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Abstract

The LCF system was the first mechanical theorem prover to be user-programmable via a

metalanguage, ML, from which the functional programming language Standard ML has been

developed. Paulson has demonstrated how a modular rewriting engine can be implemented

in LCF. This provides both clarity and flexibility. This paper shows that the same modular

approach (using higher-order functions) allows transparent optimisation of the rewriting

engine; performance can be improved while few, if any, changes are required to code written

using these functions. The techniques described have been implemented in the HOL system,

a descendant of LCF, and some are now in daily use. Comparative results are given. Some

of the techniques described, in particular ones to avoid processing parts of a data structure

that do not need to be changed, may be of more general use in functional programming and

beyond.

1 Introduction

A theorem prover is a computer program that automatically proves theorems in

some logic or assists a human in doing the same. A fully expansive theorem prover

is one that generates proofs entirely in terms of primitive inferences of the logic; no

metatheoretic results are used and no ‘short-cuts’ are taken in the implementation.

If a theorem prover is not fully expansive it will be referred to as being partially

expansive.

LCF is a fully expansive interactive theorem prover developed at the University of

Edinburgh in the 1970s (Gordon et al., 1979). Amongst its distinguishing features

is the use of a general-purpose programming language as a metalanguage in which

new proof procedures can be written. Strong typing in the language is used to force

all proof procedures to be fully expansive. This is critical if non-logicians are to

be allowed to write their own proof procedures without jeopardising the logical

soundness of the system.

User programmability has proved to be a very popular feature of LCF and its

descendants. It allows new derived inference rules to be written for the logic, making
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interactive theorem proving less tedious. Moreover, it has allowed other formalisms

and languages to be embedded in the logic via a formal semantics. Specialised proof

rules can be implemented for these formalisms.

The major drawback with forcing proofs to be fully expansive is that generation of

these proofs can be far more costly in computational resources than implementations

that take short-cuts. However, some means of ensuring soundness is essential if users

are to be allowed to write their own procedures. An alternative to full expansion

is formal verification of the correctness (soundness) of the new proof procedures.

This can be very time consuming for the user and requires additional skills. Though

there have been investigations into this approach (Davis and Schwartz, 1979; Boyer

and Moore, 1981; Allen et al., 1990; Slind, 1992), it has not yet been shown to be

practical. Many users would not write their own proof procedures if they had to

verify them or if they could not be certain that the system will prevent them from

doing anything unsound.

So, at least for the moment, there are good reasons for investigating possible

optimisations to the LCF approach. The author has proposed a hybrid approach

(Boulton, 1993) similar to the notion of lazy evaluation. This is applicable to general

reasoning. That paper also considers an optimisation technique that is restricted to

equational reasoning. In the current paper the technique is separated from the use of

laziness and developed further. Optimisation of equational reasoning is significant

because such reasoning is ubiquitous. Equational reasoning manifests itself most

commonly as rewriting, but it is also involved in many other theorem proving

operations.

In 1983, Paulson described an implementation of a modular rewriter in LCF.

This was implemented using the higher-order functions of LCF’s metalanguage.

Components of the rewriter were composed using these higher-order functions

(combinators). This modularity made the code easy to follow and gave users the

flexibility to construct their own rewriters. Paulson’s code is still in use today. The

main result of this paper is that the modularity also allows transparent optimisation,

i.e. optimisation without the higher-level code having to be changed.

The remainder of this section is an overview of fully expansive theorem proving,

the HOL system, and equational reasoning. Section 2 describes Paulson’s conver-

sions. Section 3 presents a rewriting example that illustrates the inefficiencies of

conversion-based rewriting. The remaining sections develop optimisations for con-

versions, present some results (section 8), discuss related work (section 9), and draw

conclusions (section 10). The presentation assumes that the reader is familiar with

functional programming and the basic features of the Standard ML programming

language.

1.1 Fully expansive theorem provers

Ideally, the primitive inferences of (some formulation of) a logic are the minimal set

of rules required to provide the deductive power expected of the logic. In practice,

some of the rules taken as primitive may be derivable from others, i.e. the set of

rules is not minimal. This may simply be for convenience or because no-one has seen
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the derivation. However, to call high-level rules ‘primitive’ is probably undesirable

because to do so would blur the distinction between primitive and derived rules.

Wong (1995) uses the term basic inference rules to refer collectively to the real

primitive rules and the derived rules taken as primitive. As a general principle, the

primitive rules should be simple and talk about only the very basic constructs of

the logic.

A typical primitive rule is modus ponens:

Γ1 ` t1 Γ2 ` t1 ⇒ t2

Γ1 ∪ Γ2 ` t2

This states that if a term t1 holds under assumptions Γ1 and that under assumptions

Γ2, t1 implies t2, then t2 holds under the set-theoretic union of Γ1 and Γ2.

A proof produced by a fully expansive theorem prover can be viewed as a tree

with axioms and pre-proved theorems as leaf nodes, and applications of primitive

inference rules as internal nodes. A partially expansive theorem prover may replace

certain subtrees of the proof by applications of metatheorems. Metatheorems are

properties that cannot be expressed directly in the logic but are believed to be valid,

e.g. “Two conjunctions are equivalent if the sets of conjuncts are equal”. An instance

of this metatheorem is:

(x ∧ y) ∧ z = y ∧ (x ∧ (z ∧ x))

Generating a proof entirely from primitive inferences provides security since, by

use of suitable implementation techniques, the critical code of the theorem prover

can be limited to the implementation of the primitive inference rules. The major

drawback of the approach is that fully expansive theorem provers tend to be slow

in comparison to systems that exploit metatheorems or implement derived rules of

the logic as primitives. This paper describes work to improve the efficiency of a fully

expansive theorem prover while avoiding major changes to the code. A primary aim

was to retain full expansion to primitive inferences, so the significant decrease in

computational complexity that might be achieved by use of metatheorems has not

been obtained.

1.2 The HOL system

The HOL system (Gordon and Melham, 1993) is a direct descendant of LCF, used at

many academic and industrial sites around the world for work in formal methods.

The main difference between HOL and LCF is in the logic supported. LCF was

designed to mechanise a polymorphic version of Scott’s ‘Logic for Computable

Functions’, whereas HOL supports a version of classical higher-order logic.

The higher-order logic supported by the HOL system is a version of Church’s

simple theory of types (Church, 1940), adapted to allow type variables in the logic

(polymorphism). Every term in the logic has a unique type, though the type may

be polymorphic (contain variables). Higher-order functions are allowed. These are

functions that take other functions as arguments or return a function as their result.

In particular, it is possible to quantify over functions.
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The metalanguage of LCF is called ML. It is a strongly typed functional pro-

gramming language that uses eager evaluation, i.e. all arguments to a function are

evaluated before the function application itself is evaluated. The Standard ML pro-

gramming language (Milner et al., 1990) is derived from it. Like LCF, HOL and

ML were originally implemented in Lisp. A more recent version of the HOL system

(Slind, 1991) is written in Standard ML and also uses it directly as its metalanguage.

The Standard ML syntax will be used in this paper. Standard ML is an impure func-

tional language: it has imperative features such as mutable data and a sequencing

operation.

The terms of higher-order logic have types. A type in the HOL system is either a

type variable denoted by a name beginning with a prime (’), or an application of a

constructor to zero or more types. The number of arguments taken by a constructor

is known as its arity. The basic types such as bool (Booleans) and num (Peano

natural numbers) are constructors of arity zero. The basic types, cartesian-product

types and function types are given special treatment by the pretty-printer, e.g.:

()bool is printed as bool

(()bool, ()num)prod is printed as bool * num

(’a, ’a)fun is printed as ’a -> ’a

The last example denotes a function from some type to itself. The variable ‘’a’ can

be instantiated to any type. In this paper, HOL types are written in quotation marks

with a leading colon, e.g. ‘‘:bool‘‘. HOL terms may also be quoted but without a

colon.

A HOL term can be a constant, a variable, a function application, or a λ-

abstraction:

t :: = c | v | t t′ | λv. t
Constants and variables are atomic. They consist of a name and a type. Function

applications (also called combinations) consist of two terms, one a function and the

other an argument. An abstraction consists of a variable (the bound variable) and

another term (the body). It is assumed that the reader is familiar with these concepts

from the λ-calculus. So, a term is a tree structure in which each of the internal

nodes is either a combination or an abstraction. Each leaf node is either a constant

or a variable. The structure of these trees plays a vital rôle in the optimisation of

equational reasoning.

It is assumed that the reader has some basic familiarity with set theory and logic.

The symbols ¬, ∧, ∨,⇒,⇔, ∀, and ∃ are used for negation (‘not’), conjunction (‘and’),

disjunction (‘or’), implication, if-and-only-if, universal quantification (‘for all’), and

existential quantification (‘there exists’), respectively. In HOL, the notation ‘‘∀x. b‘‘
is actually an abbreviation for the application of a function ‘∀’ to a λ-abstraction:

‘‘∀ (λx. b)‘‘, and similarly for ‘∃’. Some function constants are displayed as infixes,

e.g., ‘‘x ∧ y‘‘ is syntactic sugaring for the term ‘‘(∧ x) y‘‘.

The logical types, terms (term) and theorems (thm) of HOL are implemented as

data types in ML. Rules of inference are functions over theorems. Terms are parsed

and printed as quotations, e.g. ‘‘n+1‘‘. Theorems in the HOL logic are sequents. A

sequent is a pair with a set of formulas (the hypotheses) as the first component and
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a single formula (the conclusion) as the second component. In HOL, a formula is

simply a Boolean-valued term. A theorem asserts that the conclusion of the sequent

is a consequence of the hypotheses.

Terms are built up by applying constructor functions to the subterms. ML records

are used for the arguments. For example, an application is constructed by applying

the function mk_comb to a record of two components, one for the operator and one

for the operand. The components are labelled ‘Rator’ and ‘Rand’ respectively. Thus,

a call to construct an application term has the following form:

mk_comb {Rator = . . .,Rand = . . .}
λ-abstractions are constructed in a similar way. There are also corresponding de-

structor functions. For these, ML pattern matching is used to extract the subterms

from the record, e.g.:

val {Rator,Rand} = dest_comb . . .

Here the ‘Rator’ and ‘Rand’ act both as record labels and as the names of variables

to be bound to the subterms.

Theorems are an abstract type. The representation type consists of a list of terms

for the hypotheses paired with a term for the conclusion. The identifiers exported

from the abstract type are the axioms and the primitive inference rules. It is this

abstract type together with the strong typing of ML that ensures that only valid

conjectures can become theorems. Theorems are printed as sequents: The hypotheses

are printed separated by commas, followed by a turnstile, and then the conclusion,

e.g., m < n, n < p ` m < p.

Proofs in the HOL system are typically conducted using the subgoal package.

This allows a conjecture (a goal ) to be broken up into simpler subgoals using

functions called tactics. The system keeps track of the subgoals, and the tactics

contain inference rules that justify the original goal as a theorem given theorems for

the subgoals. Tactics may be combined using higher-order functions called tacticals.

1.3 Equational reasoning

1.3.1 Equivalence relations

A binary relation R on sets X and Y is a subset of the cartesian product X × Y .

For x ∈ X and y ∈ Y , the statement xRy is taken to be true if the pair (x, y) is an

element of R, and is false otherwise. Relations on three or more sets can be defined

in a similar way, but the discussion here will be restricted to binary relations. The

above definition of a binary relation is the set-theoretic view. In HOL it is usual

to consider a binary relation to be a function of two arguments which returns a

Boolean value. Instead of sets, the relation is defined for HOL types.

An equivalence relation R is a binary relation for which both arguments are taken

from the same set (or type) and that satisfies the following properties:

Reflexivity ∀x. xRx
Symmetry ∀x y. xRy ⇒ yRx
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Transitivity ∀x y z. xRy ∧ yRz ⇒ xRz

The higher-order logic implemented by the HOL system has a built-in equivalence

relation, denoted by ‘=’. Actually, it is a function that represents the relation by

mapping pairs of values to true if they are in the relation or to false otherwise. It

is polymorphic and takes its arguments separately rather than as a pair. Thus, its

most general type is ‘‘:’a -> (’a -> bool)‘‘.

1.3.2 Congruences

One normally expects an ‘equality’ to be more than just an equivalence relation. If

two expressions are ‘equal’, one expects to be able to substitute one for the other

when it appears as a subterm of a term. The equality in HOL has just such a

property, expressed by the following congruence rules:

Γ ` x = y

Γ ` f x = f y
(AP_TERM)

Γ ` f = g

Γ ` f x = g x
(AP_THM)

Γ ` t1 = t2

Γ ` (λx. t1) = (λx. t2)
x is not free in Γ (ABS)

1.3.3 Rewriting

Informally, an equation is a term consisting of the application of an equality to two

terms of the same type. In the context of the HOL system it is useful to consider an

equation to be a theorem of the form:

` l E r

where E is a congruence relation. Such a theorem can be used as a rewrite rule:

l −→ r

by matching the left-hand side of the equation against a term and instantiating the

right-hand side appropriately. For example, the theorem:

` x+ y = y + x

can be matched against the term ‘‘(a ∗ b) + (c+ d)‘‘ so that x is instantiated with

the term ‘‘a ∗ b‘‘ and y is instantiated with ‘‘c + d‘‘. The free variables of the

theorem are implicitly universally quantified, so the theorem is equivalent to:

` ∀x y. x+ y = y + x

Specialising the bound variables as determined by the matching, the following

theorem is obtained:

` (a ∗ b) + (c+ d) = (c+ d) + (a ∗ b)
This process is known as rewriting. When congruence rules are available the

rewriting can be done at depth. For example, specialising the free variables of the
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rewrite rule with ‘‘c‘‘ and ‘‘d‘‘ yields the theorem:

` c+ d = d+ c

Using the congruence rule for the operand of a function application (AP_TERM) it is

possible to obtain:

` (a ∗ b) + (c+ d) = (a ∗ b) + (d+ c)

Thus, in effect, the term ‘‘(a ∗ b) + (c + d)‘‘ has been rewritten by applying the

rewrite rule to the second argument of the top-level sum.

For an in-depth presentation of rewriting, see the book by Baader and Nipkow

(1998).

2 Conversions

Equational reasoning in HOL is implemented using ML functions called conversions

as introduced by Paulson (1983). Paulson’s conversions have the ML type:

term -> thm

which is abbreviated as conv. Conversions also have the property that for an

argument t, they return a theorem of the form:

` t = t′

That is, the theorem is an equation, and the left-hand side is the argument term.

Paulson describes some basic conversions and some functions for combining these

to form new conversions, thus allowing sophisticated rewriting strategies to be

developed.

Figure 1 gives some of the code for the HOL implementation of conversions. The

functions given can be used to compose basic conversions into more sophisticated

ones. Examples of basic conversions are application of a rewrite rule to a term,

and beta-reduction. The identity conversion, ALL_CONV, leaves a term unchanged;

it is defined to be the reflexivity rule, REFL. The conversion NO_CONV always fails.

The infix functions THENC and ORELSEC are used for sequencing and alternating

conversions respectively. THENC takes two conversions and produces a conversion

that applies them in succession. The results are combined using the transitivity rule,

TRANS. ORELSEC applies the first conversion, but if this fails the second is applied.

The functions RATOR_CONV, RAND_CONV and ABS_CONV are the ‘congruence’ con-

versions, that is they implement the congruence rules AP_THM, AP_TERM and ABS

(section 1.3.2) as conversions. The function RATOR_CONV applies a conversion to the

operator of a function application (combination), and RAND_CONV applies a conver-

sion to the operand. Similarly, ABS_CONV applies a conversion to the body of an

abstraction, but fails if the bound variable is free in the hypotheses of the theorem

returned by the conversion. This failure is rare because it is unusual for conversions

to return theorems with hypotheses.

As well as RATOR_CONV and RAND_CONV it is useful to have a function COMB_CONV,

which applies a conversion to both the operator and operand of a function appli-

cation. This can be defined in terms of RATOR_CONV, RAND_CONV and THENC, but it
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val ALL_CONV = REFL;

val NO_CONV : conv = fn _ => raise CONV_ERR "NO_CONV";

fun conv1 THENC conv2 : conv =

fn tm => let val th1 = conv1 tm

val th2 = conv2 (rhs (concl th1))

in TRANS th1 th2

end;

fun conv1 ORELSEC conv2 : conv =

fn tm => (conv1 tm handle _ => conv2 tm);

fun RATOR_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "RATOR_CONV"

in AP_THM (conv Rator) Rand

end;

fun RAND_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "RAND_CONV"

in AP_TERM Rator (conv Rand)

end;

fun ABS_CONV conv tm =

let val {Bvar,Body} = dest_abs tm

handle _ => raise CONV_ERR "ABS_CONV"

val Bodyth = conv Body

in (ABS Bvar Bodyth handle _ => raise CONV_ERR "ABS_CONV")

end;

Fig. 1. Original conversions for HOL.

fun COMB_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "COMB_CONV"

in MK_COMB (conv Rator, conv Rand)

end;

Fig. 2. Function for applying a conversion to both operator and operand.

is more efficient to make it a basic conversion function. The definition is given in

figure 2. The MK_COMB rule is a combination of the two congruence rules for function

applications. It can be more efficient than separate calls to AP_TERM and AP_THM.

These basic conversions can be used to define term traversal strategies for rewriting

(depth rewrites; see section 1.3.3). First it is convenient to define a function for

applying a conversion to all the subterms of a term (figure 3). If the term is a

function application, COMB_CONV is used. If it is an abstraction, the conversion is

applied to the body. Otherwise, the term is left as it is.
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fun SUB_CONV conv tm =

if (is_comb tm) then COMB_CONV conv tm

else if (is_abs tm) then ABS_CONV conv tm

else ALL_CONV tm;

Fig. 3. Function for applying a conversion to subterms.

fun ONCE_DEPTH_CONV conv tm =

(conv1 ORELSEC (SUB_CONV2 (ONCE_DEPTH_CONV conv)) ORELSEC

ALL_CONV) tm;

fun REPEATC conv tm = ((conv THENC REPEATC conv) ORELSEC ALL_CONV) tm;

fun TRY_CONV conv = conv ORELSEC ALL_CONV;

fun TOP_DEPTH_CONV conv tm =

(REPEATC3 conv THENC4

TRY_CONV5

(CHANGED_CONV (SUB_CONV6 (TOP_DEPTH_CONV conv)) THENC7

TRY_CONV8 (conv9 THENC10 TOP_DEPTH_CONV conv)))

tm;

Fig. 4. Depth conversions.

The function ONCE_DEPTH_CONV (figure 4) implements a top-down traversal in

which the conversion is applied at most once to any subterm. The function is

defined recursively. It attempts to apply the conversion to the entire term. If this

succeeds, nothing more is done. Otherwise, the function is applied recursively to

the subterms. In the event that the recursive call fails, the term is left unchanged.

The function TOP_DEPTH_CONV (figure 4) is similar but it attempts to apply the

conversion as much as it can instead of just once on any subterm. It uses auxiliary

functions including CHANGED_CONV which fails if the application of its argument

does not change the term. The subscripts in the bodies of the functions are not part

of the code. They are included for use in the following example.

3 An example using depth rewriting

Suppose a user wants to simplify the term:

λn. (n ∗ 0) + n

using the base cases of the normal recursive definitions of addition and multiplication

over the natural numbers:

0 + x = x (1)

0 ∗ x = 0 (2)

Unfortunately, the equation for multiplication has the ‘0’ in the wrong argument

position, so it is necessary to commute the arguments of ‘∗’ in the term using the
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ONCE_DEPTH_CONV (REWR_CONV <Equation 3>) THENC11

TOP_DEPTH_CONV (REWR_CONV <Equation 1> ORELSEC REWR_CONV <Equation 2>)

Fig. 5. Conversion to rewrite the example.

ABS

n COMB

COMB n

+ COMB

COMB 0

∗ n

�� @@

    
    

````
```̀

�� @@

�� @@

�� @@

Fig. 6. The structure of the term ‘‘λn. (n ∗ 0) + n‘‘.

following rule:

x ∗ y = y ∗ x (3)

The user could indicate explicitly where, within the term, rewrites are to take place,

but even for a small term that is very tedious (unless a graphical user interface is

available). It is therefore usual in HOL to use a function such as TOP_DEPTH_CONV

that applies the specified rewrites everywhere it can within the term. However,

TOP_DEPTH_CONV cannot be used with equations like (3) because it will loop due to

the use of REPEATC. The usual solution to this is to use ONCE_DEPTH_CONV (actually

the corresponding tactic) for the commutative law and then TOP_DEPTH_CONV for

the other equations, as illustrated in figure 5.

The structure of the example term is given in figure 6. Table 1 lists the theorems

generated when the conversion in figure 5 is applied. The table is in three parts. The

first part corresponds to the application of ONCE_DEPTH_CONV and the second to the

application of TOP_DEPTH_CONV. The last part is the application of the transitivity

rule that produces an overall result from the first two parts. Transitivity rules

are introduced by using THENC (section 2) to sequence conversions. The rightmost

column of numbers refers to the subscripts in the figures. They indicate the position

in the code at which the corresponding theorem is generated.

It should be clear from Table 1 that many unnecessary theorems are generated

by the conversions, especially redundant combinations of reflexivity and transitivity.

For example, Theorems 24–27 are unnecessary; Theorem 28 could be generated

directly from Theorem 23 using the AP_THM inference rule (see section 1.3.2). The

problem is even more acute when the term being rewritten contains large subterms

that are not changed by the rewriting. Instead of being dealt with by a single
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Table 1. Theorems generated for conventional rewriting

1 ` + = + Reflexivity at 2

2 ` n ∗ 0 = 0 ∗ n Rewriting with Equation 3 at 1

3 ` (+ (n ∗ 0)) = (+ (0 ∗ n)) MK_COMB on 1 and 2 at 2

4 ` n = n Reflexivity at 2

5 ` (n ∗ 0) + n = (0 ∗ n) + n MK_COMB on 3 and 4 at 2

6 ` λn. (n ∗ 0) + n = λn. (0 ∗ n) + n ABS on 5 at 2

7 ` λn. (0 ∗ n) + n = λn. (0 ∗ n) + n Reflexivity at 3

8 ` (0 ∗ n) + n = (0 ∗ n) + n Reflexivity at 3

9 ` (+ (0 ∗ n)) = (+ (0 ∗ n)) Reflexivity at 3

10 ` + = + Reflexivity at 3

11 ` + = + Reflexivity at 6

CHANGED_CONV fails

12 ` + = + Reflexivity at 5

13 ` + = + Transitivity on 10 and 12 at 4

14 ` 0 ∗ n = 0 Rewriting with Equation 2 at 3

15 ` 0 = 0 Reflexivity at 3

16 ` 0 ∗ n = 0 Transitivity on 14 and 15 at 3

17 ` 0 = 0 Reflexivity at 6

CHANGED_CONV fails

18 ` 0 = 0 Reflexivity at 5

19 ` 0 ∗ n = 0 Transitivity on 16 and 18 at 4

20 ` (+ (0 ∗ n)) = (+ 0) MK_COMB on 13 and 19 at 6

CHANGED_CONV succeeds

21 ` (+ 0) = (+ 0) Reflexivity at 8

22 ` (+ (0 ∗ n)) = (+ 0) Transitivity on 20 and 21 at 7

23 ` (+ (0 ∗ n)) = (+ 0) Transitivity on 9 and 22 at 4

24 ` n = n Reflexivity at 3

25 ` n = n Reflexivity at 6

CHANGED_CONV fails

26 ` n = n Reflexivity at 5

27 ` n = n Transitivity on 24 and 26 at 4

28 ` (0 ∗ n) + n = 0 + n MK_COMB on 23 and 27 at 6

CHANGED_CONV succeeds

29 ` 0 + n = n Rewriting with Equation 1 at 9

30 ` n = n Reflexivity at 3

31 ` n = n Reflexivity at 6

CHANGED_CONV fails

32 ` n = n Reflexivity at 5

33 ` n = n Transitivity on 30 and 32 at 4

34 ` 0 + n = n Transitivity on 29 and 33 at 10

35 ` (0 ∗ n) + n = n Transitivity on 28 and 34 at 7

36 ` (0 ∗ n) + n = n Transitivity on 8 and 35 at 4

37 ` λn. (0 ∗ n) + n = λn. n ABS on 36 at 6

CHANGED_CONV succeeds

38 ` λn. n = λn. n Reflexivity at 8

39 ` λn. (0 ∗ n) + n = λn. n Transitivity on 37 and 38 at 7

40 ` λn. (0 ∗ n) + n = λn. n Transitivity on 7 and 39 at 4

41 ` λn. (n ∗ 0) + n = λn. n Transitivity on 6 and 40 at 11
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Table 2. Theorems generated when optimising for unchanged subterms

1 ` n ∗ 0 = 0 ∗ n Rewriting with Equation 3 at 1

2 ` (+ (n ∗ 0)) = (+ (0 ∗ n)) AP_TERM on ‘‘+‘‘ and 1 at 2

3 ` (n ∗ 0) + n = (0 ∗ n) + n AP_THM on 2 and ‘‘n‘‘ at 2

4 ` λn. (n ∗ 0) + n = λn. (0 ∗ n) + n ABS on 3 at 2

CHANGED_CONV fails

5 ` 0 ∗ n = 0 Rewriting with Equation 2 at 3

CHANGED_CONV fails

6 ` (+ (0 ∗ n)) = (+ 0) AP_TERM on ‘‘+‘‘ and 5 at 6

CHANGED_CONV succeeds

CHANGED_CONV fails

7 ` (0 ∗ n) + n = 0 + n AP_THM on 6 and ‘‘n‘‘ at 6

CHANGED_CONV succeeds

8 ` 0 + n = n Rewriting with Equation 1 at 9

CHANGED_CONV fails

9 ` (0 ∗ n) + n = n Transitivity on 7 and 8 at 7

10 ` λn. (0 ∗ n) + n = λn. n ABS on 9 at 6

CHANGED_CONV succeeds

11 ` λn. (n ∗ 0) + n = λn. n Transitivity on 4 and 10 at 11

reflexivity rule, the reflexive theorem is constructed from theorems for the leaf nodes

by application of congruence rules. This behaviour is a consequence of using the

most straightforward algorithm:

1. If a rewrite is applicable to the term, apply it; otherwise,

2. if the term is a variable or a constant apply the reflexivity rule; otherwise,

3. recursively apply the algorithm to the body of the abstraction or the operator

and operand of the combination (as appropriate), then combine the results.

The redundancies illustrated in the example are due to sequencing of conversions

that may leave the term unchanged.

Another, less common, inefficiency arises when conversions are sequenced. Terms

may be traversed more than once resulting in redundant applications of congruence

rules. In the example, only one application of the ABS rule should be required but

there are two, one arising in ONCE_DEPTH_CONV and the other in TOP_DEPTH_CONV.

Thus there are two kinds of inefficiency:

• application of inference rules when a subterm has not been changed;

• repeated traversals of a term when one would be sufficient.

These inefficiencies are a consequence of the implementation of conversions. The

first kind can be avoided by means of a more delicate rewriting algorithm (section 4).

Table 2 lists the inferences performed, a reduction in number from 41 to 11. The

second inefficiency really requires proof steps to be combined and reordered, for

which it is necessary to delay some of the computation (section 6). The inferences

performed when both inefficiencies are avoided are given later (section 6.1) in Table 3.
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4 Optimisation using exceptions

The application of inference rules when a subterm has not been changed can be

avoided by propagating a value representing ‘unchanged’ back up the term structure.

This value is generated at any leaf node (a variable or a constant) that is unchanged.

At an abstraction the value is allowed to propagate. At a function application the

value is only allowed to propagate when ‘unchanged’ is obtained for both the

operator and the operand. This modification to the basic algorithm is discussed by

Huet (1989) and was first used for HOL by Roger Fleming of Hewlett Packard Labs,

Bristol, England.

In 1990, Fleming developed a rewriting package for HOL which exploited ML

exceptions to simply and efficiently encode the ‘unchanged’ value. An exception

is raised at any unchanged leaf node and caught at application nodes. Fleming’s

code had a different behaviour to the original HOL rewriter and lost much of the

modularity of Paulson’s code. It was not installed in the main part of the HOL

system because, due to the difference in behaviour, to have done so would have

been very disruptive to users. Tom Melham also used exceptions in 1990 to optimise

one of the rewriting functions in HOL. Then, in 1991, the current author combined

the exception technique with the modular approach allowing the whole of rewriting

in HOL to be optimised without changing the behaviour. Using exceptions to avoid

rebuilding unchanged data structures is a technique that may be known to many

programmers. The contribution in this paper is showing how the technique can

be used when programs that manipulate the data structures are constructed from

combinators. In such situations, the exceptions should only be mentioned inside the

implementation of the combinators.

Fleming’s technique is made modular by reimplementing the basic conversions so

that they raise and trap an ‘unchanged’ exception (figure 7). The new conversions

have the property that they may generate an ‘unchanged’ exception rather than

return a theorem. This simply means that the argument term has not been changed

by the conversion. A ‘wrapper’ function RULE_OF_CONV is provided to trap the

exception and return a theorem of the form ` t = t instead by applying a single

primitive inference rule (REFL). The function RULE_OF_CONV should only be used

when it is absolutely necessary to have a theorem, i.e. when there is no more

equational reasoning to be done, since it localises the optimisation.

The UNCHANGED exception is raised by the identity conversion ALL_CONV and by

other basic conversions which can leave terms unchanged.

In the implementation of THENC, if the application of the first conversion does not

change the term, an exception will be raised. This is caught by the handler in the

last line, and the second conversion is then applied to the original term. Since the

first conversion left the original term unchanged, the result will be correct, but it is

obtained without having to generate a theorem for the result of the first conversion.

If the first conversion does change the term, but the second one does not, another

exception handler causes the result of applying the first conversion to be returned

as the full result.

The alternation operator on conversions, ORELSEC, is the most delicate of the
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val ALL_CONV : conv = fn _ => raise UNCHANGED;

val NO_CONV : conv = fn _ => raise CONV_ERR "NO_CONV";

fun conv1 THENC conv2 : conv =

fn tm => (let val th1 = conv1 tm

in TRANS th1 (conv2 (rhs (concl th1)))

handle UNCHANGED => th1

end

handle UNCHANGED => conv2 tm);

fun conv1 ORELSEC conv2 : conv =

fn tm => (conv1 tm

handle UNCHANGED => raise UNCHANGED

| _ => conv2 tm);

fun RATOR_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "RATOR_CONV"

in AP_THM (conv Rator) Rand

end;

fun RAND_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "RAND_CONV"

in AP_TERM Rator (conv Rand)

end;

fun ABS_CONV conv tm =

let val {Bvar,Body} = dest_abs tm

handle _ => raise CONV_ERR "ABS_CONV"

val Bodyth = conv Body

in (ABS Bvar Bodyth handle _ => raise CONV_ERR "ABS_CONV")

end;

fun RULE_OF_CONV conv tm = conv tm handle UNCHANGED => REFL tm;

Fig. 7. Conversions using exceptions.

new definitions. It is meant to trap the exceptions that are generated because of

errors. If the exception is UNCHANGED, it is regenerated. Otherwise the result of the

ORELSEC becomes the result of applying the second conversion to the original term.

So, ORELSEC applies the first conversion and if an exception is raised because of an

error the second conversion is applied instead. If the first conversion simply leaves

the term unchanged then the UNCHANGED exception used to indicate this is allowed

to propagate.

The definitions of RATOR_CONV, RAND_CONV and ABS_CONV are unchanged. Note,

however, that the exception handler for dealing with terms of the wrong form is

kept close to the term destructor function. If it were placed around the whole body

of RATOR_CONV (etc.), it would also trap the UNCHANGED exception, which is not the
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let val th1 = conv1 tm

val tm1 = rhs (concl th1)

in if (is_neg tm1)

then TRANS th1 (RAND_CONV conv2 tm1)

else TRANS th1 (conv2 tm1)

end

Fig. 8. Selective application of a conversion.

desired behaviour. For RATOR_CONV and RAND_CONV the UNCHANGED exception can

be allowed to propagate because they only affect either the operator or the operand

of an application, never both. So, if an UNCHANGED exception is raised for the part

that can be affected, the whole application must be unchanged.

By using the UNCHANGED exception a user could interfere with the workings of the

optimisation but this is very unlikely to happen by accident and could be prevented

entirely by hiding the exception using the type system of ML.

So, the new implementations of the basic conversion functions behave in the same

way as the originals (provided RULE_OF_CONV is used at the top level), but are more

efficient. The code for depth conversions remains unchanged since these conversions

are implemented in terms of the basic functions. This also applies to the majority

of users’ code. Thus, the optimisation is largely transparent to the user.

One way in which the technique is not a transparent change is if the programmer

wishes to perform some special operation within a conversion as opposed to building

it entirely from other conversions. In such a case, the programmer may wish to bind

an intermediate result using a let-expression. The code fragment in figure 8 is an

example of this. The right-hand side of the result of applying conv1 is obtained

explicitly so that its form can be examined before applying conv2. If the term is a

negation then conv2 is applied only to the argument of the negation, rather than to

the whole term.

The problem with the code is that application of conv1 may raise an UNCHANGED

exception instead of returning a theorem. As the code stands, this exception will

escape from the let-expression without conv2 being applied. The obvious solution

is to ensure that a theorem is generated by applying RULE_OF_CONV. However, this

destroys the optimisation. Another solution is to introduce an explicit exception

handler but that is messy and the optimisation is no longer transparent. The code

for applying conv2 has to be duplicated (though not exactly) as shown in figure 9.

In the handler code it is known that the original term is the same as the term that

would have been bound to the variable tm1.

Close inspection reveals that the exception traps introduced are similar in form

to those appearing in the definition of THENC. This is not surprising since two

conversions are being sequenced. In fact, the code can be rewritten using THENC

in such a way that explicit handling of exceptions is not required (figure 10). The

function CHANGED_CONV introduced in section 2 can be implemented in this way.

However, the approach is not always practical.

In the next section an alternative implementation of conversions is presented that

allows an UNCHANGED value to be propagated without using exceptions.
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let val th1 = conv1 tm

val tm1 = rhs (concl th1)

in if (is_neg tm1)

then (TRANS th1 (RAND_CONV conv2 tm1) handle UNCHANGED => th1)

else (TRANS th1 (conv2 tm1) handle UNCHANGED => th1)

end

handle UNCHANGED =>

if (is_neg tm)

then RAND_CONV conv2 tm

else conv2 tm

Fig. 9. Selective application with exceptions.

(conv1 THENC (fn tm1 => if (is_neg tm1)

then RAND_CONV conv2 tm1

else conv2 tm1))

tm

Fig. 10. Selective application using basic conversions.

5 Optimisation using an ML data type

An alternative to using exceptions for optimisation of equational reasoning is to use

an ML data type such as the one in figure 11. A value of this type is either a theorem

or an indicator that the original term has not been changed by the conversion. The

definitions of the basic conversion functions for this new type are given in figure 12.

A slight variation is for the unchanged term to be omitted from the Unchanged

constructor, i.e. for Unchanged to have no argument. Without the term argument

an equation is incomplete as a stand-alone object. There may then be a loss of

information in going from a term to an equation. This is important if the equation

type is to be developed further, as described in section 7.

The disadvantage with this approach to avoiding unnecessary inferences for

unchanged subterms is that conversions no longer return theorems. Their new type

is:

term -> equation

In respect of their types, conversions are no longer simply a special form of inference

rule. Hence, conversions do not interface directly with general rules such as TRANS.

The function RULE_OF_CONV acts as an interface by converting values of type

equation to values of type thm. The constructor Equation performs a conversion

in the other direction. The conversion between the two types is required wherever

conversions are used as rules. Adding calls to the interface functions is not difficult

but the changes required to users’ code are tedious. This issue is discussed at greater

depth in section 7.

datatype equation = Equation of thm | Unchanged of term

Fig. 11. ML data type for optimisation.
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val ALL_CONV = Unchanged;

val NO_CONV : conv = fn _ => raise CONV_ERR "NO_CONV";

fun conv1 THENC conv2 : conv =

fn tm => let val eq1 = conv1 tm

in case eq1

of Equation th1 =>

(case (conv2 (rhs (concl th1)))

of Equation th2 => Equation (TRANS th1 th2)

| Unchanged _ => eq1)

| Unchanged _ => conv2 tm

end;

fun conv1 ORELSEC conv2 : conv =

fn tm => (conv1 tm handle _ => conv2 tm);

fun RATOR_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "RATOR_CONV"

in case (conv Rator) of Equation th => Equation (AP_THM th Rand)

| Unchanged _ => Unchanged tm

end;

fun RAND_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "RAND_CONV"

in case (conv Rand) of Equation th => Equation (AP_TERM Rator th)

| Unchanged _ => Unchanged tm

end;

fun ABS_CONV conv tm =

let val {Bvar,Body} = dest_abs tm

handle _ => raise CONV_ERR "ABS_CONV"

in case (conv Body)

of Equation th =>

Equation (ABS Bvar th handle _ => raise CONV_ERR "ABS_CONV")

| Unchanged _ => Unchanged tm

end;

fun RULE_OF_CONV conv tm =

case (conv tm) of Equation th => th | Unchanged tm => REFL tm;

Fig. 12. Conversions using an ML data type.

6 Laziness enables further optimisation

Once the move has been made to using a new ML data type to represent the result

of applying a conversion, it is straightforward to extend the data type to provide

optimisation of repeated traversals over the term. The optimisation requires the

application of inference rules to be delayed. This was described by the author in an

earlier paper (Boulton, 1993).
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In that earlier description, the postponement of application of inference rules was

mixed with more general laziness. In fact there were two levels of laziness: (i) the

application of (lazy) inference rules was delayed by use of a special data structure

for equational reasoning, and (ii) when the structure was processed to obtain a

general theorem, the application of real inference rules was postponed again, until

the user forced the inferences to take place. Here, only the first kind of laziness is

used, which is sufficient to allow restructuring of the proof or even entirely different

proof strategies to be used if they are more efficient.

Repeated traversals of the same subterm do not normally occur within a basic

proof procedure because the programmer will have tried to avoid them. However,

when component procedures are combined, as is common with conversions, repeated

traversals may occur, with one coming from the application of one component and

another coming from a second component. The number of repeated traversals will

depend a lot on how the component procedures are combined.

Repeated traversals may also arise when a theorem prover like HOL is interfaced

to another system. Such systems include graphical user interfaces in which subterms

are selected for rewriting using the mouse (Bertot et al., 1994), and proof planners

such as CLaM (Bundy et al., 1991). In both cases rewrites may be expressed as

operations at a subterm in which the subterm is addressed by means of a path from

the root of the term. For example, here is a fragment of a proof script generated by

an interface of CLaM with the HOL system (Boulton et al., 1998):

OCC_RW_TAC "hol_APPEND1" [1,1,1] LEFT

THEN OCC_RW_TAC "hol_REV2" [1,1] LEFT

THEN OCC_RW_TAC "hol_REV1" [1,1,1] LEFT

THEN OCC_RW_TAC "hol_APPEND1" [1,1] LEFT

THEN OCC_RW_TAC "hol_REV1" [2,2,1] LEFT

This compound tactic, generated from a CLaM proof plan, is executed by HOL to

obtain a theorem. So the efficiency of the tactic affects the speed of the combined

system. The tactic OCC_RW_TAC rewrites with the named equation (first argument) at

the specified position (second argument). The third argument specifies the direction

in which the equation is to be used. In this sequence of rewrites each rewrite is

addressed from the root of the term, so a literal interpretation by the theorem prover

results in multiple traversals of the term. Some of these traversals are unnecessary

because, for example, the first four rewrites all occur within the subterm at position

[1,1].

Each traversal involves reconstructing the term around the changed parts. This is

costly in both time and memory usage. In a fully expansive theorem prover the cost

is especially high because logical inference is required to reconstruct the term (as a

theorem). For small examples, like the one above, the cost is not significant but it

could be for large terms.

Efficiency of proof creation is not the only issue; the size and form of the proof

itself may also be important. Size matters if a log of the proof is created (e.g. for

independent checking) or if a proof object is extracted, and if it is a synthesis proof

the form may affect the efficiency of the synthesized program.
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datatype change = Rewrite of thm

| Changed_comb of (change)list * (change)list

| Changed_abs of (change)list

Fig. 13. ML type of rewriting structures for equational reasoning.

Table 3. Theorems generated using a rewriting structure

1 ` n ∗ 0 = 0 ∗ n Rewriting with Equation 3

2 ` 0 ∗ n = 0 Rewriting with Equation 2

3 ` n ∗ 0 = 0 Transitivity on 1 and 2

4 ` (+ (n ∗ 0)) = (+ 0) AP_TERM on ‘‘+‘‘ and 3

5 ` (n ∗ 0) + n = 0 + n AP_THM on 4 and ‘‘n‘‘

6 ` 0 + n = n Rewriting with Equation 1

7 ` (n ∗ 0) + n = n Transitivity on 5 and 6

8 ` λn. (n ∗ 0) + n = λn. n ABS on 7

6.1 Rewriting structures

Optimisation of repeated traversals is achieved by extending the data type described

in section 5 to create a rewriting structure. The new type, change, is shown in

figure 13. A change is essentially the result of a rewrite. A (change)list is a

sequence of rewrites. Sequencing may occur at any level in the term structure.

A rewriting structure mimics the structure of HOL terms (see section 1.2). There

are internal nodes (Changed_comb and Changed_abs) for function applications

(combinations) and λ-abstractions respectively, and a leaf node for subterms that

have had a basic rewrite applied to them (Rewrite). At each internal node a sequence

of rewrites can occur.

When used as the result of conversions instead of a theorem, the rewriting

structure allows the same optimisations as the techniques in sections 4 and 5. An

empty change list indicates that there has been no change. The rewriting structure

provides additional optimisations, as can be seen in Table 3, which is based on

the example in section 3. To achieve this optimisation it is necessary to delay the

application of congruence rules. Because of this delay the references to positions in

the conversion code are no longer applicable. The table lists the theorems generated

using an algorithm acting over the rewriting structure. The repeated traversals of

the term and subterms are eliminated. The algorithm is described in section 6.3.

Before that the implementations of the basic conversion functions for the rewriting

structure are presented.

6.2 Lazy conversions

To provide the performance benefits of the rewriting structure and the ease of

programming offered by conversions, the latter have been modified to return a

rewriting structure together with a representation of the theorem as terms. The type
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of these lazy conversions is:

term -> (((term)list * term * term) * (change)list)

The first component of the result is a triple consisting of a list of hypotheses

generated by the rewrites, the left-hand side of the equation, and the right-hand

side. The two sides of the equation are maintained as separate terms for ease of

programming. The term structure of the equation has to be present in addition

to the rewriting structure so as to allow functions to test the result. The rewriting

structure can not provide this information unless it is evaluated, and to do that

would neutralise the optimisation.

Since conversions conventionally return a theorem it is necessary to include a

representation for hypotheses in the type of lazy conversions. A conversion might

introduce hypotheses for a number of reasons, but application of a conditional

rewrite rule is the most likely one. For example, in applying the theorem

0 < x ` x DIV x = 1

as a rewrite rule, the hypothesis 0 < x will (in an instantiated form) become a

hypothesis of the result of the conversion. Typically, a conditional rewriter will try

to prove the hypothesis immediately but it might alternatively allow the hypothesis

to be propagated so that it can eventually be presented to the user to prove.

The implementations of the basic conversion functions are given in figures 14

and 15. The identity lazy conversion, ALL_CONV, simply takes a term and returns the

same term as the result with an empty hypothesis list and an empty list of changes

(change list).

The implementation of THENC uses a set-theoretic union operation to combine the

hypotheses generated by the two conversions it sequences. The sequence_changes

function is at the heart of the optimisation. It is described in detail in section 6.3.

The code for THENC illustrates the fact that it is not necessary to return the argument

term as part of the result of the conversion. In THENC the values returned are thrown

away by pattern matching with the wildcard character (an underscore). However, in

practice it is better to keep the argument term (the left-hand side of the equation)

explicitly in the structure. It is required, for example, in order to print the structure

as an equation.

The functions RATOR_CONV and RAND_CONV test to see if any changes have been

brought about by the conversion. If not, an empty sequence is returned instead of a

Changed_comb with empty sequences for both its arguments.

The implementation of ABS_CONV has to test explicitly for the presence of the

bound variable of the abstraction in the hypotheses (as a free occurrence). It cannot

rely on the test in the ABS rule (see section 1.3.2 for the side-condition on ABS)

because ABS is not applied until later. If the bound variable test was not done at

this stage the behaviour of ABS_CONV with respect to ORELSEC would change. For

example, the conversion:

(ABS_CONV conv1) ORELSEC conv2

would produce a structure based on the application of conv1 when it should produce
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val ALL_CONV : conv = fn tm => (([],tm,tm), []);

val NO_CONV : conv = fn _ => raise CONV_ERR "NO_CONV";

fun conv1 THENC conv2 : conv =

fn tm => let val eq1 as ((hyps1,_,tm1),chgs1) = conv1 tm

val eq2 as ((hyps2,_,tm2),chgs2) = conv2 tm1

in case (chgs1,chgs2)

of ([],_) => eq2

| (_,[]) => eq1

| _ => ((union hyps1 hyps2,tm,tm2),

sequence_changes chgs1 chgs2)

end;

fun conv1 ORELSEC conv2 : conv =

fn tm => (conv1 tm handle _ => conv2 tm);

fun RATOR_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "RATOR_CONV"

val ((hypsf,_,tmf),chgsf) = conv Rator

in case chgsf

of [] => (([],tm,tm), [])

| _ => ((hypsf,tm,mk_comb {Rator = tmf,Rand = Rand}),

[Changed_comb (chgsf, [])])

end;

fun RAND_CONV conv tm =

let val {Rator,Rand} = dest_comb tm

handle _ => raise CONV_ERR "RAND_CONV"

val ((hypsx,_,tmx),chgsx) = conv Rand

in case chgsx

of [] => (([],tm,tm), [])

| _ => ((hypsx,tm,mk_comb {Rator = Rator,Rand = tmx}),

[Changed_comb ([], chgsx)])

end;

fun ABS_CONV conv tm =

let val {Bvar,Body} = dest_abs tm

handle _ => raise CONV_ERR "ABS_CONV"

val ((hypsb,_,tmb),chgsb) = conv Body

in case chgsb

of [] => (([],tm,tm), [])

| _ => if (mem Bvar (free_varsl hypsb))

then raise CONV_ERR "ABS_CONV"

else ((hypsb,tm,mk_abs {Bvar = Bvar,Body = tmb}),

[Changed_abs chgsb])

end;

Fig. 14. Conversions using a rewriting structure.
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fun RULE_OF_CONV conv tm =

let val ((hyps,tm,tm’),chgs) = conv tm

val th = prove_changes chgs tm

val (h,c) = dest_thm th

val {lhs,rhs} = dest_eq c

in if (h = hyps) andalso (lhs = tm) andalso (rhs = tm’) then th

else raise CONV_ERR "RULE_OF_CONV"

end;

Fig. 15. Interface function for rewriting structures.

one based on conv2. An exception would be raised when an attempt is made to

generate a theorem from the structure based on conv1. One of the real difficulties

with delaying computation is this kind of interaction with exceptions.

The conversion functions assume that the hypothesis list must be empty if no

changes have occurred. Note also that no inference rules are applied. The application

of inference rules takes place later, when a theorem is generated from the structure by

the function prove_changes (section 6.4). This function is called by RULE_OF_CONV,

which could simply return the theorem. However, it first verifies that the theorem

generated corresponds to the term structure. This is a consistency check for user-

defined conversions.

6.3 Sequencing rewriting structures

Lazy conversions are applied in sequence using the infix function THENC (figure 14).

The lazy conversion generated by sequencing conv1 and conv2 takes a term and

applies conv1 to it. The conversion conv2 is then applied to the resulting term. The

function tests to see if either of the change lists are empty (indicating that the term

was not changed). If this is so, the computation can be optimised. In particular, if

both change lists are empty then the list returned will be empty. If neither list is

empty the set-theoretic union of the hypotheses is formed and the change lists are

combined using the function sequence_changes (figure 16).

Concatenating two change sequences requires two mutually recursive functions:

one to traverse the first sequence until it encounters the last change; the other to

combine this change with the first one in the second sequence. If either sequence is

empty the other is returned. Two changes can be merged if they are of the same

kind, i.e. both abstraction nodes, both combination nodes, or both leaf nodes. In

the first two cases, merging is done simply by making recursive calls to concatenate

the sequences for the subterms. In the last case, a new Rewrite node is formed by

applying the transitivity rule, TRANS, to the theorems in the original nodes.

Thus, sequence_changes constructs a new sequence of changes in such a way

that any repeated traversals of subterms are avoided. The mechanism is capable

of merging two traversals into one provided they are not separated by a structure-

destroying operation. So, two rewrites within the operator of a function application

can be merged into one even when separated by a rewrite within the operand. This

is reordering of rewrites.
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fun sequence_change (Rewrite th1) (Rewrite th2) =

[Rewrite (TRANS th1 th2)]

| sequence_change (Changed_comb (chgs1f,chgs1x))

(Changed_comb (chgs2f,chgs2x)) =

[Changed_comb (sequence_changes chgs1f chgs2f,

sequence_changes chgs1x chgs2x)]

| sequence_change (Changed_abs chgs1b) (Changed_abs chgs2b) =

[Changed_abs (sequence_changes chgs1b chgs2b)]

| sequence_change chg1 chg2 = [chg1,chg2]

and sequence_changes [] chgs2 = chgs2

| sequence_changes chgs1 [] = chgs1

| sequence_changes [chg1] (chg2 :: chgs2) =

(sequence_change chg1 chg2) @ chgs2

| sequence_changes (chg1 :: chgs1) chgs2 =

chg1 :: (sequence_changes chgs1 chgs2);

Fig. 16. Sequencing rewriting structures.

There is a price to pay for the elimination of repeated traversals: the rewriting

structures have to be manipulated in addition to the theorems. So, there is extra

computation and extra garbage. In fact, lazy conversions would not be an optimisa-

tion in many theorem provers because the manipulation of the rewriting structures

would be all that was required. It is only because theorem generation is so costly in

a fully expansive theorem prover that the technique may be worthwhile. In principle,

use of rewriting structures may be a de-optimisation even in HOL. However, in most

cases, sufficient primitive inferences are avoided to outweigh the overheads.

6.4 Evaluation using congruence rules

When the result of some equational reasoning is required as a theorem so that

more general reasoning can be performed, the final rewriting structure must be

processed. This can be done by applying the congruence rules. An implementation

using mutually recursive functions is given in figure 17.

The functions take a term as an argument in addition to the rewriting structures.

This is required because the rewriting structures do not necessarily record the full

term structure. The rewriting structure is checked for consistency with the term.

If the two are not consistent an exception is raised. This should only occur if the

functions are incorrectly applied (or there is a bug in the implementation).

At each leaf node (Rewrite) the theorem is tested to make sure that its left-hand

side is equal to the argument term. These theorems are combined at each of the

internal nodes (Changed_comb and Changed_abs) using the appropriate congruence

rule. Different rules are used for Changed_comb nodes depending on whether one or

other or both or neither of the arguments is an empty list. In fact, the case of both

lists being empty should not arise because of the way RATOR_CONV and RAND_CONV

are defined, but it is handled for completeness.

Sequences are processed by prove_changes using the transitivity rule, TRANS. An
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fun prove_change (Rewrite th) tm =

if (lhs (concl th) = tm)

then th

else raise CONV_ERR "prove_change"

| prove_change (Changed_comb (chgsf,chgsx)) tm =

let val {Rator = f,Rand = x} =

dest_comb tm handle _ => raise CONV_ERR "prove_change"

in case (chgsf,chgsx)

of ([],[]) => REFL tm

| ([],_) => AP_TERM f (prove_changes chgsx x)

| (_,[]) => AP_THM (prove_changes chgsf f) x

| (_,_) => MK_COMB (prove_changes chgsf f,

prove_changes chgsx x)

end

| prove_change (Changed_abs chgsb) tm =

let val {Bvar = var,Body = b} =

dest_abs tm handle _ => raise CONV_ERR "prove_change"

in case chgsb

of [] => REFL tm

| _ => ABS var (prove_changes chgsb b)

end

and prove_changes [] tm = REFL tm

| prove_changes (chg :: chgs) tm =

let val th = prove_change chg tm

in case chgs

of [] => th

| _ => TRANS th (prove_changes chgs (rhs (concl th)))

end;

Fig. 17. Evaluating rewriting structures.

optimisation is made when the sequence has only one element. Instead of making

a recursive call on an empty sequence, causing REFL to be applied to the term, and

then using transitivity, the theorem for the single change in the sequence is returned

directly.

Rewriting structures (as implemented by the change type) can be constructed

that do not represent a valid proof. So, when inference rules are applied in the

prove_change and prove_changes functions, an exception may be raised. In prac-

tice, however, the functions are used in a way that will not lead to a failure.

7 Abstract type for equational reasoning

Within this paper, a number of different ways of implementing equational reasoning

in HOL have been presented, but in each case the behaviour of the functions

ALL_CONV, NO_CONV, THENC, ORELSEC, RATOR_CONV, RAND_CONV and ABS_CONV has

remained largely the same. They thus form the basis for an abstract type of equations

for which users have no access to the underlying representation. In this section, the

minimum set of functions required to permit flexible programming while retaining
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signature Equation =

sig

type equation

val THM_OF_EQN : equation -> thm

val EQN_OF_THM : thm -> equation

val RULE_OF_CONV : (term -> equation) -> (term -> thm)

val CONV_OF_RULE : (term -> thm) -> (term -> equation)

val EQUATION : (((term)list * term * term) * (term -> thm)) ->

equation

val EQN_HYP : equation -> (term)list

val EQN_LHS : equation -> term

val EQN_RHS : equation -> term

val EQN_PROOF : equation -> (term -> thm)

val SYM_EQN : equation -> equation

val NO_CONV : term -> equation

val ALL_CONV : term -> equation

val THENC : (term -> equation) * (term -> equation) ->

(term -> equation)

val ORELSEC : (term -> equation) * (term -> equation) ->

(term -> equation)

val RATOR_CONV : (term -> equation) -> (term -> equation)

val RAND_CONV : (term -> equation) -> (term -> equation)

val ABS_CONV : (term -> equation) -> (term -> equation)

val REWR_CONV : thm -> (term -> equation)

val COMB_CONV : (term -> equation) -> (term -> equation)

end

Fig. 18. SML-style signature for equations.

portability across the various optimisation techniques is presented. These functions

constitute the code that has to be changed to achieve the optimisations. A number

of additional functions that are commonly used and whose performance benefits

from being defined directly are also included in the abstract type.

7.1 Signature for equations

The ML type equation was introduced in section 5 as the result type of conversions.

By making this type abstract, the implementation of conversions can be optimised

in the ways already discussed, and in other ways not yet thought of, without the

need to change any of the higher-level system code or users’ code. The abstract type

for equations is presented in figure 18 as a Standard ML signature. The purpose of

each function in the abstract type is specified below.

The functions THM_OF_EQN and EQN_OF_THM convert an equation to a theorem and

https://doi.org/10.1017/S0956796899003391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003391


138 R. J. Boulton

vice versa. The former may involve proof. It cannot be implemented properly when

exceptions are used as the optimisation technique. This is because an equation for

an unchanged term is an exception rather than a concrete value. Similar remarks

apply to conversions based on an ML data type when unchanged terms are not

included explicitly in the representation. Thus, the use of THM_OF_EQN is to be

avoided if one wants to allow these optimisation techniques. Wherever possible the

function RULE_OF_CONV, described below, should be used instead. It has access to

the initial term; hence it has complete information.

The functions RULE_OF_CONV and CONV_OF_RULE perform similar tasks to those

of THM_OF_EQN and EQN_OF_THM, but at the level of rules. The former produces a

HOL rule from a conversion and is equivalent to the function of the same name

described earlier. The functions provide an interface between equational reasoning

and more general reasoning. They must be added to existing ML code wherever

there is a switch between these two kinds of reasoning. In the current versions of

HOL with no optimisation of equational reasoning, the type equation corresponds

to the type thm of theorems and the four interface functions are simply the identity

function.

The function EQUATION is used when defining primitive conversions. Four things

must be constructed: a list of hypotheses Γ, the left-hand side l of the equation, the

right-hand side r, and a function f that given l will return a theorem Γ ` l = r. The

function f should be constructed using general HOL inference rules. It must justify

the triple (Γ, l, r) by generating a theorem with the same structure. This approach

allows the inferences involved in the proof to be delayed. For example, a conversion

to evaluate additions, e.g. to generate ` 1 + 2 = 3 from the term ‘‘1 + 2‘‘, might

be implemented as follows:

fun PLUS_CONV tm =

let val (arg1,arg2) = dest_plus tm

val n1 = int_of_term arg1

and n2 = int_of_term arg2

val tm’ = term_of_int (n1 + n2)

in EQUATION (([],tm,tm’),fn tm => ... tm ...)

end;

The functions EQN_HYP, EQN_LHS, EQN_RHS, and EQN_PROOF reverse the operation

of EQUATION by extracting components. A function for each component is provided,

rather than a single inverse function, in order to avoid building structures when

extracting components. The internal structure of equations is not known, so it may

be the case that returning a structure of type

((term)list * term * term) * (term -> thm)

requires destruction and construction, while obtaining just one component only

requires destruction. Thus, using separate functions leaves the issue of unnecessary

garbage in the hands of the user.

It is often easier to perform certain kinds of equational reasoning by proving the

symmetric equation to the one required and then reversing the left and right-hand
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sides. A simple example of this is the introduction of a double negation. Assuming

a procedure already exists to eliminate double negations, the easiest way to write a

procedure to introduce double negations is to construct a double negation around

the argument term and apply the elimination procedure to this new term. Thus, for

a term t the following equation is obtained:

¬¬t = t

Reversing this using the symmetry rule produces the required equation. The problem

with this is that the symmetry rule operates over values of type thm as opposed

to values of type equation. So, a conversion using this technique has to switch

between equational and general reasoning, thus limiting optimisation. The function

SYM_EQN is included in the abstraction so that equations can be reversed directly.

However, it is still not easy to allow optimisations to propagate. For example, if

using rewriting structures in the implementation they would have to be reversed. It

is not clear how to do this in general, or that it is even possible. However, the most

common optimisation to be propagated is the one for unchanged subterms. In this

case, the rewriting structure is an empty list, so it does not need to be reversed.

In other cases it may be necessary to generate the theorem in order to reverse the

equation.

The purposes of NO_CONV, ALL_CONV, THENC, ORELSEC, RATOR_CONV, RAND_CONV,

and ABS_CONV were explained in Section 2. The function REWR_CONV is the primitive

rewriting conversion. It takes a theorem (which must be an equation) and uses it as

a rewrite rule. In most circumstances REWR_CONV could be defined using EQUATION.

The function COMB_CONV applies a conversion to the operator and operand of an

application. It too can be derived from other functions in the signature. The reason

for its inclusion is discussed in section 7.3.

7.2 Defining new conversions

There are two ways to define a new conversion. The first is to construct a proof

(a justification function) and apply EQUATION to it. This requires the result (right-

hand side of the equation) to be computed by some other means since EQUATION

also requires this information. The second approach is to build up the conversion

from others, e.g. by combining applications of REWR_CONV using THENC, etc. The

first approach has the advantage that all the computation required for justification

is delayed (assuming the implementation of equational reasoning allows this). The

second has the advantage that non-local optimisations may be possible when the

conversion is used as part of more extensive equational reasoning. However, in this

case, some computation (such as the generation of rewriting structures) will have to

take place immediately so that the value of the right-hand side can be obtained.

7.3 Complex primitives

In section 2 the function COMB_CONV was introduced. This applies a conversion to

both the operator and the operand of a combination. As stated in that section,
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COMB_CONV can be defined in terms of other basic conversion functions:

fun COMB_CONV conv = (RATOR_CONV conv) THENC (RAND_CONV conv);

However, this definition may not be as efficient as defining COMB_CONV as a primitive.

That is why COMB_CONV is included in the signature for equations. The inefficiency

of the derived version manifests itself when both the operator and the operand

are changed by the conversion. Consider the term ‘‘f x‘‘ and suppose that the

conversion conv transforms f to g and x to y. The application of COMB_CONV to this

conversion and the term proceeds as follows:

1. ` f = g by application of conv to the operator

2. ` f x = g x by application of AP_THM to 1

3. ` x = y by application of conv to the operand

4. ` g x = g y by application of AP_TERM to 3

5. ` f x = g y by transitivity between 2 and 4

Three inferences are required in addition to those involved in the application of

conv to f and x. A primitive definition of COMB_CONV can exploit the combined

congruence rule for applications (called MK_COMB in HOL) so that only one inference

is required in addition to those used by conv.

When rewriting structures are used to optimise conversions, the derived version

of COMB_CONV is optimised transparently so that MK_COMB is applied instead of

the three rules. So, in this case, there is no need to have COMB_CONV as a basic

conversion function, but it is included for the benefit of other implementations. This

also demonstrates the effectiveness of the optimisation using rewriting structures.

Similar minimisation of inferences is possible for more complex conversions.

However, a compromise has to be made between performance and the ease of

implementing and maintaining the code.

8 Results

Table 4 is a comparison of the various techniques for optimising equational reasoning

described in this paper. The results are for the HOL benchmark. The benchmark is

a verification of a multiplier circuit. Part of the proof involves the use of rewriting

and some specialised equational reasoning, but much of it is general tactic-based

reasoning.

The table should be interpreted as follows. ‘Run’ is the run time in seconds. This

does not include garbage collection time. The garbage collection time in seconds

is given separately (‘GC’). The total time is also given. ‘Infs’ is the number of

applications of primitive inference rules used to prove the theorems. The inferences

are considered to have taken place only when the real theorems have been generated.

The figures are for a Sun Ultra-1 with 128Mbytes of real memory.

Results are given for version 7 of the HOL90 system and for a number of modified

versions of it. Each of the modified versions has the abstract type for equations

described in section 7. They differ only in the concrete implementation of the type.

Since HOL90 version 7 already uses exceptions to optimise depth conversions (and
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Table 4. Results for the HOL multiplier benchmark

Conversion type Run GC Total Infs

HOL90.7 8.02 0.92 8.94 16287

Ordinary 11.42 1.00 12.42 71357

Exceptions 8.05 0.96 9.01 16277

ML data type 8.16 0.93 9.09 16277

Rewriting structures 8.14 0.98 9.12 16035

Table 5. Results for rewriting a large sum of 0’s and 1’s

Conversion type Run GC Total Infs

HOL90.7 0.44 0.04 0.48 3395

Ordinary 3.17 0.08 3.25 46525

Exceptions 0.53 0.05 0.58 3395

ML data type 0.49 0.05 0.54 3395

Rewriting structures 0.51 0.12 0.63 3395

hence rewriting) there is no gain in performance for implementations of the equation

type that optimise for unchanged subterms. (In fact, there is a little overhead,

probably due to converting between the equation and thm types.) Comparison with

the version using ‘ordinary’ conversions offers a better indication of the relative

performance. The total execution time is reduced from over 12s to about 9s. The

reduction in number of inferences is much more significant.

Table 5 presents the results for rewriting the 1’s in a large sum of 0’s and 1’s to

SUC(0) where SUC is the successor function. This example was chosen because it is

pure rewriting and involves a lot of unchanged subterms. The reduction in execution

time of optimised conversions relative to ordinary conversions is very significant:

over five times faster.

There is little discernible difference between the garbage collection figures for use

of exceptions versus use of an ML data type. This is somewhat surprising as one

might expect more garbage to be generated by the latter technique. (The figures

in Table 5 are averages over a large number of executions, so the behaviour is

not simply a consequence of the computation being too small for a major garbage

collection to occur.) This surprising result is probably a consequence of the particular

compiler (Standard ML of New Jersey 0.93) and different results might be obtained

with other compilers. This is also true of the run times. The GC time is noticeably

higher when the more complex rewriting structures are used.

Optimisation of repeated traversals does not appear to arise much in practice.

Only a small amount occurs in the benchmark example. To a certain extent this

may be due to the optimisation not being taken up to the tactic level, i.e. sequences

of rewriting-tactic applications are not optimised. It is possible to contrive examples
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Table 6. Results for repeated application of ONCE_DEPTH_CONV

Conversion type Run GC Total Infs

HOL90.7 8.45 0.39 8.84 16852

Ordinary 9.80 0.50 10.30 32594

Exceptions 8.51 0.36 8.87 16849

ML data type 8.58 0.36 8.94 16849

Rewriting structures 7.60 0.43 8.03 2487

where there is a substantial optimisation of repeated traversals (see Table 6, for

example), but even then there is only a small reduction in the execution time despite

a large reduction in the number of inferences. This suggests that the manipulation

of rewriting structures is almost as costly as the inferences they eliminate. The

conclusion, then, is that rewriting structures are not worthwhile unless the size of

the proof is important.

9 Related work

Higher-order functions are commonly used in functional programming to produce

programs that are easy to change, the most common example being the use of

monads. (See, for example, Wadler (1992).) Monads are used extensively in pure

functional languages to implement features such as input/output and exceptions

that are done imperatively in an impure functional language such as Standard

ML, but they are also of use for structuring Standard ML programs. The rewriting

combinators described here are similar to monads in that they localise the changes

required to a program in order to produce a different behaviour. They differ in that

monads are usually promoted as a means of readily changing the functionality of a

program, while the rewriting combinators are intended to keep the functionality the

same and change only the resource usage of the program.

Monads appear to provide a framework in which optimisations such as the ones

described here could be achieved transparently. However, for rewriting in HOL the

special purpose rewriting combinators seem more appropriate. It is conceivable,

though, that monads could be used instead.

Welinder (1995) has investigated the use of partial evaluation to produce efficient

conversions. His work only addresses the basic rewriting operations; it does not

consider traversal strategies and their impact on efficiency. For a sequence of

alternative rewrites (applications of REWR_CONV (section 7.1) to equational theorems)

he generates specialised code for the particular equations being used. The use of

Welinder’s system is limited by the overhead of adding new equations: the code has

to be regenerated whenever an equation is added. It may be possible to extend his

method to depth rewriting but he does not address that.

Huet (1989) addresses unnecessary rebuilding of terms in his description of the

implementation of a proof checker for the Calculus of Constructions. The focus

is on maintaining sharing of subterms to be more economical with storage. He
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describes an implementation of substitution that pairs the resultant term with a

Boolean value indicating whether it is the same as the original term. This is done

for all subterms and the Booleans are used to avoid reconstructing nodes of the

structure when all the subterms are unchanged. This approach is very similar to

the one taken in section 5. Because of the storage overhead involved in pairing

every subterm with a Boolean value, Huet goes on to describe the use of exceptions

(cf. section 4). More generally, Huet’s paper is a valuable discussion of the issues

involved in implementing representations of, and operations over, (λ-)terms.

There are two important differences between the work described in this paper

and that of Huet. First, the work here is concerned with more than just unnecessary

rebuilding of data structures; the costly application of inference rules is also being

avoided. Hence, there are different performance trade-offs to be made. For example,

Huet’s technique of pairing subterms with Boolean values would be more reasonable

in the context of optimising conversions because the cost of the pairing is likely to

be small relative to the cost of the unnecessary inferences that would be avoided.

Secondly, this paper is concerned with the encapsulation of optimisations within

existing combinators. Huet is not concerned with such modularity. However, he

does present CAML macros (CAML is a dialect of ML) for systematically transform-

ing simple copying algorithms into algorithms that maintain sharing. There is no

analogous macro facility in Standard ML.

In Chapter 4 of his PhD thesis, Jackson (1995) describes an implementation

of rewriting in the Nuprl proof development system. He describes two forms of

rewriting, one that uses congruence rules and which may be used for general

congruence relations, and another that uses direct computation but which is only

applicable for the built-in computational equality. The latter is considerably faster

and so is used wherever possible. A single set of functions is used for combining

conversions regardless of which form of justification they use. These combinators

appear to use tactic-driven congruence proofs to combine the justifications generated

by their argument conversions. There is no mention of them being optimised

to propagate the performance benefits of direct computation. A nice feature of

Jackson’s work is the ability to handle the use of different relations for different

subterms.

Nipkow (1989) describes an implementation of rewriting for Isabelle (Paulson,

1994) that uses higher-order unification. The rules for reflexivity, symmetry, and

transitivity have metavariables for the arguments of the equality relation. There is

also a congruence rule for each operator. The rules are applied using the resolution

tactic but the full power of higher-order unification is not required; first-order

unification is sufficient. Specialised tactics are generated for each of the rules. A

rewriting engine is obtained from these using tacticals structured in a very similar

way to the depth conversions in HOL and LCF (Paulson, 1983). It is conceivable,

therefore, that optimisations along the lines of those described in this paper would

be applicable.

Nipkow also describes an implementation that exploits the higher-order capabili-

ties of Isabelle’s resolution. In this, the congruence rules are represented generically

by a single rule that uses a function-valued metavariable in place of the operator.
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The metavariable acts as a general context, allowing depth rewriting to be done

with a single higher-order unification. However, the complexity of this operation

compared to applications of simple congruence rules might make it just as costly.

Another piece of related work is the investigation of proof techniques (Kromodi-

moeljo and Pase, 1992) for the Eves verification environment (Craigen et al., 1991).

The Eves implementors optimise innermost rewriting, which is naturally an eager

process, by arranging for the rewrite rules to be applied lazily. This is very similar

to the technique described in the author’s earlier paper (Boulton, 1993) but is not

intended to be as general. The Eves implementors are looking to avoid only rewrites,

not arbitrary proof steps, that will later be thrown away.

10 Conclusions

Equational reasoning forms a substantial part of many proofs in the HOL system.

It is usually in the form of rewriting, but more specialised procedures are also used.

Paulson’s use of combinators provides a flexible way of constructing these procedures.

The work described in this paper shows that the use of combinators also allows

transparent optimisation of the procedures. The efficiency of the procedures can be

improved by changes to the implementations of the combinators only. Programs

that use the combinators need not be changed, except that for some optimisations

it is necessary to distinguish the result type of equational proof procedures from the

type used to represent general theorems of the logic. Functions to convert between

the two types must then be added to the application programs but once this has

been done the programs become independent of the underlying implementation of

the combinators. The changes to the implementation may be as radical as using a

different proof strategy, e.g. a substitution rule in place of congruence rules.

With respect to the relative advantages of specific implementations, the results in

section 8 show that avoiding processing of unchanged subterms (either by use of

exceptions or by means of a new data type) is a worthwhile optimisation, providing

a speed-up of over 500% on some examples. Avoiding repeated traversals of terms

has little effect on the execution time, so is probably not worth using if the aim is

faster proof procedures. However, in a theorem prover for a constructive logic, the

optimisation of the proof that corresponds to avoiding repeated traversals may be

significant, since it could, in the proofs-as-programs paradigm (Bates and Constable,

1985), lead to more efficient proof objects.

As has already been noted, reducing the number of primitive inferences may be

worthwhile even if execution times are not reduced. As another example of this,

if it is necessary to output the entire proof for use by another tool (such as a

simple verified proof checker (Wong, 1995)), a reduction in the number of inferences

may be helpful. Full proof logs for typical verification proofs are so large as to be

almost unmanageable, so any reduction in size is to be welcomed. In such situations

avoiding repeated traversals may be worth using since on some examples it produces

a drastic reduction in the number of inferences.

Another interesting result for implementors of LCF-style theorem provers is that

the execution times are nowhere near proportional to the number of primitive
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inferences performed. A significant decrease in the number of inferences may have

little impact on the execution time. This suggests that (at least for a Standard ML

implementation) the use of primitive inference rules for all proof may not entail as

large an overhead as has previously been thought. On the other hand, the results

may be due to most of the eliminated inferences being simple ones like reflexivity.

Finally, although some of the proposed optimisation techniques are specific to

fully expansive theorem proving, avoiding processing of unchanged subterms is more

generally applicable within functional programming and beyond. Any algorithm that

performs transformations on an immutable data structure and that may leave part

of the structure unchanged may be optimised by the techniques described here,

in particular by the raising and handling of an exception when a substructure is

unchanged. The substructure still has to be traversed but the allocation of memory

to build a new copy is eliminated and any sharing of unchanged structures is retained

(Huet, 1989). If the data structure is mutable, as is typical in an imperative language,

the optimisation is less useful because the structure would not normally be copied

anyway.
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