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The Long and Winding Road to
Gamma-Amino-Butyric Acid as
Neurotransmitter
Massimo Avoli, Krešimir Krnjević

ABSTRACT: This review centers on the discoveries made during more than six decades of neuroscience research on the role of
gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of
Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central
synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA

receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain.
Finally, we briefly address the involvement of GABA in neurological conditions that encompass epileptic disorders and mental retardation.

RESUMÉ: Le chemin long et sinueux pour que le GABA soit reconnu comme un neurotransmetteur. Cette revue est axée sur les
découvertes réalisées durant plus de six décennies de recherche en neurosciences sur l’acide gamma-aminobutyrique (GABA) comme
neurotransmetteur. À cet effet, nous mettons une emphase particulière sur le rôle significatif de chercheurs canadiens dans ce domaine de
recherche. En prenant comme point de départ les premières études qui ont établi que le GABA était un neurotransmetteur au niveau de
synapses centrales, nous faisons le sommaire des résultats identifiant le récepteur GABA comme étant une cible thérapeutique ainsi que des
données plus récentes montrant que la signalisation du récepteur GABAA joue, de façon surprenante, un rôle actif dans la synchronisation
du réseau neuronal, tant au cours du développement que dans le cerveau adulte. Finalement, nous traitons brièvement du rôle de GABA
dans les maladies neurologiques incluant les troubles épileptiques et l’arriération mentale.
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More than sixty years after the discovery that gamma-amino-
butyric acid (GABA) is a major inhibitory transmitter in the brain,
this article reviews its history, with special emphasis on the
significant involvement of Canadian scientists. It is now well-
established that GABA is the main inhibitory neurotransmitter in
the adult forebrain.1 Once released from interneuronal terminals,
it activates pre- and postsynaptic GABA receptors, which are
categorized into three types: A, B and C.1,2 GABAA receptors
activate ionotropic anionic channels while GABAB receptors are
metabotropic, acting through second messengers. In addition,
presynaptic GABAB receptors control transmitter release from
excitatory and inhibitory terminals whereas such function remains
controversial for GABAA receptors.3 GABAC receptors, which
activate ionotropic channels, are presumably confined to the
retina in the adult,4 though inhibitory functions in the adult
hippocampus have been reported.5

GABAA receptors in various regions of the brain have different
subunit compositions with specific functional and pharmacologi-
cal characteristics.6,7 Moreover, GABAA receptors are located
both synaptically (low affinity) and extra-synaptically (high
affinity), the latter being activated by spillover of synaptically
released GABA; these two categories of receptors are believed to
mediate phasic and tonic inhibition, respectively.8-10 Our review
is directed to the early steps that established the function of GABA
as an inhibitory neurotransmitter11 as well as on more recent
evidence pointing to GABAA receptor signaling as a powerful

mechanism underlying neuronal network synchronization both
during development12 and in the adult brain.13 Indeed, several
studies have identified a paradoxical synchronizing role played by
GABAA receptors in cortical structures. Along this road we also
discuss the ability of several clinically relevant drugs to modulate
GABAergic function and the involvement of this neurotransmitter
in neurological disorders.

ESTABLISHING GABA AS THE MAJOR INHIBITORY

NEUROTRANSMITTER

The standard criteria for identification of a neurotransmitter
are: (i) its presence in presynaptic neurons; (ii) its release from
these presynaptic terminals following activation of these
neurons; (iii) its ability to mimic the synaptic response when
exogenously applied; and (iv) the ability of agonists or antagonists
to enhance or block, respectively, both the response induced by
presynaptic terminal activation and that evoked by application of
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the candidate substance.14,15 It took nearly two decades for
GABA to comply with these criteria. Almost simultaneously, in
November 1950, three independent studies reported the presence
of large amounts of GABA in amphibian and mammalian
brains.16-18 However, while GABA is readily obtained by alpha-
decarboxylation of glutamic acid - the most prominent amino-acid
in brain - as an omega amino-acid it cannot be used for the
synthesis of proteins and peptides; its function, therefore,
remained a matter of speculation for several years.

The first clarifying event came about when the Austrian
zoologist Ernst Florey happened to test mammalian brain extracts on
the crayfish abdominal stretch receptors.19 Powerful suppression of
the spontaneous firing of the receptor neuron led Florey to conclude
that the brain extracts contained a very effective inhibitory agent,
which he appropriately named Factor I. To identify the chemical
nature of Factor I, he came to Montreal, where there followed
several major developments. Working in KAC Elliott’s neuro-
chemistry laboratory at the Montreal Neurological Institute, Hugh
McLennan and Florey used the ‘cortical cup’ technique pioneered
by Elliott and Jasper20 to show that Factor I was released from the
cat’s brain in situ 21 and that topical applications of Factor I could
depress transmission both in sympathetic ganglia and in the lumbar
spinal cord.21,22 Subsequently, after an exhaustive search for active
brain constituents, Elliott’s group concluded that GABA accounted
for most of Factor I inhibitory action on the crayfish receptor
neuron.23,24 In support of a functional role for GABA came several
studies by Herbert Jasper: first, showing depressant effects of
GABA on spontaneous spindle waves and evoked potentials
obtained with electroencephalogram (EEG) recordings from the
cerebral cortex;25 and then that the release of GABA from the cortex
consistently varied with electrographic activity.26,27

In other respects, further progress was anything but straight-
forward. In Canada, two of the leaders in the field, Florey and
McLennan, found reason to believe that Factor I and GABA were
not identical.28 In Australia, following up on these authors’ earlier
report demonstrating that Factor I inhibits transmission in the
spinal cord, Curtis et al. applied GABA by iontophoresis from
micropipettes to a variety of neurons in the feline spinal cord.29

GABA (and some related amino acids) consistently depressed
neuronal activity; however, for a number of reasons – including
the apparent lack of an inhibitory post-synaptic potential (IPSP)-
like hyperpolarizing action and resistance to antagonism by
strychnine, known as an effective blocker of spinal inhibition -
they concluded that the effects of GABA action were non-
specific. A few years later, however, a similar iontophoretic
approach, testing single units in the neocortex and cerebellum, led
Krnjević and Phillis to propose that GABA was most likely to be
the inhibitory transmitter in the brain.30 This view was soon
supported by the demonstration that (i) the GABA content of
individual synaptosomes was sufficient to inhibit cortical cell
firing31 and (ii) stimulation of the neocortex27 or cerebellum32

caused GABA release. Compelling evidence for GABA’s role as
inhibitory transmitter came with the demonstration that its effects,
when iontophoretically applied to cortical33,34 cuneate35 and
Deiters neurons36, had characteristics (e.g., reversal potentials)
similar to those of the IPSPs generated by these cells.

As further mentioned in the following sections, many con-
vulsants act by blocking inhibitory transmission. Indeed, one
of the best known, picrotoxin, had proved to be an effective
blocker of Factor I and GABA’s inhibitory action on the stretch

receptor neuron37,38 as well as on mammalian brain stem
neurons.39,40 Another Canadian, RH Manske - working at the
National Research Council Laboratories in Ottawa - had
previously discovered bicuculline, the more direct antagonist of
GABA receptors, during his systematic investigations of plant
alkaloids. In 1933, he identified an unknown compound in the
root bulbs of the common Canadian spring flower, Dutchman’s
breeches (Dicentra cucularia), which he named bicuculline.41

Testing samples of bicuculline provided by Manske, pharmaco-
logists at the University of Toronto shortly after found that bicu-
culline was a powerful convulsant when administered to frogs and
rabbits.42 Nothing further happened with bicuculline until 1970
when, after testing various known convulsants, Curtis et al.
reported that bicuculline not only blocked inhibition in the
central nervous system (CNS) but was a very effective GABA
antagonist.43 Thus, by the early 1970s, GABA had become widely
accepted as the principal inhibitory neurotransmitter, especially in
the brain.44

GABA RECEPTORS AS TARGETS FOR DRUGS

Having established the role of GABA as the main inhibitory
transmitter at central synapses, researchers tried to identify the
interactions occurring between this receptor and neurotropic drugs
or endogenous substances. In the 1970s, several studies revealed
that benzodiazepines could enhance GABAergic inhibition in the
CNS,45-47 and led to the identification of a benzodiazepine site in
the GABA receptor.48,49 At that time, it was still unclear whether
GABA receptors consisted of structurally and functionally
different subtypes: the metabotropic GABAB receptor was
not discovered before the end of that decade.50 Nonetheless,
electrophysiological, biochemical and behavioral data clearly
indicated that benzodiazepine ligands modulated ionotropic
GABAergic function. Subsequent molecular and pharmacological
studies demonstrated an allosteric ‘benzodiazepine site’ on most
α subunit-containing GABAA receptors.51

Over the last four decades, additional agents have been shown to
modulate GABAA receptor function and it appears that these actions
depend on separate binding sites.51 These include, barbiturates
(which depress neuronal activity and, at higher doses, may have a
direct action on the GABAA receptor),52-57 steroid metabolites58 and
neurosteroids,59,60 ethanol61-63 as well as propofol.64

DECREASING GABA FUNCTION LEADS TO EPILEPTIFORM

ACTIVITY AND SEIZURES

In 1954, two independent groups reported seizures in infants
fed with a formula that was accidentally deficient in pyridoxine
(also known as vitamin B6); pyridoxine is the coenzyme for the
synthesis of GABA from glutamic acid via the enzyme glutamic
acid decarboxylase.65,66 Further studies showed that GABA
prevented seizures and that drugs interfering with GABA
synthesis could induce convulsions.67,68 This evidence was later
corroborated by experiments aimed at identifying the cellular and
pharmacological mechanisms underlying epileptiform synchro-
nization. First, it was shown that drugs capable of inducing focal
interictal-like discharges preparations in vivo69,70 and in vitro71

were GABAA receptor antagonists, and that the occurrence of this
type of epileptiform activity was characterized by reduction in
recurrent and/or feed-forward inhibition.72,73 Second, it was
reported that the onset of electrographic seizures induced by
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repetitive activation of hippocampal inputs are associated with
rapid fading of IPSPs.74 Shortly later, Kostopoulos et al. found
that cortical recurrent inhibition, which was maintained during an
EEG pattern of generalized spike-wave discharge, became mark-
edly reduced before the onset of electrographic tonic-clonic
seizures.75 Therefore, early in 1980s, weakening of GABAA

receptor signaling was regarded by many neuroscientists as the
main cause of seizure activity.

ROLE OF GABA IN SYNCHRONIZING ADULT NEURONAL

NETWORKS

Early intracellular recordings from thalamic relay cells in vivo
highlighted the potential role of presumptive GABAergic IPSPs in
causing what was known as rebound excitation, and ultimately
leading to low frequency (7-14Hz) thalamocortical oscillations such
as those associated with sleep spindles.76,77 A major advance in
understanding the mechanism of EEG spindles and the switch
between waking and sleep came with the demonstration by
Steriade’s group at Laval University (Québec) that spindle genera-
tion depends on the activity of GABAergic inhibitory neurons in the
reticular thalamic nucleus.78,79 Along with the experiments per-
formed in vitro by Llinas,80 evidence obtained by several research
groups during the last three decades have shown the importance of
GABA receptor-mediated IPSPs for hyperpolarizing thalamocor-
tical neurons at membrane potential levels that inactivate
low-threshold Ca2+ conductances and activate the Ih current.81-84

Depolarizing effects of GABA were identified early in the
spinal cord;85,86 but GABAA receptor-activation was later
observed in hippocampal pyramidal cells, most often following
activation of receptors located on the dendrites.87,88 These
depolarizing effects were interpreted to reflect a higher con-
centration of Cl- in the dendrites than in the soma of principal
cells, where hyperpolarizations continued to be recorded.89

Subsequent experiments have shown that GABAA receptor-
mediated depolarizations in cortical neurons can also be generated
by HCO3

−, which also passes through the anionic channels that are
opened during inhibition90,91 but with an equilibrium potential
more positive than for Cl−.92-94 The depolarizing effect of HCO3

−

and K+ efflux and resulting gamma-frequency oscillations are
sharply enhanced in the young hippocampus when carbonic
anhydrase increases cytoplasmic HCO3

−.95 In addition, these
GABAA receptor-mediated, HCO3

−-dependent depolarizations can
also activate voltage-gated Ca2+ channels.96

As mentioned in the previous section, studies published
between the 1950s and 1980s demonstrated that reducing GABAA

receptor signaling can lead to seizures in vivo and interictal-like
activity in vitro. This view was challenged by reports that
epileptiform synchronization occurs during pharmacological
conditions that do not interfere with GABAA receptor function
and, in some cases, they appeared to enhance it.13 Specifically,
epileptiform discharges were observed during application of
Mg2+ free-medium in concomitance with the preservation of
IPSPs.97,98 In addition, it was shown that cortical networks made
hyperexcitable by reducing the function of specific K+ channels
could generate synchronous, propagating neuronal activity, even
when ionotropic glutamatergic transmission was blocked.99-102 It
was also found that under these pharmacological conditions, each
synchronous event was associated with elevations in extracellular
potassium ion concentration ([K+]).103-105 Interestingly, shortly

before, Mary Morris at the University of Ottawa had found in the
hippocampal slice preparation that selective activation of GABAA

receptors caused increases in extracellular [K+].106 This finding
was later elucidated in Kai Kaila’s laboratory; specifically, it was
shown that excessive activation of GABAA receptors leads to
accumulation of Cl− inside the postsynaptic cells and to a sub-
sequent increase in K-Cl co-transporter (KCC2) activity that
makes K+ and Cl- move to the extracellular space.107

GABA RECEPTOR SIGNALING AND HIGH FREQUENCY

OSCILLATIONS

Synchronization of cortical interneurons also plays a critical
role in the generation of fast EEG oscillations in the mature CNS;
these include beta-gamma (at 20–80Hz) and high frequency
oscillations (>80Hz, so called ripples).108 Both beta-gamma
rhythms and ripples - which are recorded from several cortical
structures including those of the limbic system109-112- are
implicated in higher brain processes such as attention, sensor-
imotor integration, consciousness, learning and memory.113,114

In vivo studies have shown that ripples represent population IPSPs
generated by principal neurons entrained by synchronously active
interneuronal networks.108,112,115

Similar fast oscillations are reproduced in vitro by bath
applying the cholinergic agonist carbachol, high-K+, kainic acid,
or metabotropic glutamate receptor agonists116-119 as well as by
electrical tetanic stimulation.120,121 These studies showed that fast
activities reflect the synchronization of inhibitory GABAergic
networks,122,123 with or without the contribution of excitatory
glutamatergic networks and gap junctions.124-126 The hypothesis
that gamma oscillations reflect interactions within interneuron
networks is also supported by computer modeling.127,128

GABA AND BRAIN MATURATION

GABAA receptor-mediated depolarizations in the developing
CNS were first reported in rabbit hippocampus.129 However,
depolarizing GABAA receptor-dependent depolarizations were
clearly established in immature brain tissue when Ben-Ari et al.130

found giant GABAA receptor-mediated depolarizing potentials
that were spontaneously generated by rat CA3 pyramidal cells
during the first 12 days of postnatal life. It was later shown that, at
least in rodents, these GABAergic potentials are consistently
recorded during the first post-natal week and that, as the brain
matures, they gradually change to hyperpolarization,131,132 which
is due to maturation of the outward Cl− transporter KCC2.95,133 In
line with this view, synaptic response generated by glycine, which
are also Cl− mediated, change from depolarizing to hyperpolarizing
during ontogeny.

GABAergic excitation in the immature CNS may play a role in
the growth, differentiation, maturation and preservation of
neurons as well as in establishing their synaptic connectivity
during development.12 These processes depend on Ca2+ influx
that is presumably the main signaling system causing oscillations
of cytoplasmic calcium ion concentration and activation of several
Ca2+ -binding proteins. Since glutamatergic AMPA receptor-type
pathways are not operative in the immature brain, GABAA

receptor-mediated depolarizing currents in concert with those
caused by activation of N-methyl-D-aspartate (NMDA) receptors,
which are present quite early on, may cause significant Ca2+

influx.12
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GABA AND TONIC INHIBITION

Activation of high affinity GABAA receptors, localized extra-
or perisynaptically, also causes tonic inhibition; these receptors
have distinct, subunit compositions that include the δ α4, α5 and
α6 subunits.8-10,134-136 This tonic (‘always on’) current appears to
be activated by taurine in the mouse ventrobasal thalamus, thus
reducing the excitability of thalamocortical relay neurons.137

Neurosteroids have been proposed to modulate preferentially
tonic rather than phasic inhibition.60,138-140 Indeed, neuroactive
steroids may play a role in catamenial epilepsy and in temporal
lobe epilepsy, as suggested by their ability to delay the estab-
lishment of this chronic condition following pilocarpine-induced
status epilepticus in rodents.141

Over the last decade tonic currents have also been proposed to
be involved in the potentiating effects of ethanol on GABAA

receptor-mediated inhibition.142 For instance, in the hippocampus,
low concentrations of ethanol selectively augment the tonic
inhibitory currents mediated by δ subunit-containing GABAA

receptors.143 In addition, it has been reported that chronic inter-
mittent ethanol treatment causes a switch of its actions in the
hippocampus from extrasynaptic to synaptic GABAA receptors.144

GABA AND NEUROLOGICAL DISORDERS

Dysfunction of GABAA receptor signaling - such as loss or
rearrangement of inhibitory interneurons, changes in subunit
composition, intracellular ionic homeostasis, etc… - has been
documented in several neurological conditions including epileptic
disorders145-147 and mental retardation conditions such as the
Fragile X148-150 and Down syndromes.151-153 Because a relative
excess of GABAergic inhibition may be a factor in conditions
associated with memory loss such as aging,152 the findings that
both synaptic plasticity and long term memory can be rescued by
agents reducing GABA-mediated inhibition154-157 indicate
potential lines of treatment.

To review all the studies published on these topics is beyond
the purpose of this review. However, one should pay attention to
the evolving concept of the role played by GABA under some
specific pathological conditions such as the generation of seizures
in epileptic patients and animal models. For instance, and contrary
to expectations from evidence obtained in the 1970s by employing
acute models of focal epileptiform discharges,70 the onset of
seizures recorded from epileptic patients undergoing presurgical
electrophysiological investigations is characterized by marked
reduction of unit firing.158,159 In addition, recent data obtained
from animal models of focal epilepsy, indicate that seizure onset is
accompanied by increased activity of inhibitory interneurons that
may, in fact, silence principal neurons.160-162 This paradoxical
role of inhibition in initiating seizures is in line with evidence
obtained from several in vitro and in vivo acute studies that have
demonstrated the participation of GABAergic, often depolarizing,
currents in both the initiation and maintenance of prolonged
periods of epileptiform synchronization.13,163-167 The exact
mechanisms by which GABAA receptor signaling facilitates
seizure activity are still under scrutiny but evidence obtained
in vitro from animal preparations13,103,104 and slices of the human
dysplastic cortex147 point at increases in extracellular [K+] caused
by GABA release from interneurons at the onset of seizure
activity. It is indeed well established that elevating extracellular
[K+] increases excitability and the occurrence of epileptiform

discharges both in vivo and in vitro.168-171 Evidence that GABAA

receptor signaling can promote seizures may explain the
disappointingly limited efficacy of antiepileptic drugs designed to
potentiate GABA receptor-mediated inhibition.

CONCLUDING REMARKS

GABA has not ceased to surprise us. Throughout the brain, it is
present in, and released from a variety of inhibitory neurons with
different characteristics, and it acts on an even greater variety of
receptors. Indeed, such major brain structures as the cerebellar
cortex and the striatum consist of mostly GABAergic neurons
on which depends efficient locomotion. However, albeit well-
established, GABA’s inhibitory function can differ greatly
according to the type and composition of the targeted receptors
and is, moreover, astonishingly malleable. Not only is it suscep-
tible to modulation by a rich variety of drugs - many of which are
in extensive clinical use – but, in addition, is characterized by a
quite unexpected plasticity, arising from its membrane action, the
activation of anionic channels; whether the action is mainly inhi-
bitory or excitatory depends on the predominance of the relative
contributions of chloride and bicarbonate ions, and of course the
transmembrane Cl- gradient, determined either locally or
generally by the direction of net Cl- transport; all these factors are
indeed subject to genetic, developmental and pathological chan-
ges. These characteristics help to explain why GABA dysfunction
is manifested in so many different ways by neurological patients.
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