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Abstract. The proof of Theorem 3.2 in [1] (P. Tzermias, On the p-adic binomial
series and a formal analogue of Hilbert’s Theorem 90, Glasgow Math. J. 47 (2005),
319–326) contains two opaque claims. The necessary clarifications are provided here.
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This note owes its existence to the sharp eye of Shashikant B. Mulay (whom the
author heartily thanks) who noticed and kindly informed the author that the proof of
Theorem 3.2 in [1] needs to address the following two points:

(1) Page 324, line 6: In order to be able to assume that c1 = · · · = cn = 0, one needs to
know that the coefficients ci are in �p (not just in R), for all i.

(2) Page 325, line 9: The reason we may assume that the leading coefficient of the
power series L(t1, . . . , tn) (when viewed as a power series in t1 with coefficients in
R[[t2, . . . , tn]]) equals 1 is not adequately explained.

For the sake of completeness, a revised version of the proof of Theorem 3.2 in [1],
which incorporates the required clarifications and justifications, follows:

Proof. (1) We first need the following lemma:

LEMMA 1. S contains a set T of n K-linearly independent vectors in (�p)n.

Proof. Suppose not. Let r be the largest number of K-linearly independent vectors
in S. Then r < n. Fix r such vectors and form the r × n matrix B with these vectors
as its rows. B has rank r, so there exists a non-singular r × r minor C. Now for each
(y1, . . . , yn) ∈ S, the (r + 1) × n matrix formed from B by putting (y1, . . . , yn) as its last
row must have rank r also, hence all its (r + 1) × (r + 1) minors have zero determinant.
Expanding the determinant of an (r + 1) × (r + 1) minor having C as a submatrix gives
a non-trivial linear polynomial in y1, . . . , yn, which is identically 0 on S, contradicting
the hypothesis on S. �
Having established Lemma 1, let c1, . . . , cn be the coefficients of t1, . . . , tn in
F(t1, . . . , tn) respectively. For each (y1, . . . , yn) ∈ T , consider the power series

H(t) = F((1 + t)y1 − 1, . . . , (1 + t)yn − 1) ∈ 1 + (t)R[[t]].

The coefficient of t in H(t) equals c1y1 + · · · + cnyn. Note that

H(ζ − 1) = F(ζ y1 − 1, . . . , ζ yn − 1) ∈ μ∞
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for infinitely many ζ ∈ μp∞ . Therefore, Theorem 2.1 in [1] implies that H(t) = (1 + t)b

for some b ∈ �p, hence the coefficient of t in H(t) is in �p. The conclusion is that
c1y1 + · · · + cnyn ∈ �p for all (y1, . . . , yn) ∈ T . Solving the resulting linear system and
using the linear independence of T shows that ci ∈ R ∩ �p = �p for all i.
Replacing F(t1, . . . , tn) by (1 + t1)−c1 · · · (1 + tn)−cn F(t1, . . . , tn) (which also belongs to
1 + (t1, . . . , tn)R[[t1, . . . , tn]]) if necessary, we may assume that c1 = · · · = cn = 0. It
suffices to show that F(t1, . . . , tn) is identically equal to 1. Suppose not. We can write

F(t1, . . . , tn) = 1 +
∞∑

j=2

Pj(t1, . . . , tn),

where Pj(t1, . . . , tn) is a homogeneous polynomial of degree j in t1, . . . , tn with
coefficients in R. By assumption, there exists a least m ≥ 2 such that Pm(t1, · · · , tn) is
non-zero. For each (y1, . . . , yn) ∈ S, consider again the power series

H(t) = F((1 + t)y1 − 1, . . . , (1 + t)yn − 1) ∈ 1 + (t)R[[t]].

Note that

H(t) ≡ 1 + Pm(y1, . . . , yn) tm (mod tm+1R[[t]]).

By our hypothesis on S, there exists (y1, . . . , yn) ∈ S such that Pm(y1, . . . , yn) �= 0. For
this choice of (y1, . . . , yn), it follows that H(t) is not a binomial series (the coefficient
of t equals 0 and the coefficient of tm is non-zero). On the other hand, by assumption,

H(ζ − 1) = F(ζ y1 − 1, . . . , ζ yn − 1) ∈ μ∞

for infinitely many ζ ∈ μp∞ , which is impossible, by Theorem 2.1 in [1].

(2) By Part (1), there exist b1, . . . , bp ∈ �p such that

f −1∏

i=0

F((1 + t1)ai
1 − 1, . . . , (1 + tn)ai

n − 1) =
n∏

i=1

(1 + ti)bi .

For each i, the coefficient of ti on the left-hand side is an R-multiple of 1 + ai + · · · +
af −1

i and should equal bi. If ai �= 1, then bi = 0, since af
i = 1. If ai = 1, then bi is an

R-multiple of f . Set di = bi/f . Then di ∈ R ∩ �p = �p for all i. Define

L(t1, . . . , tn) = F(t1, . . . , tn)
(1 + t1)d1 · · · (1 + tn)dn

.

Then

f −1∏

i=0

L((1 + t1)ai
1 − 1, . . . , (1 + tn)ai

n − 1) = 1.

If p is odd, then f is relatively prime to p. Define

H(t1, . . . , tn) = 1 +
f −2∑

i=0

i∏

j=0

L((1 + t1)aj
1 − 1, . . . , (1 + tn)aj

n − 1).
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The constant coefficient of H(t1, . . . , tn) equals f , therefore H(t1, . . . , tn) is invertible in
R[[t1, . . . , tn]]. Since L(t1, . . . , tn)H((1 + t1)a1 − 1, . . . , (1 + tn)an − 1) = H(t1, . . . , tn),
it follows that L(t1, . . . , tn) (hence also F(t1, . . . , tn)) is of the desired form.
Now suppose that p = 2. Then f = 2 and ai = ±1 for all i. In addition, since A �= I ,
there exists some i such that ai = −1. We need the following lemma.

LEMMA 2. Let p = 2. Consider an n-tuple (a1, . . . , an), where ai is an integer of
absolute value 1 for all i. Assume that not all ai equal 1, and let r be an index such that
ar = −1. If Q(t1, . . . , tn) ∈ 1 + (t1, . . . , tn)R[[t1, . . . , tn]] satisfies the conditions

(1) Q(t1, . . . , tr−1, 0, tr+1, . . . , tn) = 1,
(2) Q(t1, . . . , tn) Q((1 + t1)a1 − 1, . . . , (1 + tn)an − 1) = 1,

then there exist a natural number m and a unit G(t1, . . . , tn) in R[[t1, . . . , tn]] such that

Q(t1, . . . , tn) = (1 + tr)m G((1 + t1)a1 − 1, . . . , (1 + tn)an − 1)
G(t1, . . . , tn)

.

Proof. Without loss of generality, assume r = 1. By condition (1), we may write
Q(t1, . . . , tn) as a power series in t1 in the following manner:

Q(t1, . . . , tn) = 1 +
∞∑

j=1

qj(t2, . . . , tn) tj
1,

where qj(t2, . . . , tn) ∈ R[[t2, . . . , tn]], for all j. Let M denote the maximal ideal in
R[[t2, . . . , tn]]. We define a power series H(t1, . . . , tn) as follows:
If for some j ≥ 1, we have qj(t2, . . . , tn) /∈ M, then

H(t1, . . . , tn) = 1 + Q(t1, . . . , tn) = 2 +
∞∑

j=1

qj(t2, . . . , tn) tj
1.

Otherwise,

H(t1, . . . , tn) = (1 + t1) + (1 + t1)a1 Q(t1, . . . , tn) = (1 + t1) + (1 + t1)−1Q(t1, . . . , tn)

= 2 + q1(t2, . . . , tn) t1 + (q2(t2, . . . , tn) − q1(t2, . . . , tn) + 1) t2
1 + O(t3

1).

It easily follows that, in either case, there is some j ≥ 1 such that the coefficient of tj
1 in

the above power series expansion of H(t1, . . . , tn) is not in M. Also, by condition (2),

Q(t1, . . . , tn) H((1 + t1)a1 − 1, . . . , (1 + tn)an − 1) = H(t1, . . . , tn).

By the general form of the Weierstrass preparation theorem for single-variable power
series rings over complete local rings, it follows that there exists a unit U(t1, . . . , tn)
and a distinguished polynomial r(t1, . . . , tn) in R[[t2, . . . , tn]][t1] such that

H(t1, . . . , tn) = r(t1, . . . , tn) U(t1, . . . , tn).

If m is the degree of r(t1, . . . , tn) in t1, then H((1 + t1)a1 − 1, . . . , (1 + tn)an − 1)
equals (−1)m(1 + t1)−m(1 + η) w(t1, . . . , tn) U((1 + t1)a1 − 1, . . . , (1 + tn)an − 1), where
w(t1, . . . , tn) is also a distinguished polynomial in R[[t2, . . . , tn]][t1] of degree m in
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t1 and η ∈ M. Therefore, by the uniqueness statement in the Weierstrass preparation
theorem, we get

Q(t1, . . . , tn)(−1)m(1 + t1)−m(1 + η) U((1 + t1)a1 − 1, . . . , (1 + tn)an − 1)

= U(t1, . . . , tn). (∗)

Now write

U(t1, . . . , tn) =
∞∑

j=0

uj(t2, . . . , tn) t1
j,

where uj(t2, . . . , tn) ∈ R[[t2, . . . , tn]] for all j. Evaluating both sides of (∗) at t1 = 0 gives:

(−1)m(1 + η) u0((1 + t2)a2 − 1, . . . , (1 + tn)an − 1) = u0(t2, . . . , tn).

Substituting back into (∗) gives

Q(t1, . . . , tn) = (1 + t1)m U(t1, . . . , tn)u0((1 + t2)a2 − 1, . . . , (1 + tn)an − 1)
u0(t2, . . . , tn)U((1 + t1)a1 − 1, . . . , (1 + tn)an − 1)

.

Setting

G(t1, . . . , tn) = u0(t2, . . . , tn)
U(t1, . . . , tn)

,

it follows that

Q(t1, . . . , tn) = (1 + t1)m G((1 + t1)a1 − 1, . . . , (1 + tn)an − 1)
G(t1, . . . , tn)

.

�
Now that Lemma 2 has been proved, let L(t1, . . . , tn) be the power series defined at the
beginning of the proof of part (2), namely

L(t1, . . . , tn) = F(t1, . . . , tn)
(1 + t1)d1 · · · (1 + tn)dn

.

Without loss of generality, assume that a1 = · · · = as = −1 and as+1 = · · · = an = 1.
Clearly, L(t1, . . . , tn) satisfies condition (2) but not necessarily condition (1) of Lemma
2. Define the power series

P0(t1, . . . , tn) = L(t1, . . . , tn), P1(t1, . . . , tn) = L(0, t2, . . . , tn),

P2(t1, . . . , tn) = L(0, 0, t3, . . . , tn), . . . , Ps(t1, . . . , tn) = L(0, . . . , 0, ts+1, . . . , tn).

All these power series are in 1 + (t1, . . . , tn)R[[t1, . . . , tn]]. Also, since L(t1, . . . , tn)
satisfies condition (2) of Lemma 2, so does Pi(t1, . . . , tn), for all i. In particular, setting
i = s gives Ps(t1, . . . , tn)2 = 1, hence Ps(t1, . . . , tn) = 1 (because L(0, . . . , 0) = 1). Now
for i in {1, . . . , s}, define

Qi(t1, . . . , tn) = Pi−1(t1, . . . , tn)
Pi(t1, . . . , tn)

.
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Each power series Qi(t1, . . . , tn) satisfies all the hypotheses of Lemma 2, therefore it
is of the form described in Lemma 2. It follows that the product of all Qi(t1, . . . , tn),
which equals L(t1, . . . , tn), is also of the same form and, by definition of L(t1, . . . , tn),
the same holds for F(t1, . . . , tn), and this completes the proof. �
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