Holomorphic Frames for Weakly Converging Holomorphic Vector Bundles

Georgios D. Daskalopoulos and Richard A. Wentworth

Abstract

Using a modification of Webster's proof of the Newlander-Nirenberg theorem, it is shown that, for a weakly convergent sequence of integrable unitary connections on a complex vector bundle over a complex manifold, there is a subsequence of local holomorphic frames that converges strongly in an appropriate Holder class.

Perhaps the most useful analytic tool in gauge theory is the Uhlenbeck compactness theorem for sequences of unitary connections on hermitian vector bundles [U1]. Given connections $\left\{D_{j}\right\}$ on a bundle E over a compact manifold M, the result returns a subsequence converging weakly in L_{1}^{p}, up to unitary gauge transformations, provided the original sequence has uniform L^{p} bounds on curvature, where $2 p>\operatorname{dim} M$. With further assumptions, e.g., if the connections are solutions to the Yang-Mills equations, convergence away from some singular set can also be obtained in the critical case $2 p=\operatorname{dim} M$.

When M is a complex manifold and the connections satisfy an integrability condition, the theorem implies weak L_{1}^{p} convergence of the induced holomorphic structures $D_{j}^{\prime \prime}$ on E. If M is assumed to be Kähler, weak L_{1}^{p} convergence away from a singular set can in fact be obtained from the more natural assumptions of L^{2} bounded curvature and bounded Hermitian-Einstein tensor (Uhlenbeck, personal communication). In any case, on complex manifolds it is useful for applications to have control on local holomorphic frames, since then one may use techniques from several complex variables. The purpose of this note is to show that under the circumstances described above one may find local holomorphic trivializations of E which also converge with the optimal regularity, provided $p>\operatorname{dim} M$.

The argument we give is based largely on Webster's proof of the NewlanderNirenberg theorem [W]. A notable difference is the somewhat more linear character of the problem for vector bundles. For this reason, the proof in [W] may be adapted to the weak L_{1}^{p} convergence that is natural to Uhlenbeck compactness, whereas stronger control of derivatives is generally required for holomorphic structures on manifolds.

For background on connections on hermitian vector bundles we refer the reader to $[\mathrm{K}]$.

Theorem 1 Let $\left\{D_{j}\right\}$ be a sequence of integrable unitary connections on a complex vector bundle E over a complex manifold M of complex dimension n. Assume that $D_{j} \rightarrow$

[^0]D_{∞} weakly in $L_{1, \text { loc }}^{p}(M)$ for some integrable connection D_{∞} and some $p>2 n$. Then for each $x \in M$ there is:
(1) a coordinate neighborhood Ω of x,
(2) a sequence $\left\{\mathbf{s}_{j}\right\}$ of $D_{j}^{\prime \prime}$-holomorphic frames on Ω,
(3) a $D_{\infty}^{\prime \prime}$-holomorphic frame \mathbf{s}_{∞} on Ω,
(4) and a subsequence $\left\{j_{k}\right\} \subset\{j\}$,
such that $\mathbf{s}_{j_{k}} \rightarrow \mathbf{s}_{\infty}$ weakly in $L_{2}^{p}(\Omega)$ and strongly in $C^{1, \alpha}(\Omega)$ for $0<\alpha<1-2 n / p$.
In the following, B_{r} will denote the open ball of radius r about the origin in \mathbb{C}^{n}. For k a non-negative integer, and α a real number $0<\alpha<1,\|\cdot\|_{k+\alpha ; r}$ will denote the $C^{k, \alpha}$ norm on B_{r}. Theorem 1 is a consequence of the following:

Proposition 2 Fix a positive integer R and a real number $\alpha, 0<\alpha<1$. Given $r>0$ there are constants $\theta>0, B>0$, and $r^{\prime}>0,0<r^{\prime}<r$, such that the following holds: if a is any $R \times R$-matrix valued $(0,1)$-form on B_{r} satisfying:

- $\bar{\partial} a+a \wedge a=0$,
- $\|a\|_{\alpha ; r} \leq \theta$,
then there exists an $R \times R$-matrix valued function G on $B_{r^{\prime}}$ satisfying:
- $\bar{\partial} G+a G=0$,
- $\|G\|_{1+\alpha ; r^{\prime}} \leq B$,
- $\inf _{B_{r^{\prime}}}|\operatorname{det} G| \geq B^{-1}$.

Assuming the result above, let us give the:
Proof of Theorem 1 Choose a coordinate neighborhood centered at x, identified with B_{r} for some $r>0$, and over which there exists a $D_{\infty}^{\prime \prime}$-holomorphic trivialization of E. With respect to this trivialization we may regard $a_{j}=D_{j}^{\prime \prime}-D_{\infty}^{\prime \prime}$ as matrix valued $(0,1)$-forms satisfying $\bar{\partial} a_{j}+a_{j} \wedge a_{j}=0$. By the compactness of the embedding $L_{1}^{p} \hookrightarrow C^{\alpha}$ for $0<\alpha<1-2 n / p$ and the weak convergence $a_{j} \rightarrow 0$ in $L_{1, \text { loc }}^{p}$, we may assume $\left\|a_{j}\right\|_{\alpha ; r} \rightarrow 0$. Hence, by Proposition 2, for each sufficiently large j we may find matrix-valued functions G_{j} satisfying:

$$
\begin{gather*}
\bar{\partial} G_{j}+a_{j} G_{j}=0 \tag{1}\\
\left\|G_{j}\right\|_{1+\alpha ; r^{\prime}} \leq B \tag{2}\\
\inf _{B_{r^{\prime}}}\left|\operatorname{det} G_{j}\right| \geq B^{-1} \tag{3}
\end{gather*}
$$

for some B and $r^{\prime}>0$ independent of j. In particular, the column vectors of G_{j} are linearly independent and define $D_{j}^{\prime \prime}$-holomorphic frames on $B_{r^{\prime}}$. By (2) and the elliptic estimate for $\bar{\partial}$ applied to (1), it follows that the G_{j} are bounded in $L_{2, \text { loc }}^{p}\left(B_{r^{\prime}}\right)$ uniformly in j. After passing to a subsequence, we may assume that there is some G such that $G_{j} \rightarrow G$ weakly in $L_{2, \text { loc }}^{p}\left(B_{r^{\prime}}\right)$ and strongly in $C_{\mathrm{loc}}^{1, \alpha}\left(B_{r^{\prime}}\right)$. In particular, again using (1), $\bar{\partial} G=0$. Finally, by the uniform bound (3), G is invertible on $B_{r^{\prime}}$ and so its column vectors define a $D_{\infty}^{\prime \prime}$-holomorphic frame. This completes the proof.

It remains to prove Proposition 2. We will need the following:
Lemma 3 Suppose T_{j} is a sequence of $R \times R$ complex matrices with $\left|T_{j}\right| \leq 1 / 2$ and $\sum_{j=1}^{\infty}\left|T_{j}\right|=C<\infty$. Set $S_{k}=\left(\mathbf{I}+T_{1}\right)\left(\mathbf{I}+T_{2}\right) \cdots\left(\mathbf{I}+T_{k}\right)$ where \mathbf{I} is the $R \times R$ identity matrix. Then $\left|\operatorname{det} S_{k}\right| \geq e^{-2 R C}$ for all k.

Proof For each T_{j} we have:

$$
\begin{aligned}
\left|\operatorname{det}\left(\mathbf{I}+T_{j}\right)\right| & \geq\left(1-\left|T_{j}\right|\right)^{R} \\
\log \left|\operatorname{det}\left(\mathbf{I}+T_{j}\right)\right| & \geq R \log \left(1-\left|T_{j}\right|\right)
\end{aligned}
$$

Since $\log (1-x) \geq-2 x$ for $0 \leq x \leq 1 / 2, \log \left|\operatorname{det}\left(\mathbf{I}+T_{j}\right)\right| \geq-2 R\left|T_{j}\right|$. Hence:

$$
\log \left|\operatorname{det} S_{k}\right|=\sum_{j=1}^{k} \log \left|\operatorname{det}\left(\mathbf{I}+T_{j}\right)\right| \geq-2 R \sum_{j=1}^{k}\left|T_{j}\right| \geq-2 R C
$$

Recall the Leray-Koppelman operators P and Q for matrix valued $(0,1)$ - and (0,2)-forms on B_{r}, respectively. Given $\sigma, 0<\sigma<1$, have the following important properties [W, eq. (1.7) and Lemma 2.2]:

$$
\begin{gather*}
\varphi=\bar{\partial} P(\varphi)+Q(\bar{\partial} \varphi) \tag{4}\\
\|P(\varphi)\|_{1+\alpha ; r(1-\sigma)} \leq r K\|\varphi\|_{\alpha ; r} \tag{5}\\
\|Q(\psi)\|_{1+\alpha ; r(1-\sigma)} \leq r K\|\psi\|_{\alpha ; r} \tag{6}
\end{gather*}
$$

where $K=c_{\alpha} \sigma^{-s}$ for c_{α} constant and $s>0$ an integer.
With these preliminaries we now give:
Proof of Proposition 2 Set $a_{0}=a, h_{0}=0$. Define sequences a_{j}, h_{j} recursively, where h_{j} are $R \times R$ matrix-valued functions defined on

$$
\begin{gather*}
h_{j+1}=-P\left(a_{j}\right) \tag{7}\\
g_{j+1}=\mathbf{I}+h_{j+1} \tag{8}\\
a_{j+1}=\left(g_{j+1}\right)^{-1}\left(\bar{\partial} g_{j+1}+a_{j} g_{j+1}\right) \tag{9}
\end{gather*}
$$

The initial bound θ on a will be chosen presently so that $\sup _{B_{r^{\prime}}}\left|h_{j}\right| \leq 1 / 4$. Hence, $g_{j}=\mathbf{I}+h_{j}$ will be uniformly invertible. Also, notice that with this definition the integrability condition $\bar{\partial} a_{j}+a_{j} \wedge a_{j}=0$ is satisfied for all j. Following [W], set $\sigma_{j}=4^{-j-1}$ and $r_{j+1}=r_{j}\left(1-\sigma_{j}\right)$ with $r_{0}=r$. It follows that the r_{j} are decreasing and that $r^{\prime}=\lim _{j \rightarrow \infty} r_{j}>0$. Recalling the constants $K_{j}=c_{\alpha} \sigma_{j}^{-s}$ in (5) and (6), and using (7), we have:

$$
\begin{equation*}
\left\|h_{j+1}\right\|_{1+\alpha ; r_{j+1}} \leq r K_{j}\left\|a_{j}\right\|_{\alpha ; r_{j}} \tag{10}
\end{equation*}
$$

From (8) and (9) we have:

$$
a_{j+1}=\left(g_{j+1}\right)^{-1}\left(\bar{\partial} h_{j+1}+a_{j}+a_{j} h_{j+1}\right)
$$

and by (4) and (7):

$$
\bar{\partial} h_{j+1}+a_{j}=Q\left(\bar{\partial} a_{j}\right)=-Q\left(a_{j} \wedge a_{j}\right)
$$

Assuming the uniform invertibility of g_{j+1} mentioned above, it follows from (6) and (10) that there is a constant C independent of j such that:

$$
\begin{equation*}
\left\|a_{j+1}\right\|_{\alpha ; r_{j+1}} \leq C K_{j}\left\|a_{j}\right\|_{\alpha ; r_{j}}^{2} \tag{11}
\end{equation*}
$$

After absorbing constants into the definition of $K_{j},(10)$ and (11) may be written:

$$
\begin{gather*}
\left\|h_{j+1}\right\|_{1+\alpha ; r_{j+1}} \leq K_{j}\left\|a_{j}\right\|_{\alpha, r_{j}} \tag{12}\\
\left\|a_{j+1}\right\|_{\alpha ; r_{j+1}} \leq K_{j}\left\|a_{j}\right\|_{\alpha ; r_{j}}^{2} . \tag{13}
\end{gather*}
$$

Moreover, there is a constant b (e.g., $b=4^{s}$) such that $K_{j+1} \leq b K_{j}$ for all j. Next, we define: $\theta_{j}=K_{j}\left\|a_{j}\right\|_{\alpha ; r_{j}}$. Then by assumption: $\theta_{0}=K_{0}\|a\|_{\alpha ; r} \leq K_{0} \theta$. We assume that θ has been chosen so small that $b K_{0} \theta \leq 1 / 4$, say. We then deduce inductively, using (13), that:

$$
\begin{equation*}
\theta_{j+1} \leq b \theta_{j}^{2} \leq \theta_{j} / 4 \tag{14}
\end{equation*}
$$

It follows that $\theta_{j} \rightarrow 0$. Furthermore, we can rewrite (12) and (13) as:

$$
\begin{gather*}
\left\|h_{j+1}\right\|_{1+\alpha ; r_{j+1}} \leq \theta_{j} \tag{15}\\
\left\|a_{j+1}\right\|_{\alpha ; r_{j+1}} \leq \theta_{j}\left\|a_{j}\right\|_{\alpha ; r_{j}} \tag{16}
\end{gather*}
$$

It follows from (16) that $\left\|a_{j}\right\|_{\alpha ; r^{\prime}} \rightarrow 0$. Notice also that $\left\|h_{j}\right\|_{1+\alpha ; r_{j}} \leq 1 / 4$ for all j. Hence, the g_{j} are uniformly invertible, as desired. We now define gauge transformations:

$$
\begin{equation*}
G_{k}=g_{1} g_{2} \cdots g_{k} \tag{17}
\end{equation*}
$$

First, note that $\left|G_{k}\right|$ is uniformly bounded. Indeed, $\left|G_{k}\right| \leq \prod_{j=1}^{k}\left|g_{j}\right| \leq \prod_{j=1}^{k}\left(1+\theta_{j}\right)$, by (8) and (15), and the right-hand side converges as $k \rightarrow \infty$ by (14). The derivatives $\left|\nabla G_{k}\right|$ are similarly bounded:

$$
\begin{aligned}
\left|\nabla G_{k}\right|=\left|\sum_{j=1}^{k} g_{1} \cdots g_{j-1} \nabla g_{j} g_{j+1} \cdots g_{k}\right| & \leq \sum_{j=1}^{k}\left|g_{1}\right| \cdots\left|g_{j-1}\right|\left|\nabla g_{j}\right|\left|g_{j+1}\right| \cdots\left|g_{k}\right| \\
& \leq\left(\sum_{j=1}^{k} \theta_{j}\right) \prod_{j=1}^{k}\left(1+\theta_{j}\right)
\end{aligned}
$$

which also converges as $k \rightarrow \infty$. In particular, we have a bound on $\left\|G_{k}\right\|_{\alpha ; r^{\prime}}$ that is uniform in k. Next, from (17) we have: $G_{k+1}=G_{k} g_{k+1}=G_{k}+G_{k} h_{k+1}$, so by (15),

$$
\left\|G_{k+1}-G_{k}\right\|_{\alpha ; r^{\prime}} \leq c\left\|G_{k}\right\|_{\alpha ; r^{\prime}}\left\|h_{k+1}\right\|_{\alpha ; r^{\prime}} \leq C \theta_{k}
$$

for a constant C independent of k. It follows again by (14) that G_{k} converges in $C^{\alpha}\left(B_{r^{\prime}}\right)$ to some G. To improve the convergence, use the definition (9) to write:

$$
\begin{equation*}
\bar{\partial} G_{k}+a G_{k}-G_{k} a_{k}=0 \tag{18}
\end{equation*}
$$

for all k. Hence,

$$
\left\|\bar{\partial} G_{j}-\bar{\partial} G_{k}\right\|_{\alpha ; r^{\prime}} \leq C\left(\left\|G_{j}-G_{k}\right\|_{\alpha ; r^{\prime}}+\left\|a_{j}-a_{k}\right\|_{\alpha ; r^{\prime}}\right)
$$

and since $\left\|a_{k}\right\|_{\alpha ; r^{\prime}} \rightarrow 0$ and $\left\|G_{j}-G_{k}\right\|_{\alpha ; r^{\prime}} \rightarrow 0$ it follows that $\bar{\partial} G_{k}$ converges in $C^{\alpha}\left(B_{r^{\prime}}\right)$. By the elliptic estimate for $\bar{\partial}, G_{k} \rightarrow G$ in $C^{1, \alpha}\left(B_{r^{\prime}}\right)$, and moreover $\bar{\partial} G+a G=$ 0 (cf. (18)). Finally, we claim that G is nonsingular. Indeed, it follows from the convergence of G_{k} that $\operatorname{det} G_{k} \rightarrow \operatorname{det} G$. By definitions (8) and (17), $G_{k}=\prod_{j=1}^{k}(1+$ h_{j}), where according to the estimates (14) and (15), $\left|h_{i}\right| \leq 1 / 2$ and $\sum_{j=1}^{\infty}\left|h_{j}\right|<\infty$. The claim now follows immediately from Lemma 3. Since r^{\prime}, the $C^{1, \alpha}$ bound on G, and the bound on the determinant all stem from the initial choice of θ, which in turn depends only on r, the proof of the Proposition is complete.

References

[K] S. Kobayashi, Differential Geometry of Complex Vector Bundles. Publications of the Mathematical Society of Japan 15, Princeton University Press, Princeton, NJ, 1987.
[U1] K. Uhlenbeck, Connections with L ${ }^{p}$ bounds on curvature. Comm. Math. Phys. 83(1982), 31-42.
[W] S. Webster, A new proof of the Newlander-Nirenberg theorem. Math. Z. 201(1989), 303-316.

Department of Mathematics
Brown University
Providence, RI 02912
U.S.A.
e-mail: daskal@math.brown.edu

Department of Mathematics
Johns Hopkins University
Baltimore, MD 21218
U.S.A.
e-mail: wentworth@jhu.edu

[^0]: Received by the editors November 4, 2003; revised February 3, 2004.
 The first author was supported in part by NSF grant DMS-0204191; the second author was supported in part by NSF grant DMS-0204496

 AMS subject classification: Primary: 57M50; secondary: 58E20, 53C24.
 (c)Canadian Mathematical Society 2006.

