BRITISH JOURNAL OF PSYCHIATRY (2003), 183, 398-404

Describing, explaining or predicting mental

health care costs: a guide to regression models
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Background Analysis ofthe patterns of
variation in health care costs and the
determinants of these costs (including
treatment differences) is an increasingly
important aspect of research into the

performance of mental health services.

Aims To encourage both investigators
ofthe variation in health care costs and the
consumers of their investigations to think
more critically about the precise aims of
these investigations and the choice of
statistical methods appropriate to achieve

them.

Method We briefly describe examples
of regression models that might be of use
inthe prediction of mental health costs
and how one might choose which one to
use for a particular research project.

Conclusions [fthe investigators are
primarily interested in explanatory
mechanisms then they should seriously
consider generalised linear models (but
with careful attention being paid to the
appropriate error distribution). Further
insight is likely to be gained through the use
of two-part models. For prediction we
recommend regression on raw costs using
ordinary least-square methods.Whatever
method is used, investigators should
consider how robust their methods might
be to incorrect distributional assumptions
(particularly in small samples) and they
should not automatically assume that
methods such as bootstrapping will allow
them to ignore these problems.
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Analysis of the pattern of variation in indi-
viduals’ health care costs and the determi-
nants of these costs (including treatment
differences) is an increasingly important as-
pect of research into the performance of
mental health services. Econometric model-
ling (Kennedy, 1998; Verbeek, 2000; Jones
& O’Donnell, 2002; Wooldridge, 2003) is
a rather specialised activity within mental
health research and, for obvious reasons,
is not covered (at least not in sufficient
detail) by standard textbooks on medical
statistics (e.g. health care costs get only
two very brief entries in Armitage et al,
2002). The present review aims to fill this
gap. It is our intention neither to give a de-
tailed picture of how and when each of
these methods has been used in the mental
health literature nor to appraise the quality
of any particular applications. Given the
inevitable space limitations of such a review
we will not dwell on many of the technical
details but will give a brief summary of
many of the methods that are available
and indicate how and when they might be
useful. One important area of health eco-
nomics that might not appear to have much
in common with health econometrics is the
analysis of incremental cost-effectiveness
ratios using data from randomised con-
trolled trials. Incremental cost-effectiveness
ratios cannot be analysed using regression-
based methods but Hoch et al (2002) re-
cently have illustrated how a new approach
to cost-effectiveness analysis (based on the
net benefit framework; Stinnett et al,
1998; Tambour et al, 1998) can lead to
the effective use of econometric modelling.

Background

The purpose of this review is to enhance
readers’ ability to understand and appraise
research papers and other reports on the
prediction of mental health care costs, pay-
ing particular attention to the statistical
methodology, in terms of choice of model,
and to evaluation of the likely future
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performance of the chosen predictive mod-
el. Although we would not expect the
typical reader of this journal to be fully
aware of the technical pitfalls of analysing
costs data, in our view it is vital that, as
in the critical appraisal of other research
evidence, readers are familiar with the main
issues and how the authors’ interpretations
of the results of such studies might be mis-
leading or mistaken. Whenever possible, we
wish to be able to make our own judge-
ments as to the quality of a piece of
research rather than having to take the
views of ‘experts’ on trust. Other topics,
such as methods of patient selection and
methodological problems concerning mea-
surement of the actual costs of care for
individual patients, are extremely import-
ant but we will not attempt to discuss these
in detail here. Many of the problems
concerning the selection of patients to study
are similar to those that are the usual con-
cerns of anyone wishing to make a critical
appraisal of prognosis studies and we there-
fore refer readers to the relevant literature
in this area (Sackett et al, 1991).

Our own interest in the appraisal of the
validity of many past studies of health care
costs and a recent review by Diehr et al
(1999) have prompted us to question
whether the methods currently available
for modelling or predicting health care
costs, other than ordinary least-squares re-
gression of logged costs, are widely known
in the mental health field. We are not aware
of an elementary discussion of the relevant
methodologies but there is a useful study
illustrating most of the methodological
problems in the context of analysis of varia-
tion in mental health care costs (Kilian et al,
2002). Although it covers most of the same
ground as the present paper, the discussion
by Kilian et al is technically more difficult
than the one presented here. The goal of
this review is to make these methods more
widely accessible to non-specialists and, in
particular, to the consumers of the resulting
research findings.

Our intention is to describe and explain
the competing methods as clearly as poss-
ible while keeping the technical details to
the minimum necessary for this objective.
We will use little mathematics, restricting
most of it to the definition of the various
indices of the predictive power of the com-
peting models. We hope that the present
review can be read and understood by
clinicians and other mental health workers,
although we would hope that it might
also provide a good starting point for
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statisticians and health economists who do
not have experience or specialist knowledge
of econometric modelling.

DEFINING THE GOALS
OF THE STUDY

In reading papers on the prediction of
mental health costs, one of the striking
conclusions made concerns the frequent
lack of clarity in the authors’ aims and this
lack of clarity arises from the vague way in
which they deal with the concept of predic-
tion. ‘Predictive power’ refers to a model’s
ability to discriminate between patients
and to account for their cost differences.
Sometimes the authors are content simply
to describe differences in the health care
costs of different patient groups, usually
also reporting the results of simple signi-
ficance tests of group differences. This is
often accompanied by the use of some sort
of regression model that can be used to
‘explain’ or account for the variation of
costs within and between these patient
groups. Finally (but very rarely is this made
explicit) is the aim of being able to predict
or forecast the costs of future patients
(either individually or collectively). More
often than not, authors fail to distinguish
between explanatory models and those
used for forecasting, accordingly giving
very little thought to which statistical
technique or group of techniques might be
optimal for a given goal. It is possible,
and frequently likely, that authors have
several related aims in the presentation
and analysis of their data, but it would be
very helpful for the reader if they could be
more precise in explaining exactly what
they are.

To summarise, goals need to be defined
precisely and the statistical methods should
be chosen to fulfil these goals. A model
and corresponding fitting method might
be optimal for one particular goal but not
the most effective for another. The optimal
choice of methodology should be depen-
dent upon the authors’ chosen (and
explicitly stated) aims. A given statistical
model might be good as an explanatory
device but poor as a tool for forecasting,
or vice versa. In practice, however, the
choice of statistical model might not matter
too much (i.e. the results of the analysis are
fairly insensitive or robust to model choice)
but, again, both the authors and readers of
studies of health costs need to know
whether this is likely to be the case.

DISTRIBUTIONAL
PROPERTIES OF COST DATA

Cost data are virtually always highly posi-
tively skewed and (at least in the context
of the investigations discussed here — this
would not be true for the analysis of net
benefits, for example) cannot have negative
values (zero values are possible but, in
practice, it is also unlikely that a patient
will incur exactly zero cost). Another
characteristic of this type of data is that
the variance of the observations increases
with their mean (an example of hetero-
scedasticity as opposed to homoscedasticity,
the latter implying a constant variance). It
is also possible to get what is called censor-
ing (incomplete or variable follow-up). In
this situation the data collection stops
before some or all of the patients have
incurred their full health care costs, so that
all we know is that the observed cost is the
minimum that has been incurred by a given
patient but the exact amount is unknown.
Censoring is not a problem that is unique
to cost data. It is likely to be more familiar
to readers in the context of the analysis of
times to certain events (times to recovery,
relapse or death are three common exam-
ples). Examples of censoring occur when
patients are lost to follow-up prior to the
end of the data collection period, or, if the
cost of an episode of illness is the variable
of interest, termination of the follow-up
period prior to the end of the patient’s epi-
sode of illness. Another possible example is
an incomplete measurement of health care
costs arising from one or two components
of the cost incurred by a given patient being
missing from the data file. Here, again, we
know the minimum cost incurred for that
patient (the sum of the non-missing compo-
nent costs) but not the total (the sum of the
non-missing and missing components).
Discussion of censored data is beyond the
scope of the present paper and we refer
interested readers to Diehr et al (1999)
and to discussions of survival analysis (see
Armitage et al, 2002).

A given population (or sample) of pa-
tients can often be thought of as a mixture
of two types. First, there are those who will
incur little, if any, treatment costs: those
that attend for assessment, advice or brief
support but do not need access to long-term
care. They may have only a very minor prob-
lem or one that is acute but from which
they make a quick and full recovery. Sec-
ond, there are patients who need varying
but non-trivial amounts of treatment and
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long-term care. These are the patients who
may incur quite modest yearly health care
costs but need very expensive long-term
care and support. Thus, the first question
faced by the statistical modeller, whether
interested in explanation or forecasting, is
whether to try to take this heterogeneity
of the patients (i.e. the group structure) into
account. Do we use a one-part model or is
it better to use a two-part model? Before
trying to answer this question we first need
to describe what the two types of model
are. We also need a more general discussion
on the choice of regression models.

ONE- ORTWO-PART
MODELS?

At the first stage of a two-part model we try
to discriminate between the two patient
types, that is, we try to predict who will
incur substantial costs (group A, say) as
opposed to those who will cost little or
nothing (group B). Typically, this will be
carried out using a multiple logistic regres-
sion. At the second stage we drop group B
patients from the analysis and then try to
model the incurred costs in those patients
who are in group A. Patient characteristics
that distinguish groups A and B might, or
might not, be the same as those that appear
to be responsible for the variations in the
costs of those in group B. If the aim is to
predict (forecast) the total cost for a given
patient, for example, then this is equal to
the sum of two components. The first is
the product of the probability of being in
group A and the modelled (expected) cost
if the patient is in group A. The second
component is the product of the probability
of being in group B and the modelled cost if
the patient is in group B. In symbols, this is

E(CostX) = P(AIX)-E(CostlA,X)
+P(BIX)-E(CostIB)

where P( ) is the modelled probability from
stage 1, E( ) is the expected or predicted
value from stage 2, | means ‘given’ or ‘con-
ditional upon’ and X is an indicator of the
observed characteristics of the patient;
E(CostlB) is simply the average cost for
those patients in group B. If we were con-
cerned with predicting treatment costs (as
opposed to the total cost to the health ser-
vice, say) and group B patients are those
who do not receive treatment, then
E(CostlB) would be zero.

In a one-part model we use a single re-
gression equation to model the costs for
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everyone in the data-set (i.e. we do not first
separate groups A and B). The predicted
cost for a given patient with characteristics
X is then simply E(CostlX).

We will assume that the investigator
has a clear idea of how to distinguish ‘sub-
stantial’ from °‘little or nothing’ costs based
on his or her knowledge of the population
being sampled. But what if it is not at all
obvious what the boundary between the
two groups might be? What if we are
convinced that the population is made up
of the two groups A and B but have diffi-
culty assigning group membership to many
of the individual patients? It may not be at
all clear what the cost cut-off should be in
order to discriminate between the two. In
this case we might wish to postulate a more
subtle version of a two-part model in which
group membership remains latent or hid-
den. This type of model is called a latent
class or finite mixture model in the statisti-
cal literature. We do not pursue this idea
further here but refer the interested reader
to Deb & Holmes (2002) for an illustrative
example and methodological discussion.

The two-part model (or possibly a
model with more than two parts; see
Duan et al, 1983) is conceptually much
richer than the simpler one-part model.
For this reason it is likely to provide more
insight concerning the ways in which
costs arise. Diehr et al (1999) comment:

‘When the goal is understanding the system, a
two-part model seems best because it permits
the investigator to distinguish factors that affect
the propensity to use any services from factors
that affect volume of utilisation once the person
has entered the system. . . For understanding
the effect of individual covariates on total costs,
a one-part model is most useful because it gen-
erates a single regression coefficient for each
variable and so can be interpreted easily.

We will defer discussion on accuracy of
forecasts until later. Before moving on,
however, it should be noted that an int-
elligent data analyst is likely to make a
decision concerning the use of a one-part
or two-part model at least partly on the ba-
sis of his or her prior knowledge concerning
the heterogeneity of the population of
patients under study and also from the
way the sample of patients for analysis
has been chosen. The analyst may have de-
liberately selected a relatively homogeneous
subsample of patients prior to any further
statistical analyses.

Having chosen which of the two ap-
proaches to use, we are still faced with the
problem of how to choose an appropriate
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regression model for either total costs
(one-part model) or costs in those that enter
the system (two-part model). This is the
subject of the following section. Readers
wishing to read more on two-part model-
ling are referred to Duan et al (1983,
1984), Mullahy (1998) and the review of
Diehr et al (1999).

CHOICE OF REGRESSION
MODEL

The simplest approach is to model the
observed costs directly using multiple
regression; the fitting is done using the
amiliar ordinary least-squares algorithm.
Multiple regression, however, assumes that
the effects of the predictive factors are
additive. Furthermore, ordinary least
squares is not the optimal fitting method
(in the sense of producing parameter
estimates with maximum precision) when
the distribution of the errors (differences
between observed and modelled costs) has
a non-constant variance (heteroscedasti-
city). The latter characteristics of the data,
together with non-normality, will also inva-
lidate tests of significance associated with
the model-fitting process, and estimates of
the standard errors and confidence intervals
for the parameters. Ordinary least-squares
modelling of raw cost data — based on
invalid distributional assumptions — can
(and does) also produce invalid (i.e. nega-
tive) estimates of costs for some patients.
It is not surprising, then, that investigators
might be tempted to use methods other
than ordinary least-squares modelling of
raw cost data (but see below).

If one takes logarithms of the observed
cost data, this transformation usually will
have two consequences: a considerable
reduction in the skewness of the data,
although complete symmetry is unlikely to
be achieved in practice; and stability of
the variance (i.e. the variability of the
observed costs will not increase with their
mean). Both of these consequences lead to
better
squares regression methods. Examples of
the use of this approach can be found in
Amaddeo et al (1998) and Bonizzato et al
(2000). The method is (usually) implicitly
based on a multiplicative model for the
actual costs (including a multiplicative
error term). There is a problem if there
are observed costs of zero (the logarithm

performance of ordinary least-

of zero is undefined) but this is often reme-
died by adding a small constant (unity, for
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example) prior to the logarithmic transfor-
mation. The method seems to work satis-
factorily in practice but one should always
remember that the aim of the analysis is
to evaluate our ability to predict actual
costs and not their logarithms. Values of
R? and other indices of concordance of
observed and predicted values (see below)
must be evaluated using the observed and
predicted costs (not their logarithms). More
importantly, investigators should be aware
of the fact that, even though ordinary
least-squares methods produce unbiased
estimates of log-costs, the predicted actual
costs (and also total costs derived from
the individual predictions) will be biased.
They will underestimate the true cost.
However, bias-reduction methods are avail-
able (e.g. the non-parametric method called
‘smearing’; see Duan, 1983) so this under-
estimation is not a serious problem as long
as it is recognised by the investigator.

If the investigator really believes that
the relationship between the predictive
factors and cost is multiplicative, then it
is probably preferable to model this ex-
plicitly using an appropriate generalised
linear model. In a generalised linear
model, the familiar regression equation
of the form o + X8;x; is called the ‘linear
predictor’. But the linear predictor is not
necessarily equated with the expected
cost, as in multiple regression with the
raw data, but via ‘link function’. So,
for example, we could have a model in
which the natural logarithm of the ex-
pected costs is equated with the linear
predictor

log.[ECost|X)] = a + Bx;
or, equivalently

E(Cost|X) = expla + X6ix;]
= explajexp[B1x1]exp[fax2] . . .

where ‘exp’ indicates exponentiation (tak-
ing antilogarithms). The form of the model
in the final line should make it clear why it
is a multiplicative model. This generalised
linear model differs from a multiple regres-
sion with logged cost data, however. The
first difference is that the errors are
assumed to be additive. That is

Observed cost = E(Cost|X) + error
= expla + Xfx;] + error

The second difference is that there is a more
realistic assumption concerning the prob-
ability distribution of the observed costs
(taking into account that they are non-
negative, their high degree of skewness
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and their heteroscedasticity). The cost data
are usually assumed to follow a gamma dis-
tribution (potentially highly skewed) and
the model is fitted by a method called max-
imum likelihood rather than ordinary least
squares. The key similarity between the
ordinary least-squares model for costs and
this generalised linear model, however, is
that in both we are explicitly modelling
the raw costs themselves and not some arbi-
trary transformation of them. A relatively
non-technical discussion of generalised
linear models can be found in Everitt &
Dunn (2001). If the investigator chooses
to use a one-part model to explain the var-
iation in total costs, then the generalised
linear model with a log link (i.e. a log-linear
model) and gamma errors is likely to pro-
vide the most realistic description of the
data. For this purpose, ordinary least
squares using raw costs would seem to be
unrealistic (in terms of both additive effects
and the distribution of the errors) and,
apart from its simplicity and familiarity,
ordinary least squares using logged costs
does not appear to have any obvious attrac-
tions. Again, we defer forecasting until
later. Recent examples of the use of gener-
alised linear models in the analysis of men-
tal health care costs can be found in Byford
et al (2001), Chisholm & Knapp (2002)
and Knapp et al (2003).

One very natural extension of the above
log-linear generalised
through the use of an ‘offset’. Suppose that
each patient provided cost data for a differ-
ent number of years (let this variable be
called ‘Years’). Instead of modelling total
costs, suppose that we were also interested

linear model is

in modelling costs per year

E(Cost|X)/Years = expa + Lix;]

or

log. [E(Cost|X)] = loge[Years] + a + Bix;

We still have the same log-linear model
for costs but it now has an extra term,
loge[Years], which is a fixed known con-
stant for each patient. In the language
of the generalised linear model, an expla-
natory variable that has a regression co-
efficient fixed at unity (rather than it
being estimated from the data) is called
an offset. Its use perhaps will be more
familiar (particularly to epidemiologists)
in the context of log-linear modelling of
disease rates using the so-called person-
years method (see Armitage et al, 2002).

There is a close link between the use of
offsets (person-years) in this way and
the survival models in which one handles
incomplete follow-up data via censoring.
This link is also relevant to the analysis
of incomplete or censored cost data (see
above).

ASSESSING THE MODEL'’S
PERFORMANCE

Here we need an index or statistic to mea-
sure the concordance (agreement) between
predicted and observed costs. Note that
we are not, or should not be, interested in
the concordance between predicted and
observed log-costs.

Perhaps the simplest index is the famil-
iar Pearson product-moment correlation
(R) between predicted and observed costs
(Zheng & Agresti, 2000), but this is far
from ideal. It is a measure of association
rather than concordance and it is probably
better to use Lin’s concordance coefficient
(R¢; Lin, 1989) or an intraclass correlation
(R;; Dunn, 1989). But both of these indices,
as well as the product-moment correlation,
are dependent on patient heterogeneity —
they will increase with increases in the
variability of the costs, irrespective of
the accuracy of the predictions. Perhaps
the most commonly used index for a multi-
ple regression model is the ‘coefficient of
determination’ or ‘proportion of variance
explained’, R? (equivalent in this situation
to the square of the product-moment corre-
lation between prediction and obser-
obtained
analysis of variance table. But, again, this
is not particularly useful unless the aim is
to discriminate between patients. Like the
above correlations, it is dependent on the
heterogeneity of the observed costs. Despite
this potential disadvantage, however, they
are obviously useful for comparison of the
performance of various models for the same

vation) — usually from the

data. Problems only arise when we try to
compare the performance of predictive
models on different groups. Some authors
prefer to use what is called the adjusted
R2, RZ, where

R;=1-[(1-R*)(n—1)/(n-p)]

a

and 7 is the number of patients in the sam-
ple and p is the number of estimated para-
meters (including the intercept term). The
idea is that the adjusted R?> provides a
better estimate of the likely performance

https://doi.org/10.1192/bjp.183.5.398 Published online by Cambridge University Press

MENTAL HEALTH CARE COSTS

of the model on future data-sets. Draper
& Smith (1998) comment that
‘The value of this statistic for the latter purpose
is, in our opinion, not high; R2 might be useful as
an initial gross indicator, but this is all’

(see the section on cross-validation below).
The use of R? instead of R, however, may
lead to less overfitting because R? is a
penalised goodness-of-fit index that is
dependent on the number of estimated
parameters (p) in addition to the propor-
tion of the total sum of squares explained.
Unlike R?, which cannot decrease as p
increases (i.e. when a variable is added,
the explained sum of squares will either
increase or stay the same), the value of R?
can actually decrease when extra variables
are added to the model (as in the case of
overfitting; Greene, 2000).

The accuracy of a model’s predictions is
probably best evaluated by a function of the
differences between the predicted and ob-
served costs. That is, by a function of
(co — ¢p), where ¢, is the observed cost for
a given patient and c, is the corresponding
prediction: E(Cost|X). The three obvious
choices are the residual mean square
(RMS), root-mean-square error (RMSE)
and the mean of the absolute error
(MAE). A less familiar index is Theil’s
U-statistic (Theil, 1966; Greene, 2000).

The RMSE is the square root of the
mean of the squared differences between
the predicted and observed values of cost,
MAE is the mean of the absolute value of
the differences, and RMS is the residual
sum of squares divided by the residual
degrees of freedom as obtained from the
relevant analysis of variance table. The
square root of the RMS (i.e. the standard
deviation of the residuals) is likely to be
close but not identical to the RMSE. Theil’s
U-statistic is the square root of the sum of
the squared deviations of the predicted
from the observed costs divided by the
square root of the sum of the squared pre-
dictions. Algebraically, the less familiar of
these indices are defined as follows

RMSE = /[2(co — ¢p)* /7]

MAE = X¢, — ¢]

U=[Z(co — ¢p)*/2c2]
Some authors use

U = %(co — ) /5

In all four cases the addition (indicated by
the symbol X)) is over all patients in the
sample, and a value of zero for the index
indicates perfect prediction. Index U, like
the various correlation coefficients and

401


https://doi.org/10.1192/bjp.183.5.398

DUNN ET AL

R2, is a scale-free measure of concord-
ance and shares the same advantages and
pitfalls.

One potential problem, whatever indi-
cator of performance is used, is that if it is
used naively it is likely to be overoptimistic.
If the explanatory variables in the final
model have been chosen using the same
data as those used to assess the model’s
performance, then we are likely to have
capitalised on chance associations between
potential explanatory variables and the cost
outcomes and inevitably will have pro-
duced a model that has been overfitted
(Greene, 2000). A more realistic evaluation
of the performance of the model ideally
should be made by cross-validation using
a data-set collected from a second, indepen-
dent sample of patients. Unfortunately,
however, we often do not have adequate re-
sources within a particular research project
to be able to collect such a data-set, and if
we test our model on someone else’s data
it is unlikely that they will have collected
exactly the same information using the
same measurement procedures on a com-
parable sample of patients. A more realistic
option is to split our original sample into
two, develop the model on one of the
subsamples (the so-called training set) and
evaluate it using the second one (the
validation set). This split-sample or internal
approach to cross-validation is the one
advocated by Diehr et al (1999) and
illustrated in Kilian et al (2002).

One pitfall of the split-half approach is
its inefficient use of the data. Unless we
have a very large sample to start with, we
are usually loath to use only half of the
patients to develop the model and half to
test it. Ideally, we would like to maximise
the use of the data for both functions.
One approach is to take the full sample of
n patients and leave each of the patients
out in turn. Each time, we derive a model
from the 7 — 1 remaining patients and test
its performance on the one that has been
left out. This ‘leave-one-out’ procedure in
principle involves a separate analyses from
which we can then produce an overall
summary of the model’s performance. In
practice this will not be necessary, but the
technical details are beyond the scope of
the present discussion. The text by Mostel-
ler & Tukey (1977) contains a nice intro-
duction to cross-validation methods and
Armitage et al (2002: p. 395) provides a
brief discussion of variants of the leave-
one-out method (see also Picard & Berk,
1990).
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HOW ROBUST ARE THE
STATISTICAL METHODS?

Returning to the simple ordinary least-
squares multiple regression models for ob-
served costs, how can we be confident that
inferences based on such a model are safe?
We know because of the skewness (non-
normality) and heteroscedasticity of the
data that ordinary least-squares regression
is not optimal. How does this affect the
model’s parameter estimates, their standard
errors, P values, confidence intervals, etc.?
Safe statistical inference for these models
rests on the assumption that on repeated
sampling the parameter estimates would
be normally distributed. This is likely to
be the case for large samples but frequently
we have doubts about whether our sample
is large enough. In the context of the analy-
sis of cost data from a randomised trial,
Barber & Thompson (2000a,b; see also
Desgagné et al, 1998) have advocated the
use of distribution-free procedures based
on a resampling procedure called the boot-
strap (Efron & Tibshirani, 1993). They
claim that the bootstrap will provide robust
inferences that are not dependent on distri-
butional assumptions. They conclude that

‘such bootstrap techniques can be recom-
mended either as a check on the robustness of
standard parametric methods, or to provide the
primary statistical analysis when making infer-
ences about arithmetic means for moderately
sized samples of highly skewed data such as costs’
(Barber & Thompson, 2000b).

The use of bootstrapping now appears to be
commonplace in health economics studies,
but is it the panacea that many health
economists appear to believe it is?

Barber & Thompson’s claims concern-
ing the robustness of the inferences based
on the bootstrap have been challenged re-
cently by O’Hagan & Stevens (2003). They
point out that for highly skewed cost data
obtained from small samples of patients
the sample mean is not the ideal estimator
of the required population mean. It is very
sensitive to the presence of one or two
stragglers with relatively high costs, and in-
ferences based on bootstrapping the sample
mean will be equally affected by this prob-
lem. They argue that even when the meth-
ods advocated by Barber & Thompson
are technically valid (in terms of their large
sample properties), in small samples they
may lead to inefficient and even misleading
inferences. We suspect that this is likely to
be an even greater problem for ordinary

least-squares-based multiple regression
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models. O’Hagan & Stevens agree with
Barber & Thompson’s assertion that we
should be concentrating on inferences on
untransformed costs (as do we in the pre-
sent paper), but their main message is that
it is important to apply statistical methods
(in the present context, model-fitting pro-
cedures) that recognise the skewness in cost
data.

O’Hagan & Stevens (2003) advocate
parametric modelling with realistic error
structures. This does not, however, rule
out the use of bootstrapping. Having cho-
sen the model-fitting procedure to cope
with the distributional characteristics of
the data, we can use bootstrapping to ob-
tain standard errors, confidence intervals,
etc. O’Hagan & Stevens pursue Bayesian
methods, but a viable alternative might be
the use of robust model-fitting procedures.
These are methods that are not unduly
influenced by outlying or extreme observa-
tions (Mosteller & Tukey, 1977; Berk,
1990). Note that robust fitting methods
should not be confused with robust meth-
ods of standard error estimation (the boot-
strap, for example) once we have got our
best-fitting model. They are complementary
and should not be seen as competitors. A
recent health economics application of
robust model-fitting methodology can be
found in Hoch et al (2002).

DISCUSSION

Choice of model

It is our experience and that of others
(Diehr et al, 1999; Kilian et al, 2002) that,
as a method of prediction (forecasting), a
one-part model involving ordinary least-
squares on raw costs data consistently per-
forms as well as, if not better than, ordinary
least squares on logged costs or the more
theoretically satisfying log-linear general-
ised linear model. The former sometimes
produces negative cost estimates but this
is not a serious problem. We provisionally
follow Diehr ez al (1999) in recommending
the use of ordinary least-squares regression
with raw costs for this purpose. However,
the use of methods that pay more attention
to the distribution of the costs data, or the
use of robust model-fitting algorithms, is
likely to produce improvements over the
use of ordinary least squares. If research
workers are primarily interested in explana-
tory modelling and if they think that their
model should be multiplicative, then they
should seriously consider the use of a gener-
alised linear model with a logarithmic link
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function (i.e. a log-linear model) with an
appropriately specified error distribution.
But even more value as an explanatory tool
might be the use of two-part models. Boot-
strapping is a very useful all-purpose and
method
standard errors, confidence and P values,
but its use should not replace the careful
thought that should be given to the choice
of the type of model to be fitted and the
optimum model-fitting algorithm to be
used once the model type has been chosen.
Bootstrapping comes later.

distribution-free of obtaining

Assessing the performance
of the model

We do not recommend the use of standard-
ised indices such as R? or Theil’s U-statistic
to compare the performance of a model
when applied to different groups. The
apparent lack of predictive value for pa-
tients in one particular group (group 1),
for example, as opposed to that in another
(group 2) may simply be a statistical arte-
fact caused by the fact that there is less
variability in the costs for the patients in
group 2. The performance of the forecasts
(as measured by root-mean-square error
or mean absolute error) may, in fact, be
better in group 2 than in group 1. The main
advantage of R? and Theil’s U-statistic is to
compare the performance of competing
models within the same group of patients.
For comparison of the performance of
models on different groups, we recommend
the use of the root-mean-square error or
mean absolute error. Finally, we stress the
importance of cross-validation — how well
will the model perform in a future sample?
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