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Computing Hall subgroups of finite groups

Bettina Eick and Alexander Hulpke

Abstract

We describe an effective algorithm to compute a set of representatives for the conjugacy classes of
Hall subgroups of a finite permutation or matrix group. Our algorithm uses the general approach
of the so-called ‘trivial Fitting model’.

1. Introduction

Consider the classical result of Hall that for a finite solvable group G and a set π of primes,
there exists a Hall π-subgroup of G and, moreover, all Hall π-subgroups of G are conjugate.
It is well known that Hall’s result does not extend to finite groups in general. For example,
the group PSL2(7) contains two conjugacy classes of Hall {2, 3}-subgroups and no Hall {2, 7}-
subgroup. The theory of Hall subgroups in finite groups has been studied extensively. We refer
to [24, Chapter 9] for a general introduction and to Revin and Vdovin [28, 29] for more recent
advances and further references.

For a finite solvable group, there exists a highly effective method [6] to determine a
representative of the unique conjugacy class of Hall π-subgroups for any given set π of primes.
This algorithm does not extend to non-solvable finite groups. In the case of a non-solvable
finite permutation or matrix group, one can compute the full subgroup lattice, or significant
parts of it; see [3, 5]. This allows us to determine the conjugacy classes of Hall π-subgroups as
a subset of the subgroup lattice. However, this approach to computing the conjugacy classes
of Hall π-subgroups seems not to be very efficient.

The aim of this paper is to introduce an effective algorithm to compute one representative
for every conjugacy class of Hall π-subgroups in a finite permutation or matrix group G. More
precisely, we solve the following problems.
• Determine all prime number sets π for which G has a Hall π-subgroup.
• Given a set π of primes, determine the number kG(π) of conjugacy classes of Hall
π-subgroups of G.

• Given a set π of primes, determine a representative for every conjugacy class of Hall
π-subgroups of G.

Our algorithm uses the structure of the given group G, but not its representation. It applies
to finite permutation and matrix groups.

In Section 6, we will discuss the explicit determination of all conjugacy classes of Hall
subgroups in a finite simple group. We recall, in Section 5, how the conjugacy classes of Hall
subgroups of the simple constituents can be combined to construct the conjugacy classes of
Hall subgroups of a finite group. The latter relies mainly on an effective version of the Schur–
Zassenhaus theorem discussed in Section 4. Our main algorithm then uses the so-called trivial
Fitting model, described in § 3.1, to put all these ingredients together to obtain an effective
algorithm for computing Hall subgroups of an arbitrary finite permutation or matrix group; see
Section 7. Runtimes for the GAP implementation of our method are given in Section 8. Before
embarking on the description of our algorithm, we recall some preliminaries in Sections 2 and 3.
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2. Preliminaries on Hall subgroups

In this section we introduce our notation for Hall subgroups. Let G be a finite group and π
a finite set of primes. Then Hallπ(G) denotes the set of all Hall π-subgroups of G. Denote
by π′ the set of all primes not in π. We write |G| for the order of G and ‖G‖ for the set of
primes dividing the order of G. We denote by πG the set of primes in π which divide |G|; thus
πG = π ∩ ‖G‖. The following remark is elementary.

Remark 1. Let π be a set of primes and G a finite group.
(i) If πG = ∅, then {1} is the unique Hall π-subgroup of G.

(ii) If πG = ‖G‖, then G is the unique Hall π-subgroup of G.
(iii) If πG = {p}, then the Hall π-subgroups coincide with the Sylow p-subgroups of G.

The Hall subgroups {1} and G are said to be trivial. All other Hall subgroups are proper Hall
subgroups. If πG = {p}, then Hall π-subgroups exist and are all conjugate by Sylow’s theorem.

The Hall subgroups of odd order often play a special role in the investigation of Hall
subgroups in the literature. If they exist, they are solvable by the Feit–Thompson theorem [9]
and are conjugate owing to a result by Gross [11]. Combining these two results yields the
following corollary.

Corollary 2. Let π be a set of odd primes and G a finite group. If G has a Hall π-subgroup,
then G has a Hall ρ-subgroup for every ρ⊆ π.

The theory of Hall subgroups of even order differs substantially from that of Hall subgroups
of odd order. We demonstrate this with the following example.

Example 3. Consider the group G= PSL3(11) of order 24 · 3 · 52 · 7 · 113 · 19. Then G has
two conjugacy classes of Hall {2, 3}-subgroups and two conjugacy classes of Hall {2, 3, 5, 11}-
subgroups. Apart from its Sylow 2-subgroups and G itself, the group G has no further Hall
subgroups of even order.

This implies that the direct product of l copies of PSL3(11) has 2l conjugacy classes of Hall
{2, 3}-subgroups. Hence there is no upper bound on the number of conjugacy classes of Hall
subgroups in finite groups. Further, the example shows that Corollary 2 does not extend to the
even-order case.

3. Preliminaries on algorithms

The book [16] provides a useful introduction to computations with finite permutation and
matrix groups. In this section we recall some of the algorithms for finite groups which we will
use later.

3.1. Composition tree and trivial Fitting model

Many algorithms for finite groups proceed by induction along a subnormal series of the group
under consideration. A composition series of the group is often used. The determination of a
composition series is usually achieved by induction: given a finite group G, determine a non-
trivial normal subgroup N and then refine G/N and N further. The result of this process is
recorded in the data structure of a composition tree. Its root corresponds to G and has two
immediate descendants which are the roots of the composition trees of N and G/N . The leaves
of the composition tree are the composition factors of G. We refer to [16, § 10.2] and [23] for
further details, including methods for determining a composition series in finite permutation
or matrix groups.
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The trivial Fitting model uses a particular normal series for computations with the group
under consideration. This model was introduced in [1], and has proved to be highly successful
in the case of permutation groups; for example, it has been applied in [3, 4, 17]. Its application
to finite matrix groups is described in [23].

The special normal series used in the trivial Fitting model is defined as follows. Given a
finite group G, let R(G) denote the solvable radical of G, that is, the maximal solvable normal
subgroup ofG. Further, let S(G)/R(G) be the socle ofG/R(G); this is a direct product of simple
groups S1, . . . , Sn, say. Finally, let T (G)/R(G) denote the kernel of the natural permutation
action of G/R(G) on the direct factors. Then the trivial Fitting model uses the series

G> T (G) > S(G) >R(G) > {1}.

This series can be determined by first computing an effective homomorphism ρ from G to a
permutation group such that R(G) is the kernel of ρ; see [22] for the permutation group case
and [18] for the finite matrix group case. Then one can compute S(G)/R(G) = Soc(G/R(G)) =
S1 × . . .× Sn in the permutation group image of ρ and determine the permutation action
α :G/R(G)→ Symn of G on the direct factors. We refer to [16, § 10.1] for further details.

3.2. Sylow subgroups and their normalizers

Cannon, Cox and Holt [2] exhibit methods for determining a Sylow p-subgroup of a
permutation group and for conjugating one Sylow p-subgroup to another. Their approach allows
determination of the normalizer of a Sylow p-subgroup as the stabilizer under the conjugation
action. It relies on the availability of a stabilizer chain and backtrack search in the group.

An alternative approach to computing Sylow p-subgroups of a permutation group and their
normalizers is described by Kantor in [20, 21]. It uses the structure of the underlying group
and therefore applies to finite permutation and matrix groups, provided that a composition
tree for the underlying group is available.

Further, we note that Stather [26] presents methods for determining Sylow subgroups and
their normalizers in classical groups.

3.3. The Frattini argument

Suppose that a normal subgroup N of a finite group G is given, and let H be a subgroup of N
such that HG =HN ; that is, the N -conjugacy class of H is fixed under the conjugation action
of G. Then NG(H) is a supplement to N in G; that is, NG(H)N =G.

In this short subsection we point out that the group NG(H) can be determined using an
orbit-stabilizer method in N . Let G= 〈g1, . . . , gm, N〉. Then for every i ∈ {1, . . . , m} there
exists ni ∈N with Hgi =Hni . Let R= 〈g1n−1

1 , . . . , gmn
−1
m , NN (H)〉. Thus generators for R

can be determined from the given generators for G using calculations in H. It is elementary to
observe that

R=NG(H).

This method applies, for example, when H is a Hall subgroup of the normal subgroup N
and gcd(|N |, [G :N ]) = 1.

4. Coprime complements

The Schur–Zassenhaus theorem [24, Theorem 9.2.1] asserts that given a normal subgroup
N in a finite group G such that gcd(|N |, [G :N ]) = 1, there exists a unique conjugacy class
of complements to N in G. The aim of this section is to describe an effective algorithm for
determining a complement in this situation. This algorithm will be a key component in the
methods we develop later.
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Our algorithm distinguishes between the cases of N being solvable and non-solvable. Before
we consider these two cases, we introduce a general reduction which is usually very fast and
effective.

4.1. A preliminary reduction step

Let G be a finite group and N a normal subgroup of G with gcd(|N |, [G :N ]) = 1. Let π be
the set of prime divisors of [G :N ] and let π′ := ‖N‖. For a natural number x, we write x ∈ π
(respectively, x ∈ π′) if every prime divisor of x is in π (respectively, π′).

Let g ∈G be of order o. Then o= xy with x ∈ π and y ∈ π′. Using the extended gcd-algorithm,
we determine a, b ∈ Z with 1 = ax+ yb. Then

g = g1 = gax+yb = gaxgby,

and thus we can write g as a product of the commuting elements gax and gby, where gax has
order y and gby has order x. By construction, it follows that gby ∈N . We define g = gax.

Lemma 4. Let G be a finite group and let N �G with gcd(|N |, [G :N ]) = 1. Let
g1, . . . , gm ∈G be a generating set of G modulo N ; that is, G= 〈g1, . . . , gm, N〉. Let R=
〈g1, . . . , gm〉 and M =R ∩N .

(a) There exists a unique conjugacy class of complements to M in R. Any complement to
M in R is a complement to N in G as well.

(b) For any complement C to N in G we have that R6 [N, C]N · C. In particular, if N is
central in G, then R is a complement to N in G.

Proof. Assertion (a) follows directly, as R covers G/N and thus [R :M ] is coprime to M .
(b) Suppose that C is an arbitrary complement to N in G and let g ∈G. Then g = cn with

c ∈ C and n ∈N , and thus for k ∈ N we find that

gk = (cn)k = c2ncn(cn)k−2 = . . .= cknc
k−1

nc
k−2

. . . ncn

= cknk[n, ck−1]n
k−2

[n, ck−2]n
k−3

. . . [n, c2]n[n, c].

As above, let o be the order of g, write o= xy with x ∈ π and y ∈ π′, and let 1 = ax+ by be
the result of the extended gcd-computation. Then for k = ax, we find that cax = 1 and thus

gax = nc
k−1

nc
k−2

. . . ncn ∈N.
For k = by we get that

gby = cknk[n, ck−1]n
k−2

[n, ck−2]n
k−3

. . . [n, c2]n[n, c]

= c[n, ck−1]n
k−2

[n, ck−2]n
k−3

. . . [n, c2]n[n, c],

using that cby = c and ny = 1. Thus g differs from c by an element of the normal closure of
[N, C]. 2

4.2. The case where N is solvable

Let G be a finite group with a solvable normal subgroup N such that gcd(|N |, [G :N ]) = 1.
If N is an elementary abelian p-group, then a complement to N in G can be computed

effectively via computation of a first cohomology group. The latter reduces mainly to solving
a system of linear equations over the field with p elements. We refer to [7, 16] for details.

In the general case where N is solvable but not necessarily elementary abelian, a complement
to N in G can be determined by using induction along a G-normal series with elementary
abelian factors. Each induction step can be facilitated by the method for the elementary abelian
normal subgroup. The Schur–Zassenhaus theorem implies that a unique conjugacy class of
complements exists in each induction step, and hence this approach yields a complement to N
in G.

https://doi.org/10.1112/S1461157012001039 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001039


COMPUTING HALL SUBGROUPS OF FINITE GROUPS 209

The following remark summarizes this.

Remark 5. Let G be a finite group and let N be a solvable normal subgroup of G with
gcd(|N |, [G :N ]) = 1. Then there exists an effective algorithm for computing a representative
of the unique conjugacy class of complements to N in G.

We note that this method is also applicable to factor groups; that is, for K �N �G it can
be used to determine subgroups K ≤ C ≤G such that C/K is a complement to N/K in G/K.
For this, we simply represent elements of G/K by representatives in G but test for equality of
elements modulo K.

4.3. The case where N is non-solvable

Let G be a finite group with an arbitrary normal subgroup N such that gcd(|N |, [G :N ]) = 1.
We determine a complement to N in G using a method based on the following elementary
lemma.

Lemma 6. Let G be a finite group and let N �G with gcd(|N |, [G :N ]) = 1. Let p be a
prime divisor of |N |, let P be a Sylow p-subgroup of N , and let C be a non-trivial characteristic
subgroup of P . Then CG = CN and G=NNG(C).

Proof. Let g ∈G. Then P g = Pn for some n ∈N . Thus gn−1 normalizes P and hence also C.
Thus Cg = Cn follows. The Frattini argument now yields the desired result. 2

Lemma 6 implies that a complement to N in G can be obtained as follows:
• choose p and determine P (as in § 3.2);
• choose C as in Lemma 6;
• determine R=NG(C) (as in § 3.3);
• determine a complement H/C to (R ∩N)/C in R/C;
• determine a complement K to C in H;
• K is then a complement to N in G.
If N is non-solvable, then 2 | |N |. Hence we can choose p= 2. Let C = P in Lemma 6. Then

R/C is a group of odd order and hence solvable. Thus H/C can be obtained using the method
of § 4.2. Further, the group C is solvable and hence K can be obtained using the method
of § 4.2. In summary, we obtain that a complement to N in G can be determined using two
applications of the algorithm in § 4.2.

4.4. Summary

We summarize our approach to computing a complement to N in G in the case where G is a
finite group, N is a normal subgroup of G and gcd(|N |, [G :N ]) = 1.

Step 1. Determine the subgroup R as in Lemma 4 and replace G by R and N by N ∩R. Note
that N ∩R can be computed as an intersection or as the kernel of a homomorphism.

Step 2. Check whether N is solvable. If not, then employ the method of § 4.3; if so, then use
the method of § 4.2.

5. Reduction via normal subgroups

Let G be a finite group and let N be an arbitrary normal subgroup of G. Suppose that sets
of representatives for the conjugacy classes of Hall π-subgroups in N and in G/N are given.
In this section we present an effective algorithm for determining, from this information, a
set of representatives for the conjugacy classes of Hall π-subgroups in G. Iterated application
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of this method eventually reduces the computation of conjugacy class representatives of Hall
π-subgroups in G to finding the simple composition factors of G.

Our first lemma motivates this reduction approach. It implies that if a finite group G has
a Hall π-subgroup, then every composition factor of G also has a Hall π-subgroup. See [14,
Lemma 1] for a proof.

Lemma 7 (Hall). Let G be a finite group with normal subgroup N and let π be a set of
primes. If H ∈Hallπ(G), then HN/N ∈Hallπ(G/N) and H ∩N ∈Hallπ(N).

Now suppose that every composition factor of the finite group G has a Hall π-subgroup. The
following elementary lemma gives a criterion for when these Hall π-subgroups can be combined
to give a Hall π-subgroup of the full group G. We include a proof for completeness.

Lemma 8. Let G be a finite group, let N �G, let K ∈Hallπ(N) and let L/N ∈Hallπ(G/N).
(a) There exists H ∈Hallπ(G) with H ∩N =K and HN = L if and only if for every l ∈ L

there exists n ∈N with Kn =Kl.
(b) Let H1, H2 ∈Hallπ(G) with Hi ∩N conjugate to K in N and (HiN)/N conjugate to

L/N in G/N . Then H1 and H2 are conjugate in G.

Proof. (a) If H exists, then it normalizes K and hence L=HN normalizes the N -conjugacy
class of K. It remains to consider the converse. Thus, suppose that L normalizes the N -
conjugacy class of K. Our aim is to construct a Hall π-subgroup H with H ∩N =K and
HN = L. First, we determine M =NL(K). The Frattini argument implies that MN = L.
Hence H/K is a complement to (M ∩N)/K in M/K. Such a complement exists by the
Schur–Zassenhaus theorem [24, Theorem 9.1.2].

(b) Using the conjugation in N and in G/N , we can assume that H1 ∩N =K =H1 ∩N and
H1N =H2N = L. Next, we observe that both H1 and H2 are complements to N/K in NL(K).
By the Schur–Zassenhaus theorem [24, Theorem 9.1.2], there exists at most one conjugacy
class of complements of this type. Hence H1 is conjugate to H2 in NL(K) and thus in G. 2

Let G be a finite group with a normal subgroup N . Suppose that we have determined the
conjugacy classes of Hall π-subgroups in N and in G/N . To determine the conjugacy classes of
Hall π-subgroups of G, we consider a representative K for each class in N and a representative
L/N for each class in G/N and do the following:

(1) check whether KN =KL; if not, then report failure;
(2) determine M =NL(K) (using § 3.3);
(3) determine a complement H/K to (M ∩N)/K in M/K (using Section 4);
(4) return H.
For step (1), note that N ≤ L. Thus KN =KL holds if and only if for each generator l of L

there is an element n ∈N such that Kl =Kn holds. Checking the latter requires a conjugacy
test for Hall π-subgroups of N . If N is abelian, Hall π-subgroup conjugation is trivial; otherwise,
this conjugacy test can be performed by representing N as an intransitive permutation group
(with orbits corresponding to direct factors) and performing a backtrack search iterated over
all direct factors. We note that in our later applications, N will be minimally normal and thus
elementary.

In step (3) we are using a complement computation in a factor group, as described after
Remark 5. Thus this complement is automatically obtained as a subgroup H ≥K.

6. Hall subgroups of simple groups

Much is known about the Hall subgroups of the finite simple groups. In this section we give a
brief overview of this. Before doing so, we recall the following useful result due to Revin and
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Vdovin [28] and Gross [11] on the number of conjugacy classes of Hall subgroups in finite
simple groups.

Theorem 9 (Gross, Revin and Vdovin). Let G be a finite simple group.
(a) If 2 6∈ π, then kG(π) ∈ {0, 1}.
(b) If 3 6∈ π, then kG(π) ∈ {0, 1, 2}.
(c) If 2, 3 ∈ π, then kG(π) ∈ {0, 1, 2, 3, 4, 9}.

Further, we also recall a theorem of Gross [11] on Hall subgroups of odd order in finite simple
groups.

Theorem 10 (Gross). Let H be a Hall π-subgroup of the finite simple group G and suppose
that H has odd order. Then H has a Sylow tower; that is, there is a series of normal subgroups
H =H1 >H2 > . . .>Hn > {1} in H such that Hi/Hi+1 is isomorphic to a Sylow subgroup of
H (and of G).

We note that not only is the existence of a Sylow tower known but also the ordering of the
primes underlying it. We refer to [11] for details.

6.1. The alternating groups

The Hall subgroups of the alternating groups are well understood. Apart from the trivial cases
and the Sylow subgroups, they are surprisingly rare. We recall the following result of Hall [14]
and Thompson [30].

Theorem 11 (Hall and Thompson). Let π be a set of primes and let n ∈ N with n> 5.
Then Altn has at most one conjugacy class of Hall π-subgroups; it has exactly one such
conjugacy class if and only if one of the following holds.

(a) The Hall π-subgroup is either trivial or a Sylow subgroup; this is the case when
π ∩ ‖Altn‖= ∅, π ∩ ‖Altn‖= {p} or ‖Altn‖ ⊆ π.

(b) Altn−1 is a Hall π-subgroup; this is the case when n is a prime and π contains all primes
less than n but not n itself.

(c) π ∩ ‖Altn‖= {2, 3} and n ∈ {7, 8}.

In the two exceptional cases of Theorem 11(c), it is not difficult to determine the Hall
subgroups explicitly. They are groups of order 72 and 576, respectively.

6.2. The sporadic groups

For the 26 sporadic groups, there are tables of those sets π of primes available for which a Hall
π-subgroup exists. For Hall subgroups of odd order, these have been determined by Gross [13].
For the case where 2 ∈ π, we refer to Revin and Vdovin [27].

As a result, it is known that 17 of the 26 sporadic groups have non-trivial and non-Sylow
Hall subgroups. Table 1 lists their corresponding sets π. A superscript 2 on a set π of primes
indicates that there are two conjugacy classes of Hall π-subgroups. If no superscript is present,
then there is just one class. An explicit isomorphism test shows that two subgroups from
different conjugacy classes are always non-isomorphic.

6.3. The simple groups of Lie type

Theorem 10 asserts that an odd-order Hall subgroup in a simple group has a Sylow tower.
This can be refined for the simple groups of Lie type, as the following results of Vdovin and
Revin [27] and Gross [11] show.
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Theorem 12. Let G be a finite simple group of Lie type over a field of characteristic p. Let
H be a Hall π-subgroup of G with 2 6∈ π.

(a) (Vdovin and Revin) Suppose p 6∈ π. Let r be the least prime in π and let ρ= π \ {r}.
Then H has a normal abelian Hall ρ-subgroup.

(b) (Gross) Suppose p ∈ π. Let ρ= π \ {p}. Then H has a normal Hall ρ-subgroup.

The even-order Hall subgroups of the simple groups of Lie type are very complex and
technically difficult to describe. Vdovin and Revin [27] assert that they have achieved a
complete classification.

Here we consider only the frequently occurring case PSL2(q) in more detail. In this case, there
exists a complete classification of all subgroups that is due to Dickson; see also [19, p. 213].
This can be used to obtain a classification of Hall subgroups. We recall Dickson’s classification
briefly in the following theorem. Observe that |PSL2(q)|= (q − 1)q(q + 1) · gcd(q, 2)/2, and
denote by π− the odd prime divisors of q − 1 and by π+ the odd prime divisors of q + 1. Note
that π+ ∩ πi = ∅.

Theorem 13. Let q = pf be a power of the prime p. Then the group G= PSL2(q) has
exactly the following classes of non-trivial Hall π-subgroups with πG = π ∩ ‖G‖:

(a) one class of subgroups for any set p ∈ πG ⊆ {p} ∪ π−;
(b) one class of subgroups for any subset πG ⊆ π+ or πG ⊆ π−;
(c) if q − 1≡ 2 (mod 4), one class of subgroups for πG = {2} ∪ ω with ω ⊆ π+;
(d) if q − 1≡ 0 (mod 4), one class of subgroups for πG = {2} ∪ ω with ω ⊆ π−;
(e) if the {2, 3}-part (respectively, the {2, 3, 5}-part) of |G| is exactly 12, 24 or 60, subgroups

of type Alt4, Sym4 and Alt5 happen to occur as Hall πG-subgroups.

Proof. Let H be a non-trivial Hall πG-subgroup of G for a subset πG ⊆ ‖G‖. Then H must
be in one of the seven classes of subgroups in [19, Hauptsatz 8.27, p. 213], denoted by (1)–(7).
We shall show that H is described by the classes (a)–(e) in our theorem.

Assume first that p | |H|; that is, in the classification of subgroups we consider classes (1) and
(7). Then H contains a p-Sylow subgroup which is (up to conjugacy in G) a group U(2, q) of
upper triangular matrices with diagonal entries 1. The classification from [19, Hauptsatz 8.27,
p. 213] shows that any proper subgroup of G containing U(2, q) is contained in the group B(2, q)
of upper triangular matrices. The group B(2, q) is solvable and thus has exactly one conjugacy

Table 1. Hall subgroups for sporadic simple groups.

Group Sets π

M11 {5, 11}, {2, 3}, {2, 3, 5}
M12 {5, 11}
M22 {5, 11}, {2, 3, 5}
M23 {5, 11}, {11, 23}, {2, 3}, {2, 3, 5}2, {2, 3, 5, 7}2, {2, 3, 5, 7, 11}
M24 {5, 11}, {11, 23}, {2, 3, 5}
J1 {3, 5}, {3, 7}, {3, 19}, {5, 11}, {2, 3}, {2, 7}, {2, 3, 5}, {2, 3, 7}
J4 {5, 7}, {5, 11}, {5, 31}, {7, 29}, {7, 43}, {2, 3, 5}
.1 {11, 23}
.2 {11, 23}
.3 {11, 23}
Ly {11, 67}
Ru {7, 29}
ON {3, 5}, {5, 11}, {5, 31}
M(23) {11, 23}
M(24)′ {11, 23}
F2 {11, 23}, {23, 47}
F1 {23, 47}, {29, 59}
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class of Hall π-subgroups for π = ‖H‖; let U denote one such subgroup. Then H is conjugate in
B(2, q) (and thus in G) to U . As [G :B(2, q)] = 1 + q, we know that πG ⊆ {p} ∪ π− ∪ {2}. But
if q is odd, then 1 + q is even; and if 2 ∈ πG, then H would not be a Hall subgroup of G. Thus,
for odd p, we know that 2 6∈ πG and we get in general that p ∈ πG ⊆ {p} ∪ π−. Thus all Hall πG-
subgroups described in this section are of type (a). Conversely, for any set p ∈ πG ⊆ {p} ∪ π−,
such Hall πG-subgroups exist as Hall subgroups of B(2, q).

We now consider Hall subgroups H such that p 6 | |H|. The class (2) of subgroups of
PSL2(q) consists of cyclic subgroups of order dividing s := (q + 1)/gcd(2, q − 1) or t := (q −
1)/gcd(2, q − 1). A cyclic subgroup of G of order s is a Singer cycle and is a π+-subgroup of
G. Being solvable, this Singer cycle has Hall subgroups for any subset πG ⊆ π+. All of these
are Hall subgroups of G. By [13], there is only one class of such subgroups in G. These are
subgroups of type (b) for subsets of π+.

The normalizer in G of the Singer cycle is dihedral of order 2 · (q + 1)/gcd(2, q − 1) and
thus gives rise to dihedral subgroups (of class (3)) of order 2 · a for every divisor a of s (which
are in one-to-one correspondence with the subgroups of the Singer cycle, so that there is one
G-conjugacy class each). If q − 1≡ 2 (mod 4) and a is odd, these dihedral subgroups will be
Hall πG-subgroups for πG = {2} ∪ ω where ω ⊆ π+. This yields the subgroups of type (c).

For the rest of class (2), the subgroup of diagonal elements is cyclic of order t and thus
provides one class of Hall πG-subgroups for any πG ⊆ π−. All of these are also Hall subgroups
of G (of type (b)). Again, [13] implies that there is only one G-class of these subgroups.

As above (and with the same arguments for one G-class of subgroups), this cyclic group
of diagonal elements has a normalizer that is larger by a factor of 2 and which gives rise to
dihedral subgroups in class (3). For q − 1≡ 0 (mod 4) (implying q + 1≡ 2 (mod 4)), they are
Hall πG-subgroups for πG = {2} ∪ ω where ω ⊆ π−. These are of type (d).

This covers all classes of subgroups in [19, Hauptsatz 8.27, p. 213], apart from classes (4)–(6).
These are subgroups of type Alt4, Sym4 or Alt5 and are thus of type (e) in our listing. 2

While a similar approach is possible for higher Lie rank, the situation quickly becomes
complicated. For example, as Table 2 in § 6.5 shows, there are no non-trivial Hall subgroups
in PSL4(2), but many in PSL5(2). This includes a Hall {3, 7}-subgroup, despite the fact that
neither prime arises in PSL5(2) : PSL4(2).

6.4. An algorithmic approach

Let G be a finite group and let π be a set of primes. In this section we describe a method to
determine representatives for the conjugacy classes of Hall π-subgroups in G without reducing
to normal subgroups or factor groups. The approach is therefore aimed primarily at simple
groups. To avoid trivialities, we assume that πG 6= ∅ and πG 6= ‖G‖.

The basic observation is that a Hall π-subgroup will contain Sylow p-subgroups for every
p ∈ π. Hall subgroups can therefore be built iteratively from their Sylow subgroups. Let
Sylp(G) denote the set of all Sylow p-subgroups of G. For any set of primes ω, let A(ω, G)
denote a set of representatives for the conjugacy classes of subgroups of G of the form
〈Sp | p ∈ ω, Sp ∈ Sylp(G)〉.

Lemma 14. Let π be a set of primes and G a finite group. Choose p ∈ π and let P ∈ Sylp(G)
and ω = π \ {p}. Then

A(π, G)⊆ {〈A, P g〉 |A ∈ A(ω, G), g ∈ TA},

where TA is a set of representatives for the double cosets NG(P ) \G/NG(A).

Proof. Let B ∈ A(π, G), and let U be the subgroup generated by the q-Sylow subgroups of
B for q ∈ ω. Then U =Ax for some x ∈G, where A ∈ A(ω, G) and B = 〈U, V 〉 for some V = P y
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with y ∈G. Thus B is conjugate to Bx
−1

= 〈A, P yx−1〉. Let g ∈ TA with agb= yx−1 for some
a ∈NG(P ) and b ∈NG(A). Then 〈A, P agb〉= 〈A, P gb〉 is conjugate to 〈Ab−1

, P g〉= 〈A, P g〉.
Thus B is conjugate to 〈A, P g〉, as desired. 2

Every Hall π-subgroup H of the finite group G is conjugate to a group in A(π, G). Hence
our approach to computing conjugacy class representatives for the Hall π-subgroups in G is by
determining

{H ∈ A(π, G) | ‖H‖ ⊆ π}.

The following steps summarize our approach to computing a set of representatives for the
conjugacy classes of Hall π-subgroups in a finite group G.

(1) Initialize S = {〈1〉}.
(2) For p ∈ π do (iterate steps 3–9).
(3) Set T = {}.
(4) Determine P ∈ Sylp(G) and N =NG(P ) using §§ 3.2 and 3.3.
(5) For A ∈ S do (iterate steps 6–8).
(6) Compute the double coset representatives TA using [25].
(7) For g ∈ TA do (iterate step 8).
(8) Let C = 〈A, P g〉. If ‖C‖ ⊆ π and C is not G-conjugate to a subgroup in T , then add C

to T .
(9) Reset S = T .
Usually, most of the groups C in step (8) are not π-subgroups. It is therefore preferable

to first perform a series of cheap tests for prime factors of |C| before determining the order.
Suitable tests are, for example, orders of random elements and lengths of orbits. These tests
often eliminate candidate groups C without ever having to determine their exact order.

A straightforward modification of this procedure can determine the Hall subgroups for several
or all possible sets π.

Table 2. Hall subgroups for the simple groups of the Lie type of order at most 2 × 109, excluding
groups of type PSL2.

Group G Order of G Sets π of primes

PSL( 3) 5616 {2, 3}2a1

Sz(8) 29120 {2, 7}
PSU3(4) 62400 {2, 3}, {3, 5}, {3, 13}
PSL3(5) 372000 {2, 3}2a2, {3, 31}, {2, 3, 5}2a1

PSp4(4) 979200 {2, 3}
PSp4(5) 4680000 {2, 3}
PSU3(8) 5515776 {2, 7}
PSU3(7) 5663616 {2, 3}, {3, 7}, {3, 43}
PSL5(2) 9999360 {2, 3}3a2, {3, 7}, {5, 31}, {2, 3, 7}2a1, {2, 3, 5, 7}2a1

PSU5(2) 13685760 {5, 11}
PSL3(8) 16482816 {2, 7}, {2, 3, 7}2a1

Sz(32) 32537600 {2, 31}
PSL3(9) 42456960 {7, 13}, {2, 3, 5}2a1

PSU3(11) 70915680 {2, 3}, {5, 11}
PSp4(7) 138297600 {2, 3}2a1{3, 7}
O−8 (2) 197406720 {2, 3, 5}
PSL3(11) 212427600 {2, 3}2a2, {3, 5}, {3, 19}, {7, 19}, {3, 7}, {5, 11},

{3, 7, 19}, {2, 3, 5, 11}2a1

PSL3(13) 270178272 {2, 3}
PSU3(13) 811273008 {2, 3}2a2, {3, 7}, {3, 157}, {3, 13}
PSU4(4) 1018368000 {2, 3}
PSp4(8) 1056706560 {2, 7}, {5, 13}
PSL3(16) 1425715200 {2, 5}, {3, 5}, {7, 13}
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6.5. Application

The algorithm of § 6.4 has been used to determine the Hall subgroups of all simple groups of
Lie type (excluding PSL2) up to order 2× 109. We record the results Table 2. For each group
G considered, this table states the order of G and lists the sets π of primes for which Hall π-
subgroups exist. A superscript k a x on a set π of primes indicates that there are k conjugacy
classes of Hall π-subgroups in the group G and that these fuse to x classes under the action of
Aut(G). For the groups G in this table, an explicit isomorphism test shows that in the case of
x > 1, two subgroups from different Aut(G)-classes are not isomorphic.

7. The trivial Fitting model

Sections 4–6 can now readily be combined to produce a first algorithm for determining Hall
subgroups: this computes a composition series of G, determines the Hall subgroups up to
conjugacy for each simple factor of G, and then combines them using Sections 5 and 4. A slight
improvement can be obtained if a chief series is used instead of a composition series.

In this section we improve this approach further by using the trivial Fitting model of § 3.1.
This model can be used to obtain an effective solution of the central problems treated in this
paper, as stated in Section 1.

7.1. Computing Hall subgroups

Suppose that a finite permutation or matrix group G is given, together with a set π of primes.
The aim is to determine a representative for every conjugacy class of Hall π-subgroups in G.
As a first step, we determine the normal series used in the trivial Fitting model,

G> T > S >R> {1}.

Let ρ be the corresponding effective homomorphism from G to a permutation group, with R=
ker ρ. Let S/R= S1 × . . .× Sn with Si simple, and let α :G/R→ Symn be the permutation
action of G/R on the direct factors of S/R so that T/R is the kernel of α.

The quotient G/T has a natural permutation representation of degree n. We assume, by
induction on the order of the group, that we are given a set of conjugacy class representatives
H1/T, . . . , Hr/T of the Hall π-subgroups of G/T .

The subquotient T/S is solvable by Schreier’s conjecture [8] and has a permutation
representation of bounded degree; see [15, 22]. A representative K/S of the single conjugacy
class of Hall π-subgroups in T/S can be computed as in [6].

The subquotient S/R is a direct product of simple groups S1, . . . , Sn. Note that K acts
on each Si by conjugation. Using Section 6, we determine representatives for the K-invariant
conjugacy classes of Hall π-subgroups for each Si. We then use their direct products to obtain
representatives M1/R, . . . , Ml/R for the K-invariant conjugacy classes of Hall π-subgroups in
S/R.

The group R is solvable, and a representative J for its unique conjugacy class of Hall
π-subgroups can be computed with the methods of [6].

We now combine the Hall π-subgroups obtained for G/T , T/S, S/R and R to obtain Hall
π-subgroups of G. To this end, for each i ∈ {1, . . . , r} we consider the subgroup Hi/T of G/T
and perform the following tasks.

(1) Compute a subgroup Li/S with LiT =Hi and Li ∩ T =K, using Section 4.
(2) Determine Ii ⊆ {1, . . . , l} so that the S/R-conjugacy class of Mj/R is invariant under

the conjugation action of Li/R if and only if j ∈ Ii.
(3) For each j ∈ Ii do:

(a) compute Nij/R with NijS = Li and (Nij ∩ S)/R=Mj , using Section 4;
(b) compute Wij with WijR=Nij and (Wij ∩R) = J , using Section 4.

(4) Return {Wij | j ∈ Ii}.
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We note that the computed subgroups in steps (1), (3a) and (3b) exist by Lemma 8. Also,
using Lemma 8, it is not difficult to show that the set of subgroups

{Wij | 1 6 i6 n, j ∈ Ii}

thus determined is a complete and irredundant set of conjugacy class representatives for the
Hall π-subgroups of G.

7.2. Determining the number of conjugacy classes

Suppose that a finite permutation or matrix group G is given, together with a set π of primes.
The aim is to determine the number of conjugacy classes of Hall π-subgroups of G.

It is straightforward to modify the algorithm of § 7.1 for this purpose. In fact, it is sufficient
to determine the Hall π-subgroups of G/T , T/S and S/R and then perform only steps (1) and
(2) of the algorithm. The number of conjugacy classes is then

n∑
i=1

|Ii|.

7.3. Finding all sets of primes

Suppose that a finite permutation or matrix group G is given. The aim is to determine the sets
π such that G has a Hall π-subgroup.

It is straightforward to modify the method of § 7.2 so that it only checks whether G has a
Hall π-subgroup for a given π.

To determine all prime number sets π, note first that it is sufficient to consider those sets
π with π ⊆ ‖G‖ and |π|> 2. Further, for the sets with 2 6∈ π, it is sufficient to determine the
maximal sets π. For the sets with 2 ∈ π, all possible sets need to be considered.

8. Implementation and runtime

The algorithm as described here has been implemented by the second author in the computer
algebra system GAP [10] and will be made available as part of a forthcoming package. The
implementation applies to any group for which the natural homomorphism G→G/ Rad(G)
and a polycyclic generating set for Rad(G) can be constructed effectively. Thus it applies, in
particular, to all finite permutation or matrix groups. The implementation uses the algorithm
of § 6.4 to determine Hall subgroups of simple composition factors.

Table 3 gives some example timings (seconds on a 2.66 MHz Xeon ‘Woodcrest’ first-
generation Mac Pro) for our implementation. The columns of the table contain the following
information:
• Deg, the permutation- or matrix-group degree of the group;
• q, the prime in the case of matrix groups (thus, in particular, the groups for which no q is

given are permutation groups);
• π, the set of primes being considered;
• n, the number of conjugacy classes of Hall π-subgroups;
• tInit, the time required for setting up the required data structures (including determination

of the homomorphism G→G/ Rad(G) as well as a polycyclic generating set for Rad(G))
for calculations with G;
• tRun, the time for the actual Hall subgroup computation after all data structures have

been set up.
The timings show that runtime is dominated by the set-up (determining radical factors etc.)

as well as by calculations of the simple leaves.
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Table 3. Example timings for our algorithm.

Group Order Deg q π n tInit tRun

21+8.(Alt5 ×Alt5).2 2153253 760 2 2, 3 1 140 6
PSL5(2) 21132527·31 31 2, 3, 7 2 0 4
M24 21133527·11·23 24 2, 3, 5 1 0 11
PSU3(13) 253·5·72133157 2198 2, 3 2 41 161
PSU3(13) 253·5·72133157 2198 3, 13 1 4 1
21+12.3.M22 : 2 22233527·11 112 2 5, 11 1 5.3 0.7
21+12.3.M22 : 2 22233527·11 112 2 2, 3, 5 1 5 2
211.M24 22233527·11·23 24 2 5, 11 1 6.5 13.5
211.M24 22233527·11·23 24 2 2, 3, 5 1 7.5 14
SL2(7) o S5 224365275 80 2, 3 4 1.3 3.7
GL3(47) 283·5·23337·47361 3 47 23, 47 1 6.6 2.7
PSL3(2) o7 PSL3(2) 225385·78 49 3, 7 1 1.3 0.7
PSL3(2) o7 PSL3(2) 225385·78 49 2, 3 8 1 13
SL2(7) o S6 229385276 96 3, 7 1 2.3 0.7
SL2(7) o S6 229385276 96 2, 3, 5 2 2.5 7.5
SL2(7) o S6 229385276 14 7 3, 7 1 7.4 0.6
SL2(7) o S6 229385276 14 7 2, 3, 5 2 7 5
S5 o8 PSL2(7) 22839597 40 3, 7 1 18 0.6
S5 o8 PSL2(7) 22839597 40 2, 3 2 16.9 3.6
315 : (M11 o S3) 21432254113 16 3 5, 11 1 7 0.3
SL2(7) o S7 233395278 112 2, 3, 5 4 3 68
SL2(7) o S7 233395278 14 7 2, 3, 5 4 10 14
712 : (GL3(7)× SP(4, 7)) 216365371919 7 7 5, 19 1 50.3 0.7
244 : (PSL 2(59)×M23) 25635547·11·23·29·59 42 4 11, 23,

29, 59
1 60 29

239 : (GL3(23)×GL3(23)) 213325·721162315792 6 23 11, 23 1 168 6
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