A FRACTIONAL DIFFERENTIATION THEOREM FOR THE LAPLACE TRANSFORM

BY
J. CONLAN AND E. L. KOH^{*}

1. Introduction. In certain systems analysis ([1], [2], [3]), it is essential to invert the n-dimensional Laplace transform and specify the inverse image at a single variable t. Let $F\left(s_{1}, \ldots, s_{n}\right)$ be a Laplace transform. The desired image function is then given by

$$
g(t)=\mathscr{L}_{n}^{-1}[F]_{\mid t_{1}=t_{2}=\cdots=t_{n}=t},
$$

where $\mathscr{L}_{n}^{-1}[F]=\left(1 /(2 \pi i)^{n}\right) \int_{\alpha_{1}-i \infty}^{\alpha_{1}+i \infty} \cdots \int_{\alpha_{n}-i \infty}^{\alpha_{n}+i \infty} \exp \left(\sum_{i=1}^{n} s_{i} t_{i}\right) F d s_{1} \cdots d s_{n}$. An alternative approach to finding $g(t)$ is to collapse $F\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ into a function $G(s)$ of one variable from which an application of the one-dimensional inverse transformation yields $g(t) . G(s)$ is said to be the "associated transform" of $F\left(s_{1}, \ldots, s_{n}\right)$, viz., $G(s)=A_{n} F\left(s_{1}, \ldots, s_{n}\right)$. Thus A_{n} is defined so as to make the following diagram commutative:

In this note we generalize a result given in [4].
2. Fractional differentiation. Let ν be a complex number with $\operatorname{Re} v>0$, and let D_{∞}^{ν} be the Weyl fractional derivative operator of order ν, defined by

$$
\begin{equation*}
D_{\infty}^{v} f=\frac{d^{k}}{d x^{k}}\left\{\frac{-1}{\Gamma(k-v)} \int_{x}^{\infty} f(y)(y-x)^{k-v-1} d y\right\} \tag{1}
\end{equation*}
$$

where k is an integer satisfying $k-1<\operatorname{Re} v<k$, (see [5], pp. 181-212). Note if $\nu=k-1$, then $D_{\infty}^{\nu} f=d^{k-1} f / d x^{k-1}$.

Theorem. If $G(s)=A_{n} F\left(s_{1}, \ldots, s_{n}\right), G_{1}(s)=A_{n-1} F_{1}\left(s_{1}, \ldots, s_{m-1}, s_{m+1}, \ldots, s_{n}\right)$, and $F\left(s_{1}, \ldots, s_{n}\right)=\left(1 / s_{m}^{v+1}\right) F_{1}\left(s_{1}, \ldots, s_{m-1}, s_{m+1}, \ldots, s_{n}\right)$, where v is a complex number with $\operatorname{Re} v>0$, then $G(s)=\left((-1)^{k-1} / \Gamma(\nu+1)\right) D_{\infty}^{v} G_{1}(s)$, where $k=$ smallest integer greater than $\operatorname{Re} v$.

The proof will be based on the following lemma, which is of interest in itself.

[^0]Lemma. Let $f(x)$ be a function such that $f(x)=0$ for $x<0$, and $f(x) e^{-c x}$ is absolutely integrable on $[0, \infty)$ for some c. If $F(x)=\mathscr{L}[f](x)=\int_{0}^{\infty} f(y) e^{-x y} d y$, and v and k are as in the theorem, then

$$
\mathscr{L}\left[t^{\nu} f(t)\right]=(-1)^{k-1} D_{\infty}^{v}[F(s)], \quad s>c .
$$

Proof.

$$
\begin{aligned}
D_{\infty}^{v}[F(s)] & \left.=\frac{-1}{\Gamma(k-v)} \frac{d^{k}}{d s^{k}} \iint_{s}^{\infty}(y-s)^{k-v-1}\left[\int_{0}^{\infty} f(t) e^{-y t} d t\right] d y\right\} \\
& =\frac{-1}{\Gamma(k-v)} \frac{d^{k}}{d s^{k}}\left\{\int_{0}^{\infty} f(t)\left[\int_{s}^{\infty}(y-s)^{k-v-1} e^{-y t} d y\right] d t\right\} .
\end{aligned}
$$

By a change of variable, and the definition of the gamma function, the inner integral is seen to be equal to $e^{-t s} t^{v-k} \Gamma(k-v)$. Hence

$$
\begin{aligned}
D_{\infty}^{v}[F(s)] & =-\frac{d^{k}}{d s^{k}} \int_{0}^{\infty} f(t) t^{v-k} e^{-t s} d t \\
& =(-1)^{k-1} \int_{0}^{\infty} f(t) t^{v} e^{-t s} d t=(-1)^{k-1} \mathscr{L}\left[t^{\nu} f(t)\right]
\end{aligned}
$$

Proof of the theorem. From the preceding diagram,

$$
g(t)=\left.f\left(t_{1}, \ldots, t_{n}\right)\right|_{t_{1}=\cdots=t_{n}=t}=\mathscr{L}_{n}^{-1}[F]=\frac{t^{v}}{\Gamma(v+1)} g_{1}(t)
$$

where $g_{1}(t)=\left.\mathscr{L}_{n-1}^{-1}\left[F_{1}\right]\right|_{t_{1}=\cdots=t_{m-1}=t_{m+1}=\cdots=t_{n}=t}$.
The proof follows by taking the Laplace transform of both sides, and applying the lemma to $\mathscr{L}\left[t^{\nu} g_{1}(t)\right]$.

Note that when v is a natural number, the theorem reduces to Theorem 1 of [4].

Example. Given $F\left(s_{1}, s_{2}\right)=\left(1 / s_{1}^{3 / 2}\right) \cdot\left(1 / s_{2}^{n}\right)(n=$ positive integer $)$. Here $G_{1}(s)=$ $1 / s^{n}$. By our theorem $G(s)=\left(D_{\infty}^{1 / 2} / \Gamma\left(\frac{3}{2}\right)\right)\left(1 / s^{n}\right)=\left(\Gamma\left(n+\frac{1}{2}\right) / \Gamma\left(\frac{3}{2}\right) \Gamma(n)\right)\left(1 / s^{n+1 / 2}\right)$. Inversion of this last expression yields $g(t)=2 t^{n-1 / 2} /(n-1)!\sqrt{ } \pi$.

References

1. F. K. Lubbock and V. S. Bansal, Multidimensional Laplace transforms for solution of nonlinear equations, Proc. I.E.E. 166 (1969), 2075-2082.
2. M. B. Brilliant, Theory of the analysis of nonlinear systems, M.I.T. Research Lab. of Electronics Report \#345 (1958).
3. J. F. Barrett, The use of functionals in the analysis of nonlinear physical systems, J. Elec. Control 15 (1963), 567-615.
4. E. L. Koh, Association of variables in n-dimensional Laplace transforms, Int. J. of Systems Sci. (to appear).
5. A. Erdelyi, et al., Tables of integral transforms, McGraw-Hill, New York, Vol. II (1954).

University of Regina, Regina, Saskatchewan

[^0]: * Department of Mathematics, University of Regina, Regina, Saskatchewan.

