Core principles for infection prevention in hemodialysis centers during the COVID-19 pandemic

Gang Chen MD1, Yangzhong Zhou MD2, Lei Zhang MD2, Ying Wang MD1, Rong-rong Hu MD1, Xue Zhao MD1, Dan Song1, Jing-hua Xia1, Yan Qin MD1, Li-meng Chen MD1 and Xue-mei Li MD1
1Nephrology Department, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, China and 2Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, China

To the Editor—The COVID-19 outbreak began at the end of December 2019, and >600,000 confirmed cases had been reported worldwide by the end of March 2020. The World Health Organization declared a global pandemic. Nosocomial transmission was severe in some locations, and the burden to the health system was extreme. Hemodialysis centers, which generally serve high volumes of highly mobile dialysis patients, have an exceptionally high risk of exposure during this outbreak period. In a general tertiary-care hospital, dialysis centers routinely accept patients from outpatient clinics and emergency rooms, further adding to the difficulty of preventing nosocomial infection. Dialysis patients, commonly regarded as immune compromised, are likely to develop severe illness as a result of close contact in a medical unit.

Droplet spread and close contact are the main routes of COVID-19 transmission. Thus, the hemodialysis center in our hospital implemented multiple strategies for infection prevention, including area management and integrated symptom monitoring, in the context of this pandemic.

Based on various levels of exposure to the mobile population, our hospital environments were classified as low-risk, medium-risk, high-risk, and extremely high-risk, and the dialysis center belongs to the high-risk category. We avoid moving across the area by designing a specific walking route for our patients entering the hemodialysis center. Medical staff wears personal protective equipment (PPE) when inter-area contact is inevitable. For example, N95 masks and protective glasses are required when entering the fever clinic. We advise the use of hand sanitizer whenever staff return to the hemodialysis center. In the dialysis center, a 1-way route is followed by our patients, and mask-wearing and hand sanitizing by the patients are ensured. During the dialysis session, we provide necessary education on maintaining social distancing and self-protection. Between the 2 dialysis shifts, we strictly leave at least 30 minutes for environmental and air disinfection, and we utilize a chlorine-containing disinfectant to clean our dialysis facilities.

We monitor and respond to our regular patients’ symptoms in an integrated way. Between the dialysis sessions, we strictly record the body temperatures and any suspicious respiratory symptoms of our patients. For patients referred from other departments in the hospital, we collect records of their contact history, temperature, and potential warning symptoms before admission. Based on this information, all of our patients are classified into 3 categories (Table 1). A negative SARS-CoV-2 swab test is needed for patients in category C before their dialysis session can be scheduled. In emergency cases, we perform continuous renal replacement therapy (CRRT) in a separate place, preferably in a negative-pressure ward, before completely ruling out COVID-19 for these patients. Notably, patients with a positive swab test are sent to designated hospitals for further treatment.

Medical staff are strictly required to maintain hand hygiene and to wear a mask at work. N95 masks and protective goggles are used when operating CRRT for patients in category C. The equipment used is disinfected between patients, and medical waste is packed and labeled separately to avoid potential contamination. The waste liquid generated during CRRT is discharged according to the requirements of the medical wastewater discharge standards.

In addition to the strategies summarized above, we promote work–life balance for staff and encourage patients to take the initiative to participate. Our hemodialysis center has strived to achieve zero infection during the ongoing COVID-19 outbreak.

Table 1. High-Risk and Suspicious Patient Identification and Classification Management

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Temperature warning</td>
<td>Temperature 37.0–37.2°C in the past 14 d, without other symptoms</td>
<td>Close observation</td>
</tr>
<tr>
<td>B: Symptom warning</td>
<td>Suspicious symptoms (ie, sore throat, cough, and diarrhea, etc) in the past 14 d</td>
<td>Separate dialysis and close observation</td>
</tr>
<tr>
<td>C: High-risk warning</td>
<td>Temperature >37.3°C within 14 d, together with suspicious history, or respiratory symptoms, or chest imaging abnormalities</td>
<td>Screen SARS-CoV-2 swab; send positive patients to the specific hospitals; arrange negative patients for separate dialysis and close observation</td>
</tr>
</tbody>
</table>

Acknowledgments. The work is made possible through an ISN Sister Renal Center Cooperation.

Financial support. No financial support was provided relevant to this article.

Conflicts of interest. All authors report no conflicts of interest relevant to this article.

Author for correspondence: Xue-mei Li MD, E-mail: Li-hmpunch@126.com

Cite this article: Chen G, et al. (2020). Core principles for infection prevention in hemodialysis centers during the COVID-19 pandemic. Infection Control & Hospital Epidemiology, 41: 865–866. https://doi.org/10.1017/ice.2020.189

© 2020 by The Society for Healthcare Epidemiology of America. All rights reserved. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
To the Editor—SARS-CoV-2 nosocomial transmission has been reported among healthcare professionals and patients. However, few studies have focused on nosocomial clusters in elderly patients at high risk of morbidity and mortality.

With >6,600 cases, France is the fourth most affected European country. Edouard Herriot University Hospital (1,100 beds) is the largest emergency hospital in the Lyon area. We report the extremely rapid spread of COVID-19 in a 24-bed geriatric unit.

Epidemiological investigation revealed the existence of 2 potential index cases. The first was a 97-year-old male admitted to the emergency room (ER) with fever and dyspnea on February 29. The nasal swab collected from March 1 with cough and fever on February 1. Infection control measures were performed to contain the intraunit transmission of the SARSCov-2 virus. The infection rate among patients was 20%.

The first secondary case of COVID-19 was diagnosed on March 10, and 5 other cases (including a medical doctor) occurred in the same unit until March 13 (Fig. 1). Strict infection control measures and close monitoring of suspected cases of patients and healthcare professionals were subsequently performed to contain the intraunit transmission of the SARS-CoV-2 virus. The infection rate among patients was 20%. Two patients (28.6%) died on March 14. No additional cases occurred.

The likelihood of other sources of infection remains low, and no cases occurred in other areas of the ward. The area where the cases occurred was not primarily selected for COVID-19 hospitalizations, and only 123 cases had been reported to the Lyon Regional Health Agency as of March 14, for a metropolitan area of 2,300,000 inhabitants.

The rapid spread of nosocomial COVID-19 in this ward confirms the contagiousness of SARS-CoV-2 in healthcare settings and the high mortality rates in this population. The existence of super-shedders has been suggested, which could facilitate cluster emergence.

We wish to stress the urgency of strict application of COVID-19 infection control guidelines in healthcare facilities, particularly in geriatric units.

References

Rapid nosocomial spread of SARS-CoV-2 in a French geriatric unit

Philippe Vanhems MD, PhD1,2, Mitra Saadatian-Elahi PhD1,2, Michel Chuzeville MD3, Elodie Marion MD1, Louise Favrelle PharmD1, Delphine Hilliquin PharmD1, Geraldine Martin-Gaujard MD3, Robin Gourmelon MD3, Mathilde Noaillon MD3, Nagham Khanafer PharmD, PhD1,2 and on behalf of COVID-Outcomes-HCL Consortium

1Service d’Hygiène, Épidémiologie et Prévention, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France. 2Laboratoire des Pathogènes Emergents - Fondation Mérite, Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 21, Avenue Tony Garnier, 69007 Lyon, France and 3Service de Gériatrie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France

To the Editor—SARS-CoV-2 nosocomial transmission has been reported among healthcare professionals and patients. However, few studies have focused on nosocomial clusters in elderly patients at high risk of morbidity and mortality.

With >6,600 cases, France is the fourth most affected European country. Edouard Herriot University Hospital (1,100 beds) is the largest emergency hospital in the Lyon area. We report the extremely rapid spread of COVID-19 in a 24-bed geriatric unit.

Epidemiological investigation revealed the existence of 2 potential index cases. The first was a 97-year-old male admitted to the emergency room (ER) with fever and dyspnea on February 29. The nasal swab collected from March 1 with cough and fever on February 1. Infection control measures were performed to contain the intraunit transmission of the SARS-CoV-2 virus. The infection rate among patients was 20%.

The first secondary case of COVID-19 was diagnosed on March 10, and 5 other cases (including a medical doctor) occurred in the same unit until March 13 (Fig. 1). Strict infection control measures and close monitoring of suspected cases of patients and healthcare professionals were subsequently performed to contain the intraunit transmission of the SARS-CoV-2 virus. The infection rate among patients was 20%. Two patients (28.6%) died on March 14. No additional cases occurred.

The likelihood of other sources of infection remains low, and no cases occurred in other areas of the ward. The area where the cases occurred was not primarily selected for COVID-19 hospitalizations, and only 123 cases had been reported to the Lyon Regional Health Agency as of March 14, for a metropolitan area of 2,300,000 inhabitants.

The rapid spread of nosocomial COVID-19 in this ward confirms the contagiousness of SARS-CoV-2 in healthcare settings and the high mortality rates in this population. The existence of super-shedders has been suggested, which could facilitate cluster emergence.

We wish to stress the urgency of strict application of COVID-19 infection control guidelines in healthcare facilities, particularly in geriatric units.

References

© 2020 by The Society for Healthcare Epidemiology of America. All rights reserved. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.