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Abstract

We study the last passage time and its asymptotic distribution for minimum contrast estimators defined
through the minimization of a convex criterion function based on f-functionals. This includes cases of
non-smooth estimators for vector valued parameters. We also derive a Bahadur-type representation and
the law of iterated logarithms for such estimators.
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1. Introduction

Let X be an M valued random variable with distribution F. Let Xu ... , Xn, be
independent, identically distributed copies of X. Let <y(#, Z) be a real valued function
defined for 9 e R'1 and Z e M'" for some m, 1 < m < oo. We assume that
q is measurable and is symmetric in its last m arguments for each 9. Let Q(9) =
E F q ( 6 , Xu... , X J a n d # ( ) ( u n i q u e ) b e s u c h t h a t Q(9Q) = i n f e E F q ( 6 , Xu... , X m ) .
Define the sample analogue of Q(9) as

1 < I ' I < - < i » < n

The estimator 6n of 00 is the value which satisfies Qn(9n) = infa Qn{9) and is called a
minimum contrast estimator. This is the Mm estimate of 90 introduced by Huber [9].
For the present paper these estimators are based on minimisation of convex functions
of {/-functionals. Examples of statistics that come under our set-up include (i) Oja
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median (Oja [13]), (ii) univariate location estimators of Maritz etal. [11], (iii) univari-
ate Hodges-Lehmann estimators of location, (iv) a univariate robust scale estimator of
Bickel and Lehmann [1], (v) a regression coefficient estimator of Theil (see Hollander
and Wolfe [8]), (vi) U quantiles (Chowdhury and Serfling [6]), (vii) Lx median, (viii)
geometric quantiles of Chaudhuri [5] and, (ix) Hodges-Lehmann versions of (vii)
and (viii).

For m — 1, strong consistency and asymptotic normality of 9n was established by
Habermann [7] using the assumption of convexity of q in 0. Niemiro [12] utilized
this convexity to establish other asymptotic properties of 9n. Bose [4] extended these
results to m > 1. In particular, they established a Bahadur type representation of the
form

yfn{dn — 9n) = leading term + Rn,

where Rn is of suitable order almost surely under suitable assumptions. If m = 1 and
q is differentiable then 9n satisfies / q'(9, x)Fn{dx) — 0. For these estimators, which
are known as Huber's M-estimators, Stute [ 16] obtained a similar representation under
the restrictions that the score function q' is smooth, bounded and nonincreasing in 6
for each j e t , Here Fn denotes the empirical distribution function and 90 is a root
of 1(6) = f q'(9, x)F9a(dx) = 0. This representation was used to study asymptotic
properties of the last passage time of 9,, in Stute [15] for m = 1. For a sequence of
estimators 9n, the last passage time is defined as

Tf = sup{« > 1 : \9n -00\ > e).

One immediate use of last passage time asymptotics is in computing fixed volume
confidence sets for the parameter of interest with prescribed asymptotic coverage
probability. Last passage times are also important from the viewpoint of computing
asymptotic relative efficiencies of members of a class of estimators and thereby se-
lecting the optimal estimators. They also relate to Pitman efficiency of estimators,
see Stute [15] for precise details. They may also be used for computing most other
statistics that are relevant in the context of sequential procedures. A truly sequen-
tial procedure is often complicated and intractable for non-smooth statistics, so an
approximation through last passage time asymptotics can be quite useful.

When 9n is the sample mean of independent, identically distributed random vari-
ables, asymptotic properties of last passage time estimators have been considered
by Robbins and Siegmund [14]. Stute [16] extended these results to M -estimates
for m = 1. His main assumptions are that the score function is a non increasing,
differentiable function of 9, is bounded uniformly in x, 1(9) is twice continuously
differentiable in a neighbourhood of9{) such that I'(90) < 0.

In this paper we discuss the last passage time asymptotics for the Mm estimators.
Thus we extend Stute's results in two directions. First, we consider functionals which
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are not necessarily smooth. Second, we allow m > 1. Thus we are able to include
a significantly wider class of estimators, some examples of which were mentioned
earlier.

Our main theorem on last passage times uses a Bahadur representation of Mm

estimators. Such a representation is already available in Bose [4]. However, we need
a more general statement for the present purpose, and that is given in Theorem 2.1.
Following this general Bahadur representation theorem, the law of iterated logarithms
is an immediate corollary, so we make a mention of it. The main result on last passage
times is given in Theorem 2.2. All proofs are given in Section 3.

2. Results

Let X be an M valued random variable with distribution F. Let X,, . . . , Xn, be
Lid. F. Let q(8, Z) be a real valued function defined for 9 e W and Z e Mm for
some m, 1 < m < oo. We assume that q is measurable and is symmetric in its last m
arguments for each 9. Let Q(9) = EFq(9, X | , . . . , Xm) and 90 (unique) be such that

(2.1) Q(90) = MEFq(9,X ,Xm).

Define the sample analogue of q(6) as

(2.2) Qn(0)=(n) V
x ' i<ii<—<im<'i

and the estimator 9n of 9 as the value which satisfies Qn (9n) = inf0 Qn {9). If no such
9n exists, take 6,, = oo. The estimator 9n can be and is chosen in a measurable way.

Let g be a subgradient of q. That is, for all a, fi, Z,

(2.3) q{a, Z) + (/? - a)'g(a, Z) < qtf, Z).

Further g is such that it is measurable in Z for each a. We will use the notation
G(9) = Eg(9, X , , . . . Xm). The gradient vector and the matrix of second derivatives
of Q at 9 will be denoted by V Q(9) and V2 Q(9) respectively. Let

S , , = J" g ( e o , X , , , . . . , X l m ) , a n d £/„ = ( " ) S n .

Define g,(0o, X,) = E[g(9lh X,. . . . , X,,,)|X,]. For a vector a, the notation \a\ will
denote its Euclidean norm. For a matrix A, the notation AT will denote its transpose.
We now state the conditions that are assumed throughout this paper. Let N be an
appropriate neighbourhood of 9o, r > 1 and 8 —*• 9Q. 0 < s < I.
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(I) q (8, Z) is convex in 9 for every Z.
(II) Q(9) is finite for all 9.

(III) #o satisfying (2.1) exists and is unique.
(IV) Var(g(6>0, Xu... , Xm)) is positive definite.
(V) E\g(9,Xu... ,Xm)\r <ooV9eN.

(VI) H = V2 Q(90) exists and is positive definite.
(VII) |V0(0) - V2Q(0o)(0 -00)\ = O(\0 - 90\

o+s)/2) as 9 -+ 0O-
(VIII) E|*(0, * , , . . . , X m ) - g ( 0 o , X , , . . . , X m ) | 2 = O ( | 0 - 0 O | ( 1 + J > ) a s 0 ^ 0 o .

(IX) £|g(0, * , , . . . , Xm)Y = 0(1) as 9 -+ 90.
(X) V = Egi(60, Xi)gl(00, X,) is positive definite.

Often, the finiteness condition (II) is satisfied for only a subset of Kd. All our results
remain valid if 90 is an interior point of this subset. Assumptions (I)-(IX) are same
as that of Niemiro (1992) and Bose (1998). Assumption (X) in particular implies
that the {/-statistic Un is non-degenerate. The matrix V = Egi(90, Xi)gl(90, Xi)
being positive definite, it can be written as V = E E r , where E can be chosen to
be symmetric, and further, positive definite. We will retain the notation E for such
a choice. As remarked in the introduction, our main result Theorem 2.2 requires a
Bahadur representation of minimum contrast estimators. The general representation
result involve four sequences of non-negative reals that satisfy certain interrelation-
ships. We consider the following: Sn, rjn, vn and en are four nonnegative sequences
satisfying

(a) r)n = o(nl/2), {r]n} bounded away from 0,
(b) r,n/8n> l f o r a l l n > 1,
(c) ns > vn > Cn-(l+s)/4(rin)0+s)/2 for a constant C > 1 and some S > 1/2,
(d) €n = 2K0vn(\ogn)i/2 + 4Ki8n, where Ko, K{ are constants.

THEOREM 2.1. Assume the conditions (I)-(IX) with r > 2 and some s 6 [0, 1).
Then

with

P(\Rn\ > Ken) = O Uj-

where \/K = infw=, e'He/2.

The corresponding representations available in Bose [4] or Niemiro [12] can be
worked from Theorem 2.1. A law of iterated logarithm follows immediately from
Theorem 2.1. We record this result in the following corollary.

https://doi.org/10.1017/S1446788700002676 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002676


[5] Minimum contrast estimators 5

COROLLARY 2.1. Suppose assumptions (I)-(X) hold and let r > 4+d(l+s)/(3+s).
Then for any c e Kd, ||c|| = 1, we have

n[/2cTX-]H(dn-dn) "I
hmsup = = = ^ = — = 1 = 1 .

/. y/2m2 (log log n)

We now state our main result.

THEOREM 2.2. Suppose assumptions (I)-(X) hold with r > 2. Also let Wtt be a
standard Brownian motion on Cj[0, 1] and G(y) = P[supo<,<| |E WO(OI < y^2/m].
Then

(i) limf_0 P[€2r( < y] - G(y) and

(ii) lim€_0 E{e2zf) - J^ y dG(y).

The above theorem requires higher moment conditions than what is needed in
establishing similar results for i.i.d. real random variables or Huber's M-estimators.
This is a trade off in that we have dropped the smoothness conditions and boundedness
conditions on the criterion function.

3. Proofs

For all the proofs, assume without loss of generality that 60 = 0 and Q(6{)) = 0.
For a real quantity x, [x] will denote its integral part.

In order to prove the Bahadur representation theorem, we need a lemma that we
state here. This is essentially Lemma 2 of Bose [3]. We omit the proof of this lemma.

LEMMA 3.1 (Bose [3]). Let {h,,} be a sequence of (symmetric) kernels of order
m and let [X,,,, 1 < i < n) be i.i.d. real valued random variables for each n. Let
Un(hn) - ("J ]Ci</,<...<,m<n U,,(hn(Xnil, ... , XmJ). Further, suppose that for some
8 > 0, and some v~< >IS,'"E Un(hH(XH, ... , Xnm)) = 0, E\hn(Xnn ... , Xnm)\2 < v2

n

and E\h,,(X,u Xnm)\r < b < oo for some r > 2. Then for all large K,

P(nt/2\Un(h,,)\ > Kvn(logn)1/2) < Dn ' - r / 2 u ; r ( log«) r / 2 .

P R O O F O F T H E O R E M 2.1 . Let S denote the set of all m element subsets of { 1 , . . . ,

n}. For any s = [i /„,} € 5, let Ys denote the random vector (X,,, . . . , X,J.

Define G,M) = C,)"' ZnSg(oi, K), Xns = g(a/n"2, Ys) - g(0, Ys). Note that

E(X,,J = G(a/n"2) and Q " 1 Z,ts
xs = [Gn(a/n"2) - O~'Sn\ By (VIII),

(3.1) E\X,,X- = O((irt/2r),,)l+*) uniformly for \a\ < Mr)n,
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where n x/2r)n -> Oasw -> oo from (a). Now note that (3.1) in conjunction with the
upper bound in (c) and assumption (V) ensure that the conditions of Lemma 3.1 are
satisfied. Therefore for large Ko

(3.2) sup P \

= O(nl-r/2v;r(\ogn)r/2).

> K0vn(\ogn)1/2

Moreover, from (VII) we have sup|a|5M^n \ni/2G(a/nl/2)-Ha\ = O(n-<1+l)/4r?<3+t)/2).
Hence, since n-<i+*)/4??(3+I)/2 < Vn(\og"ny/2^ t h e t e r m n^G(a/nl/2) can be replaced
in (3.2) by Ha.

Now consider a finite Sn triangulation of the ball {\a\ < Mr]n + 1} consisting of
O((r]n/8n)

d) points. From (3.2) it follows that

< K0vnlogn 1/2

holds simultaneously for all a belonging to the triangulation with probability equal to
1 — O((r)n/8n)

dnl~r/2v~r(\ogny/2. Now apply Lemma 6 of Niemiro [12] to extend
this inequality to all points of the ball. Let en — 2^0vn(log«)1 / 2 + 4 ^ ! ^ , where Ko

is as earlier, and Kx is a constant from (VII). Then

(3.3) P\ sup nx'2G,i-^\ ~n'uUn- Ha

= O ^

Suppose that the event

(3.4) sup

holds for some n. Consider radial directional derivatives of the convex function
nQn(a/nl/2) - nQn(0) on the sphere |a - n l / 2 / / - ' i / n | = Ken setting the value
\/K = infk]=1 e'He/2. Under (3.4), for \e\ = 1 we have

nl'2Gn

so that

11/2
- H I / 2 £/„-//(-> Kene)

,1/2
- e'HeKen
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and hence we have

n1/2//- '(/n + Ke,

* )
0.

Thus these radial directional derivatives are positive whenever (3.4) holds. Therefore
we have the result

P(\Rn\ > Ktn) = o( (y\ nl'r/2v;r(\ognY/2\ •

REMARK. The above proof utilised an idea of Niemiro [12] where he used particular
choices of Sn, r\n, vn and en sequences. Our result provides a more precise rate of the
error term Rn in the Bahadur representation of M- estimates.

PROOF OF COROLLARY 2.1. Using Theorem 2.1 one has

n>/i(dn-e0) = -nl/2H-]Un + Rn.

Thus
nl/2cTY,-lH(dn-d0) n]/2cTY,'lUn

(2m2(loglog/i))'/2 (2w2(loglogn))l/2 (2w2(loglogn))'/2'

Now take ^ = O((loglog«)i/(3+1)(log«)''/<3+s)nn+v)/2(3+s)), Sn = O((loglogn)'/2)
and vn = O(n~ll+s)/4r)(*+s)/2) with the constants appropriately adjusted, to get €„ =
O((loglog«)'/2)- Now observe that for the sequences thus fixed and given value of
r, we have from Theorem 2.1 that P(\Rn\ > Ken) = O(n~Y) with y > 1. Hence
£ „ P(\Rn\ > Ken) < oo, and (2m2(loglog/i))-|/2cri:-1///?n -^ 0 almost surely.
Now use the law of iterated logarithms for (/-statistics to get the result. •

PROOF OF THEOREM 2.2. (i) Recall that we have assumed that 6Q = 0 and
Q(G{)) = 0. For e > 0, v > 0, put r = 2x2 and j = yx€~r/\ Also re-
call the Bahadur representation ?i[/2(6n) = —«'/2//~'(/n + Rn. Then we have

2T( > v] = P[T( >j]/x] = P[jx/r sup n i y l / , \6,,\ > yx/2]. Now for fixed S > 0,

j " r sup \8n\> v1/2

< P\jx" s u p I - / / " ' ( / „ ! > y > / 2 -8 P[jx/rn-l/2\Ra\>&].

As e —* 0 we have j —>• oc, and hence the sum X!«>,'/' actually represents a tail
sum. Since for our choice of r we have X!«>i T j v/r/i~'/2l^nl > ^] < oo, so that
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£„»/./. P{jx/rn~l/2\Rn\ > 8] -* 0, and hence

(3.5)

Similarly,

> y] < l im P j x / r sup \ - H ~ 1 U H \ > y1'2 - 8 \ .

I/*/ ' sup |0J > y
l/2

> P \ j x / r s u p \- H']Un\ > y 1 / 2

L "—'
a n d h e n c e

(3 .6) liminf P[e2T( > y] > lim P

P [ j x / r n ~ l / 2 \ R n \ > 8 ] ,

sup | -
nil1"

For any c > 1 and fixed j , define Xmm(H 2) to be the minimum eigenvalue of H 2,

P \ j x / r s u p | - H~lUn\ > y x / 2 - 8

we have

(3.7)

<P\jx/r sup \Un\

The above sum in (3.7) is finite for every fixed c, and therefore it can be made arbitrarily
small by choosing c large enough. Choose a large c such that cj l/x is an integer. It
remains to deal with P\jx'r sup,-,,,^,^,„ | - H~l Un\ > y'/2 - 8]. Define

0, if 0 < t < (m - \)/cjl/x;

"TT777'
 i f f = / / g 1 / ' ; / = m , m + l g 1 " ;

and linearly in between. Then Ut-jv> (t) => WQ on Q[0, oo] as j —> oo for fixed c
(see, for example, Lee [10, pages 136-137] for a statement and proof of the univariate
version of this theorem). The J-dimensional version is a direct generalisation. Using
this convergence, it is easy to see that

j x l 2 x sup UH\= sup

we '" sup as j —> oo.
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Now mc~ul supc-i<r<1 |E W0(t)\/t has the same law as msupl<r<cc~l/2\Y,WQ(t)\
by a time-reversal of Brownian motion, and this in turn has the same law as
m supc-l<l<l |E W0(t)\ by a time scaling of Brownian motion. Therefore, asj —> oo,

P j x / r sup I - / / - ' { / „ ! >yl/2-8 P\ sup I E W O C O I >

Then as c —> oo,

r y'/2 - 5"i r y l / 2 -
(3.8) P sup | Z W 0 ( r ) | > - - + P sup |EIVO(OI>

and as 8 —»• 0, this converges to P[sup0</<, |E Wo(?)| > y^2/m] where Wo is standard
Brownian motion on Q[0 , 1]. This proves (i). •

PROOF OF THEOREM 2.2. (ii) It suffices to prove that for some e0 > 0, the fam-
ily [e2x( : 0 < e < e0] is uniformly integrable. Recall that P[e2rf > y] =
P[/jr/rsupn£;-L/., \6n\ > yi/2], where j = yx/er/x. By application of Lemma 3.2
of Bickel and Yahav [2], we only need to prove

(3.9) j x ' r sup \en\>k"2 < OO,

where the first supremum extends over all j such that j > kx/€rJx. This is proved
along lines similar to the proof of part (i) of this result. D
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