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Predictably intransitive preferences

David J. Butler∗ Ganna Pogrebna† ‡†

Abstract

The transitivity axiom is common to nearly all descriptive and normative utility theories of choice under risk. Contrary
to both intuition and common assumption, the little-known ’Steinhaus-Trybula paradox’ shows the relation ’stochastically
greater than’ will not always be transitive, in contradiction of Weak Stochastic Transitivity. We bespoke-design pairs of
lotteries inspired by the paradox, over which individual preferences might cycle. We run an experiment to look for evidence
of cycles, and violations of expansion/contraction consistency between choice sets. Even after considering possible stochastic
but transitive explanations, we show that cycles can be the modal preference pattern over these simple lotteries, and we find
systematic violations of expansion/contraction consistency.
Keywords: intransitivity, cycles, lotteries, experiment, expansion consistency

1 Introduction
Researchers have questioned the adequacy of Expected Util-
ity Theory (EUT) as an account of choice under risk since
Allais (1953) presented his famous ’paradox’ examples.
Economists question one axiom of EUT less thanmost: tran-
sitivity. Bar-Hillel & Margalit (1988) quote Luce & Raiffa’s
(1957) definition of transitivity as "if A is preferred in the
paired comparison (A, B) and B is preferred in the paired
comparison (B. C), then A is preferred in the paired compar-
ison (A, C)" (Luce & Raiffa, 1975, p. 16). Notice that the
binary comparison A, C is therefore superfluous: a rational
chooser can rely on transitivity to deliver the best option.
Choice cycles cannot occur unless this chooser is exactly in-
different between A, B and C, or makes a mistake. In short,
economists regard transitivity as a defining characteristic of
rational choice.
In light of this consensus, Butler &Blavatskyy (2018) pro-

pose the following scenario. A fund manager offers a reward
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to the broker who selects one portfolio that outperforms the
others over the following year. The decision maker’s (DM)
preference then is to maximise the probability of earning the
greater sum. Suppose there are three (statistically indepen-
dent) portfolios; portfolio A yields $4m with probability 2/3
and $1m with probability 1/3; portfolio B yields $3m for
sure; and portfolio C yields $5m with probability 1/3 and
$2m with probability 2/3.
Suppose the fund manager begins by comparing {A, B};

she will choose portfolio A because A yields a higher out-
come thanBwith probability 2/3. Next she compares {B,C};
she chooses portfolio B because B will yield a higher out-
come than C also with probability 2/3. Then as a rational de-
cision maker relying on transitivity for choice set {A,C}, she
selects portfolio A over C. However, her faith in transitivity
is disadvantageous. Had she not relied upon transitivity, her
revealed preference in {A,C}would have been for C, because
C yields a higher outcome than A with probability 5/9, or
55.5%. The advantageous preference ordering across the set
of pairwise choices is the cycle A � B � C � A, contradict-
ing the transitivity axiom.1 While some may say this makes
probable winner preferences whether induced or elicited un-
reasonable (e.g., Pratt, 1972), this paper takes a different
view (e.g., Blyth, 1972; Bar-Hillel & Margalit, 1988). First,
businesses do employ these kinds of incentives, which for
pairwise decisions can lead to the preference (and choice)
cycle in our example. Second, no utility theories with a tran-
sitivity axiom currently comewith awarning that they cannot
account for probable winner or related preferences, in which
case it is not clear why we should deem their preferences
unworthy of maximization.

1We discuss her preference order over the ternary choice set {A, B,C }
in the next section.
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This cycle in our example is an illustration of a paradox
first described by Steinhaus and Trybula (Steinhaus & Try-
bula, 1959). As a mathematical puzzle their paradox, which
we denote STP for short, has inspired a small literature in
applied statistics (e.g., from Usiskin 1964 to Conrey et al.,
2016). We may state it as follows: let choice objects A,
B, C be independent random variables and let Pr (A � B)
denote the probability of choosing A over B. It is possible
for Pr (A � B), Pr (B � C)and Pr (C � A) to all exceed
50%, given a preference for the winner, contrary to Weak
Stochastic Transitivity (WST).
Steinhaus & Trybula proved that, for three choice ob-

jects, each with three equiprobable attributes, the theoreti-
cal maximum ’minimum’ (max-min) winning probability is
(
√

5 − 1)/2 or 61.8%. It is because this value exceeds 50%
that preference cycles may arise. In our earlier example, the
smallest of the three ’winning’ probabilities is 55.5%. While
we focus in the rest of this paper on preferences over simple
lotteries, we should not forget the relevance of these objects
to real economic decisions for choice under risk. Steinhaus
& Trybula gave an application to testing the relative strength
of randomly selected steel bars A, B, C, for which successive
comparisons could exhibit a cycle: A stochastically stronger
than B, B than C but with C stochastically stronger than A.
Other examples are not difficult to imagine.
Given the STP relies on a preference for the most probable

winner, as incentivised by the fund manager in our earlier
example, does it have much relevance for decision theory
and individual preferences more generally? This paper sug-
gests that the answer is yes, even though the STP has passed
mostly unnoticed in the decision theory literature (exceptions
includeButler&Hey, 1987; Anand, 1993; Blavatskyy, 2006;
Rubinstein & Segal, 2012). Even if very few individual pref-
erences over lottery pairs are simply for the probable winner,
the STP still serves as an important demonstration that im-
posing transitivity on an unrestricted domain of preference
profiles will sometimes result in an inferior choice. We con-
jecture the STP can also serve as a heuristic in constructing
new lotteries, over which a broader range of preferences
may cycle, a claim we return to in section on Inferences for
Lottery Design and an Experiment.
Kahneman (2012) reminds us that "The errors of a theory

are rarely found inwhat it asserts explicitly; they hide inwhat
it ignores or tacitly assumes". Transitivity must hold either
if a value attaches to each option without reference to other
alternatives (choice-set independence), or if an equivalent
value results after comparing and contrasting the attributes
of the available choice options. The latter process points
us towards the flaw in how transitivity is applied to multi-
attribute choice. This process will produce an equivalent
value only if utility is sufficiently ’linear in the differences’
between the options’ attribute values; see Tversky (1969);
Fishburn (1982); or Loomes & Sugden, (1982) for details.
The STP relies on an extreme example of a non-linear addi-

tive difference choice rule, for which a larger difference in
an attribute’s magnitude carries no extra weight.

However, individuals often form valuations of options in a
comparative, context-dependent manner rather than attract-
ing a context-independent value (Russo & Dosher, 1983;
Arieli et al, 2009; Noguchi & Stewart, 2014). Evidence
from eye-tracking experiments shows clear empirical evi-
dence against choice-set independence, at least when ex-
pected utilities are sufficiently ’close’ to prompt a DM to
compare the attributes of the alternatives.2 Non-linearity
sufficient to produce a preference cycle (dependent on the
relative size of the attributes) may then occur.

The rest of the paper is organised as follows. In the next
Section, we discuss inferences for lottery design and describe
our experiment. After that, we present the experimental
results and conclude with a general discussion

2 Inferences for Lottery Design and
Experiment

2.1 General Implications
Now we transition to using the STP objects to design our
own lotteries without either inducing or assuming probable
winner preferences. Let us consider decision making under
risk when choice alternatives are lotteries — i.e. probability
distributions over a nonempty finite set of outcomes. A deci-
sion maker faces a set of choice alternatives that contains at
least two distinct elements. Next, the DM chooses the choice
alternative that yields a strictly greater, context independent,
expected utility. Often, no such choice alternative is present,
so she compares the attributes of the available options to
recognize where her preference lies. This step is required to
avoid arbitrary choice; a growing body of evidence shows
preferences are often known imperfectly (inter alia, Butler
& Loomes, 2007).

Descriptively, the consensus is that true intransitive pref-
erence cycles are vanishingly infrequent. Evidence once
taken to indicate systematic intransitivity (Tversky, 1969;
Loomes, Starmer&Sugden, 1991) has since been either rein-
terpreted as not reflecting fundamental intransitivity (inter
alia: Starmer & Sugden, 1993) or found by newer statistical
methods to be compatible with noisy but transitive responses
(Baillon et al, 2015; Birnbaum & Diecidue, 2015). In his
highly influential 1969 article ’Intransitivity of Preference’,
Amos Tversky lamented "...in the absence of a model that
guides the construction of the alternatives, one is unlikely
to detect consistent violations of weak stochastic transitivity
(WST)".

2Evidence from response time’s shows fast decisions when one option
is clearly better. Response times lengthen, as the DM needs to accumulate
more evidence to trigger a choice.
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Part 1
•Binary Choice Task (Repetition 1) - 33 questions

Part 2
•Ranking Task (Repetition 1) - 11 questions

Part 3
•Distractor Task - 12 questions

Part 4
•Binary Choice (Repetition 2) - 33 questions

Part 5
•Ranking Task (Repetition 2) - 11 questions

Figure 1: Experimental Flow.

One reasonwhy experiments to date have only rarely found
evidence of intransitive behaviour is lack of guidance from
theory to select suitable lottery parameters. This lack of
guidance is probably a result of the assumption any util-
ity function must apply to all lottery pairs. However, this
presumes there is no ’black hole’ in parameter space from
which question sets can trigger preferences of a different
kind. Drawing on the STP as a heuristic, we may address
the problem Tversky faced and bespoke design candidate
lotteries.
Let each consequence represent a sum of money, in £, a

very familiar, directly comparable outcome for whichmagni-
tudes are easily interpretable by our subjects. For simplicity
and comparability, the probability of each outcome in our
design is always 1/3, 2/3 or 1. We imposed some filters
to guide our selection of triples. Since expected value dif-
ferences between each choice object, within a given triple,
reach a maximum of £4 2/3 ± £1 2/3 ± 35.7%, our first filter
is to focus on sets with larger EV differences (see Figure 1
for the distribution). We avoid constructing triples informed
by sets with equal or near equal EV’s to avoid tipping the
balance towards a cycle simply through noise.
Next, the second filter reduces cognitive load by requir-

ing each of the three STP objects to reuse integers such
that there are no more than two different amounts as conse-
quences (e.g., 5, 2 and 2); we therefore exclude any triple
with three different money consequences on any lottery. It
is also important to keep the presentation of the number of
attributes in each object equal rather than coalescing identi-
cal outcomes. This is because past experiments have found
the contrast between coalesced and non-coalesced outcomes
(also known as event-splitting; Starmer and Sugden, 1993)
can be confused as evidence for intransitivity (Birnbaum &
Schmidt, 2008; Baillon et al, 2015). To control for this
we display each consequence even when all three lead to
the same sum. We then made a number of modifications
that increased the prizes on offer and then allowed for risk
aversion in our experiment (risk-aversion plays no role for
probable winner preferences). We make no claim this step
in the parameter selection process involves more than a mix

of informed guesswork and personal judgment.
Finally, as a third filter, to mimic the preference reversal

(PR) phenomenon problems (Lichtenstein & Slovic, 1971)
we decided to focus on the STP triples which have expected
values strictly in the following order: $ � P � CE. Here,
$ is a dollar bet (lottery which yields a large outcome with
low probability), P is a probability bet (lottery which gives
a small outcome with large probability) and CE is certainty.
If we have 3 lotteries: X , Y and Z , we will assume that Z
stands for the dollar bet, X - for the probability bet, and Y
for certainty (degenerate lottery).

An important implication of our design choices is that the
direction of cycles may be subject to two opposing forces,
in aggregate, because the direction of cycles for standard PR
lotteries is opposite to the ’probable winner’ cycle. How-
ever, this should not stop systematic cycles appearing at the
individual level, if some people exhibit one tendency more
strongly. This in mind, we can now put forward our first
testable hypothesis. Birnbaum & Schmidt (2008) succinctly
state the currently dominant view regarding the evidence
for intransitive preferences: "...we think the burden of proof
should shift to those who argue that intransitive models are
descriptive of more than five percent of the population".
Hypothesis 1: Drawing on the STP ingredients, we can
design sets of lotteries for which cycles will occur with sig-
nificantly greater frequency than 5%.

We can see the lotteries we designed in the left hand
columns (columns 1–6) of Table 1.

In the spirit of Allais’ famous example, consider one such
’bespoke’ lottery set, and assume your preferred lottery is
incentivized. The three choice objects are statistically in-
dependent lotteries: each outcome is a monetary amount
with a one-third probability attached. For each of the binary
choice sets {X,Y }; {Y, Z }; {Z, X }, viewed separately, we ask
the reader to consider her preference, ideally looking only at
each decision in isolation. In combination, there are eight
possible binary preference patterns, of which just two are
intransitive. Consider X versus Y , where X provides £15
with probability 1/3, £15 with probability 1/3, or £3 with
probability 1/3; and Y yields £10 for certain - i.e., £10 with
probability 1/3, £10 with probability 1/3, or £10 with prob-
ability 1/3 (see Table 1). Suppose Y � X . Now compare Y
which gives £10 for certain and Z which provides £27 with
probability 1/3, £5 with probability 1/3, or £5 with proba-
bility 1/3. Perhaps, here Z � Y . Finally, compare Z which
yields £27 with probability 1/3, £5 with probability 1/3, or
£5 with probability 1/3 and X which provides £15 with prob-
ability 1/3, £15 with probability 1/3, or £3 with probability
1/3.3

In this case, maybe you found X � Z . If you preferY � X ,
Z � Y and X � Z , you have exhibited the preference cy-

3In order to make sure that subjects in our experiment understand prob-
abilities, we use display with 3 differently colored marbles for each lottery
option. We provide screenshots of this display in later sections of this paper.
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Table 1: Binary choices and intransitivity.

Triple Option p1=1/3 p2=1/3 p3=1/3 EV

N
intransitivities
in Repetition 1
(frequency)

N
intransitivities
in Repetition 2
(frequency)

N consistently
intransitive with
the same pattern
(frequency)

N consistently
intransitive
including
different
patterns

(frequency)
X 12 12 3 9.00
Y 8 8 8 8.00

1 Z 24 4 4 10.67 0.22 0.21 0.10 0.11
X 11 11 1 7.67
Y 5 5 5 5.00

2 Z 20 2 2 8.00 0.11 0.25 0.05 0.05
X 12 12 2 8.67
Y 8 8 8 8.00

3 Z 20 4 4 9.33 0.29 0.26 0.12 0.15
X 15 15 3 11.00
Y 10 10 10 10.00

4 Z 27 5 5 12.33 0.59 0.60 0.26 0.34
X 15 15 6 12.00
Y 11 11 11 11.00

5 Z 28 6 6 13.33 0.23 0.21 0.09 0.09
X 17 17 5 13.00
Y 12 12 12 12.00

6 Z 30 6 6 14.00 0.19 0.16 0.09 0.09
X 9 9 3 7.00
Y 6 6 6 6.00

7 Z 16 4 4 8.00 0.35 0.24 0.12 0.13
X 15 15 5 11.67
Y 10 10 10 10.00

8 Z 30 3 3 12.00 0.27 0.15 0.10 0.11
X 12 12 0 8.00
Y 7 7 7 7.00

9 Z 28 0 0 9.33 0.08 0.04 0.01 0.01
X 14 14 2 10.00
Y 8 8 8 8.00

10 Z 21 6 6 11.00 0.23 0.30 0.17 0.17
X 14 14 2 10
Y 24 5 5 11.33

11 Z 8 8 9 8.33 0.23 0.20 0.07 0.09

cle X � Z � Y � X , the modal preference pattern for our
subjects. The opposite cycle here is X � Y � Z � X ; we
found these two intransitive patterns together exceeded, by a
small majority, the six transitive patterns combined. Refer-
ring back to our opening example, suppose the consequences

on each of X , Y and Z refer to investment returns on three
portfolios and the probabilities are the historical frequencies.
A consumer’s binary preferences over those risk-return com-
binations might potentially cycle also with implications for
the structure of portfolios in finance.
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2.2 Design Implications from Models of Prob-
abilistic Choice

Although choice is often stochastic, and an intransitive cycle
may arise from transitive latent preference due to noise, dis-
tinguishing structurally intransitive latent preferences from
stochastic transitivity in experiments is not straightforward.
How frequently can intransitive cycles arise for individu-
als with transitive preferences, but who choose probabilis-
tically? For example, individuals may have transitive core
preferences but choice probabilities are determined by em-
bedding these preferences into a model of random errors
(e.g., Blavatskyy, 2014). Such a modelling approach can
generate a statistically significant asymmetry between the
two possible cycle directions, but it cannot generate a propor-
tion of intransitive cycles above 25% of all observed choice
patterns, for any triple.
A more promising model of probabilistic choice for ra-

tionalizing intransitive cycles is the random preference ap-
proach (e.g., Loomes & Sugden, 1995). As the extreme
example, let us consider an individual who has three tran-
sitive preference orderings X � Y � Z , Z � X � Y and
Y � Z � X with each ordering equally likely to be drawn
when a choice is to be made. It is straightforward to see that
in a direct binary choice between X and Y , this individual
chooses X with probability 2/3. Likewise, in a direct bi-
nary choice betweenY and Z , this individual choosesY with
probability 2/3. Finally, in a direct binary choice between
X and Z , this individual chooses Z with probability 2/3,
thereby violating weak stochastic transitivity. Thus, a model
of random transitive preferences generates a maximum of
(23)/(33) = 8/27 (29.6%) intransitive choice cycles. This
limit involves a strong asymmetry between the two possible
intransitive patterns; the maximum frequency of a particular
cycle given random sampling is 1/4; see Rubinstein & Segal
(2012) for proofs of these propositions.
However, a model of random transitive preferences has

another testable implication so far overlooked by a litera-
ture focused on binary choice sets. When comparing binary
choice data with the choice data from a ternary set, we derive
a new set of constraints that any stochastic but exclusively
transitive preferences must meet. In such models of stochas-
tic choice, the probability of choosing X from the ternary set
{X,Y, Z } is given by the probability that a decision maker
draws a preference order in which X is preferred to Y and
X is preferred to Z . In contrast, for a direct binary choice
between X and Y , this decision maker chooses X with a
probability that is equal to the probability that he or she
draws a preference order in which X is preferred to Y (but
X may or may not be preferred to Z). Similarly, for a direct
binary choice between X and Z , this decision maker chooses
X with a probability that is equal to the probability that he
or she draws a preference order in which X is preferred to Z
(but X may or may not be preferred to Y ). Hence, any model

of random transitive preferences must make the following
testable hypotheses. If any one of the three hypotheses fails
to hold, no model of stochastic transitive preferences can be
consistent with the data.
Hypothesis 2: The probability of choosing X from the
ternary set {X,Y, Z } cannot exceed

min {P(X,Y ), P(X, Z )} = min {P(X,Y ), 1 − P(Z, X )} (1)

Hypothesis 3: The probability of choosing Y from the
ternary set {X,Y, Z } cannot exceed

min {(Y, X ), P(Y, Z )} = min {1 − P(X,Y ), P(Y, Z )} (2)

Hypothesis 4: The probability of choosing Z from the
ternary set {X,Y, Z } cannot exceed

min {P(Z, X ), P(Z,Y )} = min {P(Z, X ), 1 − P(Y, Z )} (3)

Since, by definition, the probabilities of choosing X , Y and
Z from the ternary set {X,Y, Z } must sum up to one, we
have the following implication of any model of stochastic
but transitive preferences:

min {P(X,Y ), 1 − P(Z, X )} +
+min {1 − P(X,Y ), P(Y, Z )} +

+min {P(Z, X ), 1 − P(Y, Z )} > 1 (4)

A decision maker who violates weak stochastic transitivity,
such that P(X,Y ) > 0.5, P(Y, Z ) > 0.5 and P(Z, X ) > 0.5,
must still satisfy the inequality

1 − P(Z, X ) + [1 − P(X,Y )] + [1 − P(Y, Z )] > 1 (5)

which can be simplified as a triangle inequality

P(X,Y ) + P(Y, Z ) + P(Z, X ) < 2 (6)

The triangle inequalities (5) and (6), it is usually argued, pro-
duce a stronger test thanWST to separate genuine intransitiv-
ity from stochastic transitivity. However, Birnbaum (2011)
showed that the triangle inequalities could be satisfied even
by underlying intransitive preferences. Furthermore, recent
work by Müller-Trede et al. (2015) demonstrates how these
inequalities may be violated even when underlying prefer-
ences are 100% transitive. Their experiment also shows
clear violations of these inequalities.

In other words, the triangle inequalities for stochastic tran-
sitive preferences can be satisfied when preferences are in-
transitive and violated when preferences are transitive, rais-
ing a concern that they are not as useful for identifying true
intransitive preference cycles as generally believed, though
seeCavagnaro&Davis-Stober (2014) for an alternative view.
For these reasons, among others, our experiment was not de-
signed specifically to test the triangle inequalities, which

https://doi.org/10.1017/S193029750000766X Published online by Cambridge University Press

http://journal.sjdm.org/vol13.3.html
https://doi.org/10.1017/S193029750000766X


Judgment and Decision Making, Vol. 13, No. 3, May 2018 Predictably intransitive preferences 222
 

 

Figure 2: Binary choice display.

ideally would require multiple repetitions of the same lot-
tery pairs for every person. However, we can test H2-H4
below, for each triple violating WST. We also follow Birn-
baum&Diecidue (2015) and repeat each set of choices once
after a distractor task, which facilitates additional methods
of separating noise from true preferences.
Consider a decision maker who: a) makes a direct binary

choice between choice alternatives X and Y ; and b) ranks
choice alternatives X and Y as part of a ternary choice set
in terms of their desirability. Ignoring the ranking of Z , this
decision maker can reveal four different preference patterns:

• X � Y and X is ranked more desirable than Y (revealed
preferences i);

• Y � X and Y is ranked more desirable than X (revealed
preferences ii);

• X � Y and Y is ranked more desirable than X (revealed
preferences iii);

• Y � X and X is ranked more desirable than Y (revealed
preferences iv).

Revealed preferences i and ii are both consistent with the
independence of irrelevant alternatives axiom. Revealed
preferences iii and iv are inconsistent with this axiom. Thus,
if preferences of a decision maker satisfy contraction and
expansion consistency, we should observe patterns i and ii
and not patterns iii and iv. Our experiment investigates.

2.3 Experimental Design
In total 100 subjects (all undergraduate students at the Uni-
versity of Warwick) were invited to take part in the experi-
ment. We programmed the experiment using the Qualtrics
software and consisted of 100 questions divided into 5 parts
(see Figure 1).

Earlier tests for preference cycles primarily used state-
contingent consequences in matrix-style displays. Those
displays facilitate between-act comparisons and enhance the
possibility of, for instance, anticipated regret when conse-
quences are state-contingent and thus the potential for cycles.
Our design maintains statistical independence between the
choice objects such that any observed preference cycles are
more likely to be rooted in description-invariant, intransitive
latent preferences. Finally, we include a ’standard PR’ con-
trol set (Triple 9) to compare to our ’new PR’ gambles that
is the focus of our experiment.

In Part 1, we broke up the 11 triples into binary choices
between individual lotteries and asked subjects to answer 33
questions (3 binary choice questions per each triple). Table
1 provides a detailed list of all triples. We present each
binary choice in the format shown in Figure 2 with two
options — Left and Right. Each option shows a lottery with
3 equiprobable outcomes.

All binary choice questions gave subjects four different
options on a slider. The initial starting point for each slider
was "No preference". However, subjects were not able to
proceed by leaving the slider in the original position (i.e.,
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 Figure 3: Ternary Choice Display.

the choice of "No preference" was not allowed). Subjects
were able to move the slider to the right and opt for "Slightly
prefer Right" or "Strongly prefer Right" or, alternatively, to
move the slider to the left and choose "Slightly prefer Left"
or "Strongly prefer Left". Irrespective of whether a subject
indicated slight or strong preference, we used only revealed
preferences for "Left" or "Right" in the payoff calculations
and we do not report the strength of preference results here.
We randomized all 33 questions for each individual sepa-
rately. In Part three, we repeated all 33 binary questions
again but presented them in a different random order to each
subject.
In Part 2, we asked subjects to make two choices in each

ternary set, for the most and next most preferred object for
each of the 11 triples (see Figure 3).

We sought to maximize the similarity to the binary choice
task and so we incentivized the choice of best and next best
in each ternary set to obtain the full ordering in the triple.
We explained that we would draw two of the three lotteries
at random and they would play out whichever of the two they
had positioned higher, if the ternary set is selected for pay-
ment. We use the standard ’random lottery incentive system’
for the binary choices. Our aim was to keep to a minimum
any extraneous ’choice versus ranking’ disparities, to allow
as clean a test as possible of the expansion consistency prop-
erty and the transitive random preference restrictions, H2–4.

We randomized the order in which the ternary sets ap-
peared, as well as the order in which the lotteries appeared
on each screen. To avoid lazy acceptance of the default or-
dering, it was not possible to accept the default ranking. If
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Table 2: Frequency of intransitive cycles obtained from binary choices, in percent.

Triple Profile 121 123 131 133 221 223 231 233 INTR TR

R1 9 2 5 12 29 8 20 15 22 78
1

R2 13 3 6 10 27 9 18 14 21 79
R1 30 9 25 17 7 8 2 2 11 89

2
R2 25 17 23 5 2 10 8 10 25 75
R1 16 11 5 0 31 12 18 7 29 71

3
R2 14 10 5 8 25 13 16 9 26 74
R1 11 0 6 6 9 5 59 4 59 41

4
R2 8 18 5 3 6 14 42 4 60 40
R1 8 3 5 17 25 7 20 15 23 77

5
R2 13 5 6 12 31 8 16 9 21 79
R1 15 4 8 7 32 9 15 10 19 81

6
R2 15 4 5 11 33 12 12 8 16 84
R1 3 7 15 16 11 9 28 11 35 65

7
R2 7 1 17 19 16 10 23 7 24 76
R1 12 14 5 8 40 3 13 5 27 73

8
R2 13 7 7 9 47 7 8 2 15 85
R1 17 4 3 1 57 10 4 4 8 92

9
R2 15 3 2 1 57 19 1 2 4 96
R1 4 0 16 16 8 7 23 26 23 77

10
R2 5 1 10 13 12 10 29 20 30 70
R1 8 22 13 13 15 21 1 7 23 77

11
R2 10 10 9 11 18 14 10 18 20 80

Notes: R1 — Repetition 1; R2 — Repetition 2; INRT - intransitive
preferences; TR - transitive preferences.

the default was by chance preferred, they first had to move
away from the default then move back to it by deliberate
choice.
In Part 3, subjects were offered a Distractor Task in order

to create a break between the two repetitions of binary and
ternary choice tasks. The distractor task consisted of 12
risky choices using a different display, the results of which
are not reported here. In Part 4, all 11 ternary choice set
problems were repeated in a different random order.
We asked subjects to complete all tasks in the experiment

online in a 5-day window. All 100 subjects received an in-
vitation to the laboratory to play out their decisions for real
money. Each subject drew a question number (between 1 and
100) at randomand received payment based on his/her choice
in that question. In each question, we looked at the lottery
option chosen by the subject and played out that lottery ac-
cording to the description on the experimental display (e.g.,
Figure 2 and Figure 3). Immediately after the draw, subjects
received their payoff in cash. All 100 subjects turned up to
play out the lottery and receive their winnings. Finally, all

subjects completed a detailed online survey covering ques-
tions such as domain-specific risk attitudes and a variety of
demographic variables not reported on here.

3 Results
3.1 Descriptive Statistics
Table 2 reports the frequency of intransitive cycles for each of
the eleven triples obtained from binary choices. Other than
the PR control (Triple 9) we find the proportion of preference
cycles averaged across both repetitions ranges from a low of
18% (Triples 2 and 6) to a high of 59% (Triple 4).4
In contrast the PR ’control’ triple found just 6% intransi-

tive patterns. Other than the control triple, the proportion
of cycles for each triple is strongly significantly greater than
5%, using Fisher’s exact test, supporting H1. The average

4Table A in the Online Supplementary Material provides detailed sum-
mary statistics including the frequency of intransitive cycles for each of the
eleven triples.
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Figure 4: Histogram of Cycle Frequency by Individual.

proportion intransitive in the first block was 27.1% followed
by 25.8% for the second block, giving an overall intransitive
proportion of 26.5%. If learning occurred between blocks,
it did not reduce the occurrence of cycles noticeably, giving
our first clue that error may not be the main cause of cycles.
Of the eight possible preference orderings (two intransitive,
six transitive), the mode was intransitive for three of the ten
triples and an intransitive pattern was runner-up in a further
five triples.
At the individual level, between 30% and 85% of sub-

jects cycled in each of the ten triples either once or on both
repetitions. For instance, in triple 4 alone, 85 of the 100
individuals cycled at least once and 34 cycled on both occa-
sions. It appears that a significant minority, a plurality, even
an occasional majority, exhibit intransitive choice cycles, for
these statistically independent pairs of simple, incentivized
lotteries. Across the ten triples, every single one of the
100 subjects cycled at least once. A Spearman correlation
of the number of cycles by individual between repetitions
was +0.93, suggesting again that the cycles we observe are
not simply random errors but latent intransitive preferences.
Figure 4 shows the histogram of cycles by individual.
The predominant direction of cycles for our lotteries is

consistent with ’reverse’ cycles, rather than the ’probable
winner’ cycles.5 The 26% average figure breaks down 19:7
in favour of the ’reverse’ direction. For the eight tripleswhere
an intransitive pattern is either the mode or runner-up, six
follow the ’reverse’ direction and two the ’probable winner’
direction. This likely reflects our choice of expected value
rankings for X , Y and Z , as we noted previously. Unlike the
STP, the random lottery incentive system does not induce
a particular preference pattern; it elicits preferences rather
than prescribes them.

5The ’probable winner’ cycle refers to a case when CE � $ − bet �
P � CE and the ’reverse’ refers to a case when $−bet � CE � P−bet �

3.2 Noisy Transitivity or Noisy Intransitivity?
A reasonable approximation to a true, ’error free’ propor-
tion for each preference pattern is to identify those subjects
making the same three binary choices within a triple on both
repetitions. To do so means they avoid six possible choice
errors, for each ’true’ preference pattern. Across the ten sets
of triples (excluding the control), the diagonals for each triple
in Table 2 reveal this occurs on 366 occasions out of 1000.
Of these, 117 were of one of the two intransitive orderings
and 249 were for one of the six transitive orderings. Thus,
the share of revealed consistently intransitive preference pat-
terns among all revealed consistent preference patterns was
32% (117 out of 366). To get a sense of how striking this
finding is, a recent and unusually careful and thorough inves-
tigation of intransitive choice patterns was able to conclude:
"...very few people repeat the same intransitive pattern on
two replications of the same test. In other words, most vi-
olations that have been observed can be attributed to error
rather than to true intransitivity" (Birnbaum & Diecidue,
2015). Yet we find that on average a typical intransitive pat-
tern is 41% (117/2 vs 249/6) more likely to replicate than a
typical transitive pattern.

Delving deeper, we see from the middle panels in Ta-
ble 2 that the intransitive proportion of consistently revealed
patterns across the triples varies from 17.8% (triple 8) to
83.9% (triple 4). The modal consistently revealed patterns
are intransitive for triples 4, 7, 10 and 11 and runner-up for
Triples 1, 3, 5 and 6; that is, eight of the ten triples have
an intransitive modal or second modal consistently revealed
preference pattern. Therefore, consistently intransitive pref-
erences appear to be revealed relativelymore frequently than
intransitive preferences that may or may not replicate. This
result suggests that noise diminishes (rather than increases)

$ − bet .
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intransitive preferences in revealed choice patterns. In other
words, as the noise washes out, cyclical choice patterns in-
crease their share of the total, a finding replicated at the
individual level, as we next show. As a comparison, in our
control, triple 9, we find the opposite: just 1 consistently
intransitive person but 51 consistently transitive people, a
98% transitive share, in line with the consensus view on the
rarity of cycles.
Another way to check whether fundamental intransitivity

or noise is driving the data is to divide the subjects into
two equal-size groups by rate of choice switching between
repetitions. On inspection, we find a threshold of 10 or
fewer inconsistencies separates 51 individuals with fewer
and 49 individuals with more inconsistencies (or stochastic
preferences). In Figure 5, we plot the number of cycles
exhibited by each individual against the number of his or her
choice switches between repetitions.
The graph shows a broad tendency for more cycles among

the more consistent individuals, with cycles decreasing as
the rate of choice switching increases. The most consistent
group of 51 subjects committed an average 6.16 cycles (out
of a maximum possible 20), which is 33% more than the
group of 49 noisier individuals who averaged 4.63 cycles.
This conclusion is not dependent on the threshold of 10, as
is clear from Figure 5, offering further evidence that true
intransitivity rather than noise is responsible for most of the
observed cycles.6
Weak stochastic transitivity (WST), requires Pr (C � A)

to be at least as large as the minimum of Pr (B � A) and
Pr (C � B), a requirement diametrically at odds with the
STP. As noted earlier, violations of WST can also result if
subjects have random preferences over exclusively transitive
preference orders. However, we also showed an overlooked
implication of this claim is the set of constraints we identified
in H2-H4. The frequency with which each lottery is chosen

6The caveat is there may be a modest uptick of cycles for the most
inconsistent of all; but inspection of the graph shows just two out of 100
individuals drive the uptick, so it may not be reliable.

from the respective ternary choice set must satisfy each of
H2-H4. In other words, any random preference model over
transitive orderings capable of violating WST must meet
H2-H4. If it does not, latent intransitive preferences are
presumably the only remaining explanation. Our data shows
that WST is violated for Triples 1, 3, 4, 5, and 7 (see Table
3).7
Triple 4 exhibits the strongest violation followed closely

by Triple 3. Averaged across both repetitions, in triple 4 we
found: Pr (Y � X )= 71.5%; Pr (Z � Y ) = 64.5% and also
that Pr (Z � X ) = 27%. At 37.5 percentage points, this is
a strikingly strong violation of WST. It is also a violation of
’simple scalability’ (Tversky & Russo, 1968). Table 4 shows
the results of the hypothesis tests.

In summary, for each triplewhereWSTdid not hold for the
binary choice sets, any transitive random preference model
must satisfy H2-H4 in the ternary sets. This is essential
if the WST violations in the binary sets were a result of
stochastic but transitive latent preferences. Taken as a whole,
the tests reported above to separate noisy but transitive latent
preferences from underlying intransitivity lean heavily in
favor of the latter proposition.

Finally, triple 8 was one of two triples where intransitive
patterns were relatively infrequent. The lotteries comprising
triple 8 were designed to be a test of one intriguing ’ingre-
dient’ in the STP recipe: a higher minimum consequence
for Z than for X. A small pilot experiment had previously
identified triple 4 as particularly prone to exhibit cycles (19
of 27 subjects cycled). We decided to make as few changes
as possible to the lottery pairs of triple 4 when swapping the
lowest payoff in X with that in Z. This change then required
an increase in the maximum payoff in Z to keep the expected
value above that for X.

The combined effect of these two changes is to drastically
reduce the number of observed cycles, from 119 of 200 in
triple 4 down to 42 of 200 in triple 8 (triple 8 resembles,
but does not strictly satisfy, the STP). Even more striking

7See Table B in the Online Supplementary Material for more details.
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Table 3: Intransitive cycles across binary and ternary choices.

Total

Triple Option p1=1/3 p2=1/3 p3=1/3 X � Y Y � X Y � Z Z � Y X � Z Z � X

1 X 12 12 3 60 140 100 100 127 73
Y 8 8 8 43 81 76 53 95 41
Z 24 4 4 72% 58% 76% 53% 75% 56%

2 X 11 11 1 152 49 108 92 122 78
Y 5 5 5 104 27 49 59 87 48
Z 20 2 2 69% 55% 45% 64% 71% 62%

3 X 12 12 2 69 131 132 68 130 70
Y 8 8 8 35 84 83 27 107 52
Z 20 4 4 51% 64% 63% 40% 82% 74%

4 X 15 15 3 57 143 71 129 146 54
Y 10 10 10 37 97 49 32 106 20
Z 27 5 5 65% 68% 69% 25% 73% 37%

5 X 15 15 6 69 131 100 100 124 76
Y 11 11 11 33 91 72 37 105 51
Z 28 6 6 48% 69% 72% 37% 85% 67%

6 X 17 17 5 69 131 124 76 135 65
Y 12 12 12 38 71 80 27 103 36
Z 30 6 6 55% 54% 65% 36% 76% 55%

7 X 9 9 3 85 115 64 136 120 80
Y 6 6 6 50 55 37 87 47 45
Z 16 4 4 59% 48% 58% 64% 39% 56%

8 X 15 15 5 75 125 143 57 145 55
Y 10 10 10 38 58 61 29 93 29
Z 30 3 3 51% 46% 43% 51% 64% 53%

9 X 12 12 0 46 154 182 18 156 44
Y 7 7 7 27 86 97 9 76 24
Z 28 0 0 59% 56% 53% 50% 49% 55%

10 X 14 14 2 65 135 47 153 107 93
Y 8 8 8 34 76 31 86 76 67
Z 21 6 6 52% 56% 66% 56% 71% 72%

11 X 14 14 2 96 104 118 82 84 116
Y 8 8 9 44 59 32 32 33 73
Z 24 5 5 46% 57% 27% 39% 39% 63%

Notes: In each Triple in Columns 6-11: row 1 shows data for binary choice task; row 2
shows data for ternary choice task; row 3 shows (data from ternary/data from binary) in %.
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Table 4: Testing Hypotheses 2–4.

Triples Hypothesis 2 Hypothesis 3 Hypothesis 4
1 WST H2: Pr(X) <0.36

Data: Pr(X) = 0.32
H3: Pr(Y) <0.3
Data: Pr(Y) = 0.39

H4: Pr(Z) <0.5
Data: Pr(Z) = 0.29

3 WST H2: Pr(X) <0.35
Data: Pr(X) = 0.37

H3: Pr(Y) <0.34
Data: Pr(Y) = 0.43

H4: Pr(Z) <0.35
Data: Pr(Z) = 0.29

4 WST H2: Pr(X) <0.27
Data: Pr(X) = 0.34

H3: Pr(Y) <0.285
Data: Pr(Y) = 0.485

H4: Pr(Z) <0.355
Data: Pr(Z) = 0.175

5 WST H2: Pr(X) <0.38
Data: Pr(X) = 0.23

H3: Pr(Y) <0.34
Data: Pr(Y) = 0.54

H4: Pr(Z) <0. 5
Data: Pr(Z) = 0.23

7 WST H2: Pr(X) <0.4
Data: Pr(X) = 0.23

H3: Pr(Y) <0.42
Data: Pr(Y) = 0.315

H4: Pr(Z) <0.32
Data: Pr(Z) = 0.455

Notes: Shaded cells highlight cases when a hypothesis is rejected by the data.

is the reduction in the intransitive share of consistently re-
vealed patterns, from 83.9% in triple 4 to 17.8% in triple 8.
We conjecture that if researchers adopt this new PR design,
they may find even stronger reversals than those that have
comprised the PR paradox to date.

3.3 Testing Expansion Consistency and IIA
The second purpose for eliciting preferences in the respective
ternary choice sets is to test for expansion consistency. Table
3 presents the results for all decisions, contrasting the binary
and ternary choices, by triple. Table 5 reports separately the
most preferred elements in all the ternary sets.
The rightmost panels in Table 3 show the following. The

binary choices in repetition 1 were consistent with binary
choices in repetition 2 for 2043/3000 or 68.1% of decisions
(excluding the control), which we take as the benchmark.
Aggregating across these 10 sets of triples, for those choos-
ing X � Z in the binary set, 852 of 1240, or 68.7% maintain
the ranking in the ternary set. The binary/ternary compar-
ison for X � Z is the same as the benchmark consistency
supporting (stochastic) expansion consistency when Y is in-
cluded. However, this is just one of six binary preference
ranks tested and is the only one to match the binary/binary
consistency.
For the binary preference Y � X , 699 of 1204 decisions,

maintain this ranking in the ternary set, or just 58.1%. This
is statistically significantly lower than 68.1%. Finally there
are 993 binary choices of Z � Y ; of these just 469, or 47.2%,
maintain that rank in the respective ternary comparisons so
expansion consistency is rejected. This is the lowest consis-
tency rate of the six binary ranks. It seems that preference
for the riskiest option over the certainty reverses when the
intermediate option is included in the set.

The other four comparisons are all around 58% consis-
tent. Hence, most binary/ternary comparisons show clear
evidence, beyond noise, of set-dependent preferences, incon-
sistent with expansion to, or contraction from, the ternary set.
While some of the violations reflect the well-known com-
promise effect, the largest inconsistency above cannot be
explained by any of the three known effects: attraction, sim-
ilarity or compromise. We can also test whether preferences
revealed from a binary choice are consistent with prefer-
ences revealed from rankings within a ternary set at a more
fine-grained level using the Conlisk (1989) test. This test
compares the relative frequency of two inconsistent choice
patterns. The first pattern is when a decision maker chooses
X over Y in a binary choice but ranks Y over X in a ternary
set. The second pattern is when a decision maker chooses
Y over X in a binary choice but ranks X over Y in a ternary
set. If these two choice patterns are due to indifferences,
random errors, imprecision, noise or indecisiveness, they
should occur, a priori, with equal or similar frequencies. In
contrast, a decision maker who systematically reveals one
choice pattern significantly more often than the other (for
example, by following the most probable winner) is unlikely
to simply reflect indifference or noise. The Conlisk’s (1989)
test formalizes this idea.

Table 6 presents the results of Conlisk (1989) test compar-
ing the consistency of binary choices with ternary rankings.

A significant positive or negative z value indicates that
inconsistencies between binary choices and ternary rank-
ings are not due to indifferences, random errors, imprecision
or noise. In triples 7-10 binary choice is always statisti-
cally significantly different (at 5% significance level) from
ternary rankings for all three comparisons (X vs Y , Y vs
Z and X vs Z). For triple 3 binary choices are not statis-
tically significantly different from ternary rankings (for all
three comparisons). For other triples, there are significant
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Table 5: Average ternary top preferences by triple.

Triple Option p1=1/3 p2=1/3 p3=1/3 X in a 1st choice Y in a 1st choice Z in a 1st choice

1 X 12 12 3 32% 39% 29%
Y 8 8 8
Z 24 4 4

2 X 11 11 1 49% 14.5% 36.5%
Y 5 5 5
Z 20 2 2

3 X 12 12 2 43% 28% 29%
Y 8 8 8
Z 20 4 4

4 X 15 15 3 34% 48.5% 17.5%
Y 10 10 10
Z 27 5 5

5 X 15 15 6 23% 54% 23%
Y 11 11 11
Z 28 6 6

6 X 17 17 5 33% 41.5% 25.5%
Y 12 12 12
Z 30 6 6

7 X 9 9 3 23% 31.5% 45.5%
Y 6 6 6
Z 16 4 4

8 X 15 15 5 33.5% 38% 28.5%
Y 10 10 10
Z 30 3 3

9 X 12 12 0 44% 42% 14%
Y 7 7 7
Z 28 0 0

10 X 14 14 2 34% 30% 36%
Y 8 8 8
Z 21 6 6

11 X 14 14 2 25.5% 31% 43.5%
Y 8 8 9
Z 24 5 5

differences for some but not all combinations (typically X vs
Y and Y vs Z are significantly different but X vs Z is not).
Thus, for all triples but triple 3 there appear to be significant
inconsistencies between binary choice and ternary rankings
that go beyond imprecision or noise.

More specifically, there is an asymmetry when Z is in-
volved; when the binary choice favors Z (over X or over Y )
the ranking is more likely to be overturned in the ternary set
than if Z is disfavored in the binary set (see Figure 6). These
results appear to confirm a preponderance of set-dependent
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Table 6: Conlisk z (p-value) comparing binary choices X vs
Y , Y vs Z and X vs Z with the corresponding rankings from
a ternary {X,Y, Z }.

Triple Y vs Z
Conlisk z
(p-value)

X vs Y
Conlisk z
(p-value)

X vs Z
Conlisk z
(p-value)

1 −2.7749
(0.0028)

−5.1114
(0.0000)

0.0000
(0.5000)

2 2.7550
(0.0029)

3.0725
(0.0011)

0.6192
(0.2679)

3 0.8427
(0.1997)

−1.4484
(0.0738)

0.7801
(0.2177)

4 −7.8478
(0.0000)

−3.2774
(0.0005)

0.6966
(0.2430)

5 −3.7896
(0.0001)

−0.4579
(0.3235)

−0.9041
(0.1830)

6 −0.5175
(0.3024)

−3.1050
(0.0010)

0.3833
(0.3508)

7 −2.5583
(0.0053)

−2.6017
(0.0046)

3.7758
(0.0001)

8 5.5142
(0.0000)

−3.0000
(0.0013)

3.0023
(0.0013)

9 9.3944
(0.0000)

−5.6441
(0.0000)

6.6093
(0.0000)

10 −6.0806
(0.0000)

−3.0104
(0.0013)

0.6613
(0.2542)

11 3.1553
(0.0008)

0.7099
(0.2389)

0.8245
(0.2048)

preferences, in violation of expansion-consistency, as pre-
dicted earlier.
The effect captured in Figure 6 suggests thatwhen there is a

straight choice between our modified $-bet and certainty, the
majority of subjects (129 of 200 people) prefer the new $-bet.
Of those 129, 97 reversed their preference when new P-bet
was included in the choice set. The set-dependent anchoring
and adjustment effect (Slovic & Lichtenstein, 1983) may
help explain Figure 6. Specifically, when people consider
the new $-bet versus certainty, they tend to focus on the stake
rather than probability and concentrate on the most extreme
outcome.8 However, whenwe add the newP-bet to the choice

8Kim, Seligman & Kable (2012) show in an eye-tracking study that
when either $-bet or P-bet is compared to certainty; people tend to pay
more attention to stakes rather than probabilities which is consistent with
our findings. Kim et al. (2012) also find that when $-bet is compared with
P-bet in a straight binary choice, people tend to focus on probabilities rather

set, our results suggest that subjects tend to concentrate on
probabilities rather than stakes. They pay attention to the
most extreme probability of 1 (certainty) and, hence, tend to
choose certainty over the new $-bet.

4 Conclusion: Predictably Intransi-
tive?

Where do our arguments leave the most popular utility the-
ories of choice under risk (which all include transitivity)?
The Steinhaus-Trybula Paradox shows that formulti-attribute
risky choice objects, which we evaluate in binary and ternary
choice sets, relying on transitivity can fail to select the most
advantageous lotteries. The domain of application for tran-
sitive theories excludes choice-rules that are common and
cognitively plausible and can violate transitivity where util-
ity differences between options are not too large. It is likely
that ternary choice sets using smaller differences in expected
values than we used would show even greater rates of intran-
sitive binary comparisons.

An innovative feature of our experiment was eliciting pref-
erences in the ternary choice sets as well as the constituent
binary sets. This allows us to investigate the predicted set-
dependence of preferences and test transitive but random
preference theory as a possible explanation of cycles. Re-
sults support our conjectures that the cycles reflect latent
intransitive preference rather than noisy implementation of
transitive preferences. We saw that although very little solid
evidence for true intransitive preferences existed prior to our
experiment, this ’absence of evidence’ should not be mis-
taken for ’evidence of the absence’ of preference cycles.
This paper has identified limits to the descriptive invocation
of transitivity. Our findings also point to a deeper underlying
process at work in choice under risk, part of the growing ev-
idence (Louie, Glimcher & Webb, 2015) that choices often
bear the stamp of other options in the choice set, as well as
latent preferences (Noguchi & Stewart, 2014).

One implication of our arguments and our experimental
results is that rather thanmodelling individuals as possessing
a core utility function (transitive or intransitive), many typi-
cally transitive individuals are the same people who violate
transitivity in the circumstances we identify. This suggests
neither a transitive nor intransitive ’core’ utility function can
accurately describe preferences over all lotteries a person
may encounter. Stewart, Reimers and Harris (2015) recently
concluded, "The shape of the revealed utility ... function is,
at least in part, a property of the question set and not the indi-
vidual", in line with a constructed-preference paradigm. Our
results point towards the constructed-preference paradigm as
the more promising way forward.

than stakes.
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 Figure 6: Set-Dependent Preferences.
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Appendix

Figure A1: Experimental Instructions: Screenshot 1.
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Figure A2: Experimental Instructions: Screenshot 2.

 

 

Figure A3: Experimental Instructions: Screenshot 3.
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Figure A4: Experimental Instructions: Screenshot 4.

https://doi.org/10.1017/S193029750000766X Published online by Cambridge University Press

http://journal.sjdm.org/vol13.3.html
https://doi.org/10.1017/S193029750000766X


Judgment and Decision Making, Vol. 13, No. 3, May 2018 Predictably intransitive preferences 236

 

 

Figure A5: Experimental Instructions: Screenshot 5.
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