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A FRACTIONAL DIFFERENTIATION THEOREM 
FOR THE LAPLACE TRANSFORM 

BY 

J. CONLAN AND E. L. KOH* 

1. Introduction. In certain systems analysis ([1], [2], [3]), it is essential to 
invert the «-dimensional Laplace transform and specify the inverse image at a 
single variable t. Let F(sl9... , sn) be a Laplace transform. The desired image 
function is then given by 

g(t) = &?[F] \h=h=...^t, 

where ^[F\=(ll(2m^^--'^^^Œ!LiSitdFds1--'dsn. An alter-
native approach to finding g(t) is to collapse F(sl9 s29. . . , sn) into a function G(s) 
of one variable from which an application of the one-dimensional inverse trans
formation yields g{t). G(s) is said to be the "associated transform" of F(sl9. . . , sn)9 

viz., G(s)=AnF(si9 . . . , sn). Thus An is defined so as to make the following dia
gram commutative : 

F(sl9. . ., s J - ^ U / f e . . ., tn) 

G{s) f L >g(t) 

In this note we generalize a result given in [4]. 

2. Fractional differentiation. Let v be a complex number with Re v>09 and 
let D^ be the Weyl fractional derivative operator of order v9 defined by 

(1) D*„f = 4-[ "~1 (" fWiy-xf-*-1 dy) 

where k is an integer satisfying k— l<Rcv<k, (see [5], pp. 181-212). Note if 
r=Jfc-l, then D^f=dk~1f!dx1c~\ 

THEOREM. IfG(s)=AnF(sl9..., s J, G1(s)=An_1F1(sl9... 9 sm_l9sm+l9... 9 sn)9 

and F(sl9... 9 J J = ( 1 / 4 T V I ( > I > • • , sm_l9 sm+l9. . . , sn)9 where v is a complex 
number with Re v>0, then G(s)=((-l)k~1IT(v+l))DliG1(s)9 where k=smallest 
integer greater than Re v. 

The proof will be based on the following lemma, which is of interest in itself. 
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LEMMA. Letf{x) be a function such that f(x)=0 for x<0, andf{x)e~cx is absolutely 
integrable on [0, oo)for some c. IfF(x)=^[f](x)=^f(y)e~xy dy, and v and k are 
as in the theorem, then 

^P7(0] = ( - If-'DUFis)], s > c. 

Proof. 

D - H • ^^{S>'s)'-'U'me~"d']d>) 
'^s\i"m[\>-sr,~i'~"dy]d\ 

By a change of variable, and the definition of the gamma function, the inner 
integral is seen to be equal to e~tstv~kT(k—v). Hence 

Dl [F(s)] =--y-k rf(t)f-«e-udt 
ds" Jo 

= (-If-1 T f(t)fe-ts dt = (-l^.SfpVXO]. 

Proof of the theorem. From the preceding diagram, 

g(0 = Kh, ...,tn)\ =se~: [F] = —£— gl(o, 

where g1(t)=^-i1[F1]\^...=tm_1=tm+l^tn=t. 
The proof follows by taking the Laplace transform of both sides, and applying 

the lemma to J£f [Pg^O]. 

Note that when v is a natural number, the theorem reduces to Theorem 1 of 

[4]. 

EXAMPLE. Given F(sl9 s2)~(llsl/2) • (l/$â) («=positive integer). Here G1(,y)= 
lis». By our theorem G(^)=(i) 1 j 2 / r ( | ) ) ( l /^) = (r(n + i)/r(f)r(/2))(l/^+1/2). 
Inversion of this last expression yields g(t)—2tn~1/2l(n—1)! yjn. 
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