{t} f(t) d t \\
& =\{\Gamma(\delta)\}^{-1} X^{-1} \int_{1}^{x}(\log X / T)^{\delta-1} f(\log T) d T
\end{aligned}
$$

and that this final integral is the functional Hölder transform of $f(\log T)$.
It is well known [4] that $f(x) \rightarrow \sigma(C, \delta)$ if and only if $f\left(e^{x}\right) \rightarrow \sigma(\hat{C}, \delta)$. Our primary objective is to prove that if $f(x) \rightarrow \sigma(\hat{C}, \delta)$ then $f(x) \rightarrow \sigma(C, \delta)$, and that there is a function whose (C, δ) limit exists but whose (\hat{C}, δ) limit does not exist.

We need two lemmas. The first is due to M. Riesz [3].
Lemma 1. For $x>t>0$ and $0<\delta<1$,

$$
\Gamma(1-\delta) \int_{0}^{t}(x-v)^{\delta-1} f(v) d v=\delta \int_{0}^{t} f_{\delta}(v) d v \int_{t}^{x}(x-w)^{\delta-1}(w-v)^{-\delta-1} d w
$$

Lemma 2. If $0<\delta \leqq 1$ and $e^{-x} g_{\delta}(x) \rightarrow \sigma$ as $x \rightarrow \infty$, then

$$
\delta x^{-\delta} \int_{0}^{x}(x-t)^{\delta-1} e^{-t} g(t) d t \rightarrow \sigma \quad \text { as } x \rightarrow \infty
$$

Received October 21, 1975.

Proof. Suppose first that $0<\delta<1$. Using the result of Lemma 1, we have

$$
\begin{aligned}
& \int_{0}^{x}(x-t)^{\delta-1} e^{-t} g(t) d t-\Gamma(\delta) e^{-x} g_{\delta}(x) \\
& =\int_{0}^{x} e^{-t} d t \int_{0}^{t}(x-u)^{\delta-1} g(u) d u \\
& =\frac{\delta}{\Gamma(1-\delta)} \int_{0}^{x} e^{-t} d t \int_{0}^{t} g_{\delta}(v) d v \int_{t}^{x}(x-w)^{\delta-1}(w-v)^{-\delta-1} d w \\
& =\frac{\delta}{\Gamma(1-\delta)} \int_{0}^{x} e^{-v} g_{\delta}(v) d v \int_{v}^{x}(x-w)^{\delta-1}(w-v)^{-\delta-1} d w \int_{v}^{w} e^{-(t-v)} d t \\
& =\int_{0}^{x} J(x-v) e^{-v} g_{\delta}(v) d v, \text { where } \\
& J(y)=\frac{\delta}{\Gamma(1-\delta)} \int_{0}^{y}(y-u)^{\delta-1} u^{-\delta-1}\left(1-e^{-u}\right) d u .
\end{aligned}
$$

It now suffices to show that

$$
\delta x^{-\delta} \int_{0}^{x} J(x-v) \phi(v) d v \rightarrow \sigma
$$

whenever $\phi(x)$ is integrable L in every finite interval $[0, X]$ and tends to σ as $x \rightarrow \infty$. This is true since (see, for example [2, Theorem 6])

$$
\begin{aligned}
\delta x^{-\delta} \int_{0}^{x} J(x-v) d v & =\frac{\delta}{\Gamma(1-\delta)} x^{-\delta} \int_{0}^{x}(x-u)^{\delta} u^{-\delta-1}\left(1-e^{-u}\right) d u \\
& \rightarrow \frac{\delta}{\Gamma(1-\delta)} \int_{0}^{\infty} u^{-\delta-1}\left(1-e^{-u}\right) d u=1 \quad \text { as } x \rightarrow \infty
\end{aligned}
$$

and since, for each fixed $y>0$,

$$
\delta x^{-\delta} \int_{0}^{y} J(x-v) d v \rightarrow 0 \quad \text { as } x \rightarrow \infty .
$$

When $\delta=1$, we have

$$
x^{-1} \int_{0}^{x} e^{-t} g(t) d t-x^{-1} e^{-x} g_{1}(x)=x^{-1} \int_{0}^{x} e^{-t} g_{1}(t) d t
$$

and the desired result now follows from the regularity of the $(C, 1)$ method.
We now prove two theorems which show the relation between the methods (\hat{C}, α) and (C, α).

Theorem 1. For $\alpha>0$, if $f(x) \rightarrow \sigma(\hat{C}, \alpha)$ then $f(x) \rightarrow \sigma(C, \alpha)$.
Proof. First suppose that $0<\alpha \leqq 1$. Since

$$
\Gamma(\alpha) f_{\alpha}(x)=\int_{0}^{x}(x-t)^{\alpha-1} e^{-t} g(t) d t
$$

the result follows from Lemma 2.

Now suppose that $\alpha>1$. Set $\alpha=k+\delta$ where $0<\delta \leqq 1$ and $k=1,2, \ldots$ Integration by parts k times yields

$$
\begin{aligned}
\Gamma(\alpha) f_{\alpha}(x)= & (-1)^{k} \int_{0}^{x} g_{k}(t)\left(\frac{d}{d t}\right)^{k}\left[e^{-t}(x-t)^{\alpha-1}\right] d t \\
= & a_{0} \int_{0}^{x} g_{k}(t) e^{-t}(x-t)^{\delta-1} d t+\sum_{r=1}^{k} a_{r} \int_{0}^{x} g_{k}(t) e^{-t}(x-t)^{\delta-1+\tau} d t \\
= & a_{0} \int_{0}^{x} g_{k}(t) e^{-t}(x-t)^{\delta-1} d t+\sum_{r=0}^{k-1} b_{r} \int_{0}^{x} g_{k+1}(t) e^{-t}(x-t)^{\delta-1+\tau} d t \\
& +\int_{0}^{x} g_{k+1}(t) e^{-t}(x-t)^{\alpha-1} d t
\end{aligned}
$$

where the a_{r} and b_{r} are constants.
By assumption, $e^{-x} g_{\alpha}(x) \rightarrow \sigma$ as $x \rightarrow \infty$, and so since $k+1 \geqq \alpha$, it is easy to show that $e^{-x} g_{k+1}(x) \rightarrow \sigma$ as $x \rightarrow \infty$. Thus using Lemma 1 for the term involving a_{0} and the regularity of the Cesàro methods for the other terms, it follows that $\Gamma(\alpha+1) x^{-\alpha} f_{\alpha}(x) \rightarrow \sigma$ as $x \rightarrow \infty$. This completes the proof of Theorem 1.

Theorem 2. For $\alpha>0, e^{i x} \rightarrow 0(C, \alpha)$, but the ($\left.\hat{C}, \alpha\right)$ limit of $e^{i x}$ does not exist.
Proof. By the Riemann-Lebesgue theorem,

$$
x^{-\alpha} \int_{0}^{x}(x-t)^{\alpha-1} e^{i t} d t=\int_{0}^{1}(1-u)^{\alpha-1} e^{i u x} d u \rightarrow 0 \quad \text { as } x \rightarrow \infty,
$$

so that $e^{i x} \rightarrow 0(C, \alpha)$. On the other hand,

$$
\begin{aligned}
& e^{-x} \int_{0}^{x}(x-t)^{\alpha-1} e^{t} e^{i t} d t=e^{i x} \int_{0}^{x} t^{\alpha-1} e^{-t(1+i)} d t \\
& =e^{i x} \int_{0}^{\infty} t^{\alpha-1} e^{-t(1+i)} d t+o(1)=\frac{e^{i x} \Gamma(\alpha)}{(1+i)^{\alpha}}+o(1)
\end{aligned}
$$

which does not tend to a limit as $x \rightarrow \infty$; that is, the ($\hat{C}, \alpha)$ limit of $e^{i x}$ does not exist.
2. Application to the Borel-type methods of summability. Suppose that $\lambda>0$, that μ is real and that N is a non-negative integer greater than $-\mu / \lambda$. Let $\rho, s_{n}(n=0,1, \ldots)$ be complex numbers. Define

$$
S_{\lambda, \mu}(x)=\lambda e^{-x} \sum_{n=N}^{\infty} \frac{s_{n} x^{\lambda n+\mu-1}}{\Gamma(\lambda n+\mu)} .
$$

Definition [1]. If $S_{\lambda, \mu}(x) \rightarrow \rho$ as $x \rightarrow \infty$, then we say that the (B, λ, μ) limit of the sequence $\left\{s_{n}\right\}$ is ρ, and writes $s_{n} \rightarrow \rho(B, \lambda, \mu)$.

The following two theorems are known.

Theorem $3[\mathbf{5}]$. The $(\hat{C}, \alpha)(B, \lambda, \mu)$ transform of the sequence $\left\{s_{n}\right\}$ is equal to the $(B, \lambda, \mu+\delta)$ transform of the sequence $\left\{s_{n}\right\}$; that is

$$
e^{-x} \int_{0}^{x}(x-t)^{\delta-1} e^{t} S_{\lambda, \mu}(t) d t=S_{\lambda, \mu+\delta}(x)
$$

From this it follows that $s_{n} \rightarrow \rho(\hat{C}, \delta)(B, \lambda, \mu)$ if and only if $s_{n} \rightarrow \rho(B, \lambda, \mu+\delta)$.
Theorem 4. If $s_{n} \rightarrow \rho(B, \lambda, \mu)$ then $s_{n} \rightarrow \rho(C, \delta)(B, \lambda, \mu)$.
This is trivial since (C, δ) is a regular method. See also [6].
The following theorem, which follows immediately from Theorem 3 and the results of $\S 1$, extends Theorem 4.

Theorem 5. (i) If $s_{n} \rightarrow \rho(B, \lambda, \mu+\delta)$ then $s_{n} \rightarrow \rho(C, \delta)(B, \lambda, \mu)$;
(ii) There is a sequence whose $(C, \delta)(B, \lambda, \mu)$ limit exists but whose ($B, \lambda, \mu+\delta$) limit does not exist.

References

1. D. Borwein, On methods of summability based on integral functions, II, Proc. Cambridge Philos. Soc. 56 (1960), 125-131.
2. G. H. Hardy, Divergent series (Oxford, 1949).
3. M. Riesz, Sur un théorème de la moyenne et ses applications, Acta Sci. Math. (Szeged) 1 (1923), 114-126.
4. W. W. Rogosinski, On Hausdorff's methods of summability, II, Proc. Cambridge Philos. Soc. 38 (1942), 344-363.
5. B. L. R. Shawyer, Iteration products of methods of summability and natural scales, Manuscripta Math. 13 (1974), 355-364.
6. -_On the product of the Cesàro and Borel-type methods of summability, J. London Math. Soc. (2) 7 (1973), 111-116.

The University of Western Ontario,

London, Ontario

