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CONJUGACY CLASSES IN PROJECTIVE
AND SPECIAL LINEAR GROUPS

G.E. WALL

The conjugacy classes in the finite-dimensional projective full

linear, special linear and projective special linear groups over

an arbitrary commutative field are determined. The results over

a finite field are applied to certain enumerative problems.

1. Introduction

One of the first things to establish about a given group is the

distribution of its elements into conjugacy classes. In the case of the

full linear group GL (F) , where F is a (commutative) field, this

information is supplied by the classical theory of the similarity of

matrices. The object of the present paper is to develop the corresponding

theory for the groups PGL^F), SL^F) and PSL^F) . The methods are

direct and elementary, keeping within the usual framework of similarity

theory. Special attention is paid to the case of a finite coefficient

field, where the results take a particularly simple and transparent form.

The fact that the special and projective indices (defined in (3.17) and

(3.l8)J enter the relevant formulae in a symmetrical way is the source of

the dualities observed by Lehrer ([4], Theorem B) and Macdonald ([5],

Remark after (f*.6)).

Macdonald ([5]) also develops the conjugacy theory over finite fields,

although by somewhat different methods (for example, greater emphasis is

placed on a certain partition of n called the type). Reading his paper
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stimulated me to work out several further results, which appear here as

(l».17)-(U.2l).

2. General principles

Let F be a (commutative) field. Denote by F* the multiplicative

group of its non-zero elements. We consider the full linear group

GL {F) . The homomorphism

det : GL (F) ->• F*
n

maps GL (F) onto F* and has kernel SL (F) , so tha t GL/SL S F* .

Hence, i f G i s a subgroup of GL ,

G/SG - det G ,

where

SG = G n SL .

The non-zero scalar matrices XI form a central subgroup Z = Z(n, F)

of GL isomorphic to F* . The canonical homomorphism

P : GL -> PGL = GL/Z

carries each subgroup G of G£ onto its projective counterpart

PG = GZ/Z .

The subgroup G acts by conjugation on GL . The G-class of a

nonsingular matrix A is defined as its orbit under this action, namely,

(2.1) . U)G = {TAT'1 : T € G} .

The G-classes of elements of G are just the conjugacy classes of G .

Similarly, PC acts by conjugation on PGL . The Pff-class of a non-

singular matrix A is defined to be

(2.2) (A)pG = {xiTAT'
1) : X € F*, T € G] .

'PG

In other words,

(A)pG = P"1 (orbit of PA under PG)- ,

so that there is a canonical one-one correspondence between PG-classes and
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orbits under the action of PG on PGL .

Let us now compare U)G> (A)SG> (A)pr
 a n d ^A^psG ' F o r t h i s

purpose we introduce the following groups:

(2.3) C = CQ{A) = {T € G : TAT'1 = A] ,

(2.U) T = TG(A) = {T d G : TAT'1 = scalar multiple of A} ,

(2.5) L = LG(A) = {A € F* : (M)Q = (A)Q} ,

(2.6) A = Aff(i4) = LSG(A) .

We shall apply again and again the simple principle that the elements in

the orbit of a given point correspond one-one to the left cosets of the

stabilizer of that point.

First, G acts by conjugation on the set of all Sff-classes and (A).
b

is the union of the SG-classes in the orbit of (A)~n . The stabilizer of

(A)g_ is clearly (SG)C . In view of the isomorphism

G/{SG)C ̂  det C/det C , we have:

(2.7) the SG-alasses into which (4)_ splits correspond one-one to

the elements of det G/det C .

A similar argument gives:

(2.8) the PSG-classes into which (A)pG splits correspond one-one

to the elements of det G/det T .

Next, F* acts on the set of all G-classes by the rule

(2.9) X o U)G = (M)G ,

and (A) is the union of the G-classes in the orbit of (A)„ . Since
iris G

the stabilizer of (A) is L , we have:
Lr

(2.10) the G-classes into which (&)„., splits correspond one-one to

the elements of F*/L .

Replacing G by SG in (2 .10) , we get :
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(2.11) the SG-classes into which (A) splits correspond one-one

to the elements of F*/K .

Some simple properties of the groups C, T, L and A corresponding

to a given non-singular matrix A may be noted. If T € T , there exists

\ € F* such that

(2.12) TAT'1 = \A .

Taking determinants, we deduce that

(2.13) every element of L is an nth root of unity; thus L is a

finite cyclic group of order dividing n .

Again, the mapping

mult : T -> F*

which assigns to each T (. T the multiplier \ in (2.12) is a

homomorphism with image L and kernel C , so that

T/C 3 L .

This implies that T/(ST)C S L/A . Since also T/(ST)C 3* det T/det C , we

have

(2.lit) det T/det C S L/A .

det

(A)
PSG/SG

G/SG
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Figure 1 is a lattice diagram in which meets and joins are indicated.

The broken arrows to left and right show the effect of the homomorphisms

mult and det . The label (A) „,- (for example) indicates that the

splitting of (/!)„„ into G-classes is governed by the quotient group
rLr

F*/L in accordance with (2.10).

3. The full linear group

We now specialize to the case G = GL {F) . We shall determine

explicitly the groups L = L (A) , A = A G £ U ) , det C = det CGL(A) and

det T = det Tnr{A) , where A i GL {F) . The term GL-olass will mean a

GL (F)-class for some (usually unspecified) n . In other words, a

GL-class is just a similarity class of non-singular matrices over F . The

GL-class of A is denoted by U ) . We define SL-, PGL- and

PSL-classes in the obvious way and use the corresponding notation (A) c ,
oh

(/4)PG£' {A)PSL •

The similarity class of an n x n matrix A over F is determined

by the elementary divisors of A . However, while this specification is

adequate for some of our purposes, the following variant is more convenient

for others. Each elementary divisor of A is a power of a monic

irreducible polynomial over F . For a given positive integer r , let

those elementary divisors of A which are rth powers of monic

irreducible polynomials be

each elementary divisor being written down with correct multiplicity.

Write

Then the elementary divisors of A , and hence also its similarity class,

are uniquely determined by the sequence

(3.1) o-U) = {f±(x), f2(x), ...) .

Macdonald [5] uses essentially the same specification of the similarity
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classes.

Note that

(3.2) nU) = deg ̂  + 2 deg f2 + ... ,

(3.3) det A = «(/1)6(/'2)
2 ... ,

where n(A) = n and 6(/) denotes the product of the roots of / . In

particular, A is non-singular if, and only if, no /'(x) is divisible by

a; .

From now on, we assume that A is non-singular. The groups

det C, L and det T are determined in succession in Theorems 1, 2 and 3.

Since £ is a finite cyclic group, its subgroup A is then determined by

the general isomorphism (2.lU). Finally, in Theorem It, these results are

further specialized to the case where F is a finite field.

The following result will be required in the proof of Theorem 1.

LEMMA. Let X € GL (R) ., where R is a commutative local ring with.

nilpotent maximal ideal. Then there exist products of n x n unipotent

matrices P, Q over R such that PXQ is diagonal.

Proof. Let J be the maximal ideal, and R = R/J the residue class

field, of R . Let M (R) •+ M (R) , Y t—*• J , denote the homomorphism

induced by the canonical homomorphism R -*• R . An n x n matrix is called

elementary if all its diagonal elements are 1 and all except one of its

off-diagonal elements are 0 . Since X € GL (R) and J? is a field,

there exist products of elementary matrices P , Q over R such that

P 13 = ~D , where D is diagonal. Thus, P-JQ± = D + Y , where

Y € M (J) . Since D is non-singular, every diagonal element of D lies

in R - J and so is a unit; hence D 6 GL (R) and P-JQ-, = D(I+Z) ,

where Z = D"1^ . But Z € M (J) and J is nilpotent, so that Z is

nilpotent and thus I + Z unipotent. Therefore PXQ = D , where P = P

and Q = Q (I+Z) axe both products of unipotent matrices. This

completes the proof.

https://doi.org/10.1017/S0004972700006675 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006675


Conjugacy classes in linear groups 345

Notation. (a) If H is a subgroup of F* and d a positive

integer, then

(3.U) if = {hd : h € H} ,

(3.5) H d = {h : h € B, h
d = 1} .

(b) If IT is an irreducible polynomial in F[x] and K the field

obtained by adjoining a root of TT to F , then A(IT) denotes the image

of K* under the norm homomorphism ^Kip '• K* + F* .

THEOREM 1. Let A € GLn(F) , where F is a field. Then

(3.6) det CGL(A) = T T A(TT)r t

where the product is taken over the elementary divisors IT of A .

The proof will be carried out in terms of linear transformations

rather than matrices. Let T be a non-singular linear transformation on a

finite-dimensional vector space V over F . We turn V into an F[x]-

module in the usual way by defining f(x)v = f(T)v . Let E denote the

ring of module endomorphisms of V and E* the group of units of E .

Then the assertion of the theorem is that

(3.7) det E* =TTA(TT)r ,

where the product is taken over the elementary divisors TT of T .

We begin with the simplest case of all, where T has a single

irreducible elementary divisor ir with multiplicity 1 . Let K be the

field obtained by adjoining a root a of ir to F . Then K is a

finite-dimensional vector space over F and for each 3 € K the mapping

6 : K •* K , u t—>• 3w , is F-linear. We may take V = K and T = a , and

it is easy to see that E consists of the 3 • The well-known formula

det 3 = ̂ /r.(P) n o w gives det E* = A(TT) , as required.

We now proceed to the next simplest case, where T has a single

r

elementary divisor TT with multiplicity 1 . Since V is a cyclic

module, the elements of E are the polynomials f{T) . Let T be the

linear transformation induced by T on the quotient module V = V/K(X)V
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and let E be the ring of module endomorphisms of V . Then T has the

single elementary divisor ir with multiplicity 1 , E consists of the

polynomials f(T) and, by what we have already proved, det E* = A(TT) .

We observe now that

V 3 -n{x)V =>...=> n(x)rV = {0}

is a composition series for the module V in which all quotient modules

T̂ (x)^"1F/̂ r(a;)^F (i = 1, ..., r)

are isomorphic. (indeed, multiplication by n(x) ~ gives an isomorphism

of V/-n(x)V onto Tr(x)t'~1y/7r(a:)V .] It follows that

det f(T) = (det f(T))r ,

whence

det E* = (det ~E*)r = A(Tr)r ,

as required.

We turn now to the general case. Write M[T\ J for the indecomposable

F[x]-module F[X]/TT(X) F[X] . Let the elementary divisors of T be

ri rkTT , . . ., TT, with respective multiplicities m , . . ., m. . Then we may

assume that

(3.8) V = V ® .. . © V \m = Y, m. 1 ,
J. Til 1 %, J

where

= ... = V = M TT 2

and so on. In view of what we have proved already, (3.7) can be rewritten

as

m
(3.9) det E* = J~f det Si ,

i v
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where E. is the ring of module endomorphisms of V. .

In the present paragraph we take advantage of the direct decomposition

(3.8) to identify E with the ring of all m x m matrices S = [s . .) ,
I'd

where s. . € Horn r -iff., V.) for all i, j . Such a matrix S can be
I'd t [_X } 1 Q

written as a k x k block matrix (s, ) , where 5, is an m. x m

matrix for all X, y . Notice that

SXX ' \

where

x
is isomorphic to the (local) ring F[x]/i\,(x) F[x] . We introduce the

A

block diagonal matrix

5' =diag(511, .... Skk) .

Then (see Jacobson [2], Chapter h, Theorem 8)

S' = S (mod rad E) .

Suppose now that S is invertible. Then 5' = S(I+N) , where N € rad E

and so I + N is unipotent. In particular, S' is invertible and so each

of its diagonal blocks 5,, is invertible. Applying the lemma to each of

these diagonal blocks, we deduce that there exist products of (block

diagonal) unipotent matrices P , §. such that P S'Q = D , where D is

diagonal. Then

(3.10) PSQ = D ,

where P ~ P and Q = (I+N)Q are also products of unipotent matrices.

Let us now regard the elements of E once more as linear trans-

formations on V . Then (3.10) implies that every element of E* has the

same determinant as some element of E* which maps every V. onto itself.

Since the determinants of the latter elements of E* obviously form the
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group "I f det E*. , our result (3-9) follows. This completes the proof of

the theorem.

Consider the set M of all monic polynomials f(x) € F[x] which are

not divisible by x . Then F* acts on M by the rule

(3.11) (A o f)(x) = X
mf(X~1x) (m = deg /) .

It is easily verified that if /, g, ... are the elementary divisors of A

then \°f, \°g, ... are those of XA . Hence, in the notation (3-1),

(3.12) a(XA) = [\of

THEOREM 2. Let A 6 GL (F) , where F is a field, and let (3.1) be

the corresponding sequence of polynomials. Then

(3.13) LGL[A) = (F*)fi ,

where 6 is the greatest positive integer such that f (x) € F[a; J for

all r .

Proof. By (2.13), L i s finite. Let e be a primitive <ith root

of unity in F . By (3.12), e i L if, and only if,

(a) e o / = / for a l l r .

We prove the theorem by showing that (a) is equivalent to

(b) /r(x) 6 F[x
d~\ for all r .

Now, f (x) has the form a; + a.i + ... + a , where a t 0 .
r L m m

The equation e o f = f means that a. = £ a. for all t and thus that

a, = 0 except when d|t . However, since a # 0 , this is equivalent to
"C 171

f (x) € F[x J . Thus, (a) and (b) are equivalent and the theorem is

proved.

THEOREM 3. Let A (. GL (F) , where F is a field. Then det r_r(/l)

is generated by det CQL{A) and ( .
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Proo f . We have

where e is a primitive Z-th root of unity in F . The theorem will be

established by proving the existence of a matrix T over F such that

(3.11*) TAT'1 = zA , det T = e 2 .

Consider an elementary divisor ?i of 4 . Let h , ..., h be the
i is

distinct members of its orbit under the action of L = L-,T{A) given by

(3.11). Since e € L , A is similar to eA and so all h. have the
Is

same multiplicity as elementary divisors of A . Since the h. are
relatively prime in pairs, the direct sum of the companion matrices of the
h. is similar to the companion matrix of their product h = h ... hi- is

Clearly, h(x) has the form g[x ) , where g(x) € F[x] . These

considerations show that we may assume that A is the block diagonal

matrix diag(A , ..., A.) , where each A is the companion matrix of a

polynomial g [x ) with g (x) € F[x] .

Suppose that, for each r , we have found a matrix T such that

T A T 1 = eA , det T =
V V T V T

where A € GL (F) . Then the block diagonal matrix

T = d iagfT. , , . . . , T.) s a t i s f i e s TAT~ = eA and
1 v

since n = £ n^ and each n^ is divisible by £ . Thus, it is sufficient

to establish the existence of a matrix T satisfying (3.ll+) when A

itself is the companion matrix of a polynomial f(x) = g[x ) , where
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g{x) € F[x] .

Let K be the commutative ring obtained by adjoining a root a of

f(x) to F . Then K is an n-dimensional vector space over F with

Yl—1 ^

basis 1, a, . .. , a . The mapping a : K -*• K , u t—»• au , is an

F-linear transformation and its matrix with respect to the above basis is

A . It is therefore sufficient to prove that a is similar to ea by a

Q
linear transformation T of determinant £ . Now, since

fix) € F[x ] , there is an automorphism of K which carries a to ea

and fixes the elements of F . We take T to be this automorphism. Since

T(a J = £ a , the determinant of x is

1+2+...+U-1) _ K2>

£ E ,

as required. This completes the proof.

COROLLARY. The quotient group det rG£U)/det
 C

GI}-
A) ^s order 1

or 2 . It has order 2 if, and only if, -1 ^ det C_.(/4) and n/l is

odd.

Proof. Theorem 3 shows at once that if -1 € det C then

det C = det T . Suppose therefore that -1 £ det C . By (2.13), n/l is

an integer. If n/l is even, then (-1) = 1 and so, by Theorem 3,

det C = det V . Suppose therefore that n/l is odd. Then

(_!)«-! # s i n c e _j e c b u t _-,_ $ det c , it follows that

n is even and thus that (-1) = -1 . Since -1 \ det C , Theorem 3 now

shows that det C has index 2 in det F . This completes the proof.

We have just shown that the quotient group det F/det C has order 1

or 2 . The following example shows that both values are possible. Recall

that det F/det C S L/A .

EXAMPLE. Take

It is easy to see that L = {l, -l} . Wow, the general solution of
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TA = -AT is

a b
T =

b -a

where clearly det T = -{cf+b2} . If F = IR , det T = 1 has no

solution a, b in F and thus A = {l} . On the other hand, if F - C ,

det T = 1 has a solution in F and so A = L .

To conclude this section, we consider the case of a finite coefficient

field.

THEOREM 4. Let A 6 GL (IF J and let (3.1) fee the corresponding

sequence of polynomials. Then

(3.15) det CrAA) = det TrT(A) =

(3.16) LC LU) = AGLU) = (|FJJ

where

(3.17) d{A) is the greatest divisor d of q - 1 such that

f {x) = 1 whenever r is not a multiple of d , and

(3.18) 5(A) is the greatest divisor & of q - 1 such that

fix) € F[x&~\ for all r .

Proof. In view of (2.1*0, it is sufficient to prove that

(a) det C = (F*)dU) ,

(b) L - ( F * ) 6 U ) ,

(c) det C = det r ,

where F = IF .
q

Proof of (a). Let the elementary divisors of A be ir , ir , .. . ,

where T •""_, ... are irreducible. Then
JL d

d(A) = (q-1, d) ,
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where d is the greatest common divisor of r , r , ... . Moreover, since

F is finite, A (IT.) = F* for all i . Therefore, by Theorem 1,

det C = T T (F*)Vi = (F*)d = (F*)dU) .
i

Proof of (b). We have

&{A) = (q-1, 6) ,

where 6 is the greatest positive integer such that / (a:) € F\x J for

all r . By Theorem 2,

L = (F*)6 = (F*)

Proof of (c). By the Corollary to Theorem 3, it is sufficient to

prove that if -1 £ det C then n/6(A) is even. Now, if -1 £ det C ,

then d{A) is even by (a). Thus, it will be sufficient to prove that

(3.19) d(A)&(A)\n .

In the formula (3.2) for n = n(A) , S(A)|deg fr for a l l r> , and

deg f - 0 unless r\d{A) . Thus, a l l terms r deg / are d iv i s ib le by

d(A)8(A) and (3.19) follows. This proves the theorem.

COROLLARY. If A € GL\n, IF ) , then

)_r splits into d{A) SL-olasses,

(i4)T)r,r splits into d(A) PSL-classes,
( 3 . 2 0 ) . \ PGL

splits into (q-l)/6(A) GL-classes,

^^, splits into (q-l)/6(A) SL-elasses.
rOLi

Proof. This follows at once from the theorem and (2.7), (2.8),

(2.10), (2.11).

4. Enumeration, duality

In this section, F will be the finite field IF . Let
<?

A € GL = GLn(F) . With (3.20) in mind, we call d(A) the special index,
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or s-index, of A and 6(4) the pvojeetive index, or p-index, of A .

By (3.17)-(3-19), both are divisors of q - 1 and their product is a

divisor of n . Since all matrices in the one PffL-class have the same s-

and p-indices, we may speak of the s- and p-indices of a PCL-class or

of any subset such as a GL-class.

We begin with a detailed discussion of the results to be proved.

Write

(U.I) C{t) =
r=l

Fe i t and Fe i n [7] showed that

(«».2) C(t) = 1 + I o tn ,

n=l

where a is the number of conjugacy classes in GL . Our first result

is that, if d and 6 are divisors of q - 1 ,

(U.3) ' 1 + I Y (d, 6)tn = C{td&) ,
n=l

where Y id, 6) is the number of conjugacy classes in GL with s-index

divisible by d and p-index divisible by 6 . In other words, if d and

6 are divisors of q - 1 ,

yn(d, 6) =

cn/d6 if

otherwise.

This result enables us to determine the number, c (d, 6) , of

conjugacy classes in GL with 's-index d and p-index 6 . Assuming

still that d and 6 are divisors of q - 1 , we have

C*.5) YM(d, 6) = £ c (Z>, A) ,
0,A
ll

whence, by the Mobius inversion formula,
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c (
n=l n

More explicitly, if d8 is not a divisor of n , then

(U.7) cn(d, 6) = 0 ,

and if dS is a divisor of n ,

(U.8) a (d, 6) = Y

DTA
D [n,q-l]
DL\n

In particular, we see that

(k.9) cn{d, 6) = cn(S, d) .

This simple result is the source of the later results on duality.

The above formulae can be generalised. Let D, E be divisors of

q - 1 . We introduce the following subgroups of GL :

(U.10) P° = P°(w) = {A : det A Z (F*)D) ,

(»t.11) Zg, = Z£,(n) = {XJ : X €#(F*)g} .

If, in addition, DE\n{q-l) , then Zg c F and we may form the quotient

group

Each subgroup G of GL • acts on PI by conjugation. Slightly extending

the notation of Section 2, we call the orbits G-olasses. Then the duali-ty

theorem of Lehrer cited in the introduction asserts that if DE\q-l then

the numbers of GL -classes in An) and F^in) are the same,
n ti u

In practice it is convenient to deal, not with the G-classes in PI
E

themselves, but rather with their inverse images under the canonical
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homomor phi sm TT •*• FL . These are the sets

(U.13)

where

(k.lk) {A)E-G = {^AT X : X € {F*]E> T € G ) •

Since (4)_ _ c (4) , we may speak of the s- and p-indices of

{A) r and hence of the corresponding ff-class. Our second result is that

(U.15) if D, E, d, 6, A are divisors of q - 1 swefr

OfflnC^-l) j t?zen t?ze number of TT-classes in rL(.n) with

s-index d and p-index 6 is

Some special cases are of interest. When D = A , we get the number

of conjugacy classes in Pp(^) with s-index d and p-index 6 .

Specialising even further, we get the numbers of such conjugacy classes in

PGL , SL and PSL . The total numbers of conjugacy classes in the

latter groups are discussed in detail by Macdonald in [5].

Again, taking A = 1 in (U.15) and using (U.9), we deduce that

(h.l6) if d, 6, D, E are divisors of q - 1 such that DE\n{q-l) ,

then the number of GL -classes in PZ,(n) with s-index d
n ti

and p-index 6 is equal to the number of GL -classes in

Fp(n) with s-index 6 and p-index d .

This clearly implies Lehrer's theorem.

Another consequence of (U.15) is the following:

{h.YJ) Let D, E, A be divisors of q - 1 and suppose that

DE\n(q-l) . Then the total number of F^-classes in P°{n)
E

is
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I
d,6

6\E,d\[D,b]
d6\n

where d. = d/(d, D, A) , cL is the largest divisor of d

relatively prime to d and d d^d^ = d .

Here, <J>(m) = <J>. (m) and ty^im) are the Eulerian functions defined by

<f>r(m) = rri

P

where summation is over the distinct prime divisors p of m . We shall

pass over the proof of (it.17) except to mention that it depends on summing

Y \i(m/d) [d, m ) [d, m ) in closed form.
d\m

Taking A = 1 in (it.17), we get the following formula for the number

of-rq GL -classes in PZ,(n) :^ 9 n E

(DE)-1 y Hd)«6)c .
ai at ,d>6.

d\D,6\E

d&\n

It follows that, for given n and q , the number of GL -classes in

Fg(n) depends only on DE and (D, E) . This is a slight generalisation

of Lehrer's theorem.

Similar results can be proved by similar methods for the groups of

F-ration^l points of the connected algebraic groups isogenous to SL (F) ,

where F is the algebraic closure of F . These have the same order as

SL and include both SL and PGL as special cases. In the

formulation (but not the notation) of Macdonald [5], they appear as the

quotient groups

C*-18) Qe = Qg(n) = RjSe (e\n) ,

where R , 1> are the following subgroups of GL x F* :
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R = {(X, A) : det X = \e} ,

= {(oT, an/e) : a

The action of GL on Q is defined via the embedding GL •*• GL x F* ,

i?i-> (X, 1) . If G is a subgroup of GL , the orbits under the action

of G on Q are again called G-classes. The duality theorem of

Macdonald referred to in the introduction asserts that if ef - n then the

numbers of GL -classes in Q (n) and QAn) are the same. Indeed the
n e j

explicit formula used to prove this result yields the slightly stronger

result that if ef = n then the numbers of GL -classes in Q (n) and

Q, „ -,}(n) are the same.

The p- and s-indices of the G-class of an element (X, X)S of

Q are defined as the p- and s-indices of X . The following result is

the analogue of (U.15).

(U.19) Let d, 6, A be divisors of q - 1 and e, f positive

integers such that ef = n . Then the number of c -classes

in Q (n) with s-index d and p-index 6 is
&

V o i ) ("> A'e
n("> °> •

Special cases are again of interest. When A = (e, p-l) , the P^-classes

in Q (n) become the conjugacy classes of Q (n) . Again, taking A = 1

we get the following analogue of (h.l6).

(It.20) Let d, 6\q-l and ef = n . Then the number of GL -classes

in Q (n) with s-index d and p-index 8 is equal to the

number of GL -classes in Qf{n) with s-index 8 and

p-index d .

Macdonald's duality theorem is an immediate consequence. Finally, we have

the following analogue of (k.17).

(U.21) Let A\q-l and ef = n . Then the total number of
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P^-alasses in QAn) is

&\f',d\[e,A]
d6\n

where d, = d/(d, e, A) , d~ is the largest divisor of d

relatively prime to d and d d-d^. = d .

EXAMPLE. Suppose that e\n\q-l and write ef = n , rm = q - 1 .

Each of the groups Q (n) and P, •, , in) is an extension of SL /Z_ by
e \q~x)/& n j

a cyclic group of order f . Ketter and Lehrer [3] carried out computer

calculations to determine the numbers of GL -classes in these groups for

certain e, n and q . Now, C*.2l) and (̂ .17) show that these numbers

are, respectively,

where a' = c /(q-l) . Macdonald [5] proved the formula for M and

tabulated a' for r < 12 . Splitting d, 6 into their prime-powers, one

see that

and so, in particular, M = M„ . Further
e J

N > M
e e

and, as Ketter and Lehrer observed,

No = M i f (m, e) = 1 .

For n = h , we have

https://doi.org/10.1017/S0004972700006675 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006675


Conjugacy c l a s s e s in linear groups 359

N± = Mh = q
3 + q2 + 2q + 3 ,

tf - M_ = 0 or 2 according as (m, 2) = 1 or 2 ,

N, - M, = 0, q + 2 or <7 + U according as (m, k) = 1, 2 or I* .

Our results agree with those of Ketter and Lehrer except in one case: the

values when n = 6 , q = 13 , should be

M = w = M = « = w = ilL = 1+02 1+32 ,
1 2 3 o 1 3

w = m = i+02 616 .

£ b

The proofs of the results for the groups Q (n) will be omitted. It

remains to prove the key results (U.3) and (U.15). In each case, some

preparation is necessary.

Let P be a set of monic polynomials over F such that 1 € P . The

generating function for P is defined to be the power series

= I gn(P)t
n ,

n
gn

n=0 n

where g (P) denotes the number of elements of P of degree n . (Noticeg

that 9'Q(̂ ') = 1 since 1 € P .) In the same way, if Q is a set of

similarity classes of square matrices over F , the generating function for

Q is the power series

GQ(t) = 1 + I Gn(Q)t
n ,

where G (Q) denotes the number of similarity classes of n * n matrices

in Q . The following enumerative principle is due to Feit and Fein [I].

LEMMA. Given sets P^, P , ... of monic polynomials over F such

that 1 € P^ for all r , let Q be the set formed by those similarity

classes of matrices over F whose associated sequences of polynomials

[f^x), f2(x) ...) [in the sense of (3.1)] satisfy fp(x) € Pp for all
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r . Then

CO

C+.22) GJt) = ~TT 9P (*
rJ •

Proof. It follows from (3-2) and the definition of Q that

which is equivalent to (U.22).

Proof of (4.3). If M is the set of all monic polynomials in F[x ]

which are not divisible by x , then

gM(t) = 1 + (q-l)t
& + (q-l)qt25 + ...

Let us now choose P., P_, . . . in the lemma as follows:

otherwise.

Then, by (3-17) and (3.18), the resulting set Q is the set 57 of

all ££-classes with s-index divisible by d and p-index divisible by

6 . The Lemma gives

j M
57 r
6 d\r

which is just another way of writing C».3). This completes the proof.

Further preparation is needed for the proof of (1*.15). We introduce

certain unions of GL-classes within which the distribution of GL-classes

according to determinant can be simply described.

Consider the sequence of polynomials (3-1) associated with a given

A € GL . Write each component polynomial down explicitly in the form.
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n n —% • n -j

(It.23) / (x) = x v + (-1) r arix
V + (-1) r av~tP + ... ,

where n > i > ,i > ... and all coefficients a ., a ., ... are non-zero.
r ri rj

The index set

is finite and non-empty with greatest and least members n and 0 , and

Q (A) = {0> for almost a l l r . The sequence

(U.2U) nu) = (^U), n2U), ...)

will "be called the support of 4 . Since all matrices in the one

Pffi-class have the same support, we may speak of the support of a

PGi-class or of any subset such as a GL-class.

Consider now the set T(Q) of all matrices A having a given support

(fc.25) n = (J^, n2, ...) ,

where each fi is a finite set such that 0 € Q and where almost all

(but not all) fi are {0> . By (3.2), all matrices in T(tt) have the

same dimension, namely,

(h.26) n(Q) = £mr(n) ,

T

where n (fi) denotes the greatest member of £2 . By (3.17) and (3.18) we

have

(U.27) d{A) = [d[n(A)), q-l) , 6(A) = [S{Q(A)) , q-l) ,

where d(Q) denotes the greatest common divisor of the indices r for

which Q # {0} and 6(fi) the greatest common divisor of the elements of

LEMMA. The GL-classes of matrices which make up T{U) can be
parametrized by the elements of an abelian group H(Q) in such a way that
the mapping which assigns to each element of H(Q) the determinant of the
matrices in the corresponding GL-class is a group homomorphism mapping
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ff(fi) onto (F

Proof. The GL-classes (A) „. J ^ € T(Q) , are already parametrized

by the corresponding rows of polynomials (3.1). Replacing each f (x) by

the corresponding row of coefficients (a ., a ., ...) (see (U.23)), we

get a row of

Mfl) = T. (\tt l-l)
r r

non-zero elements of F , that is, an element of the direct product of

N(Sl) copies of the group F* . This direct product is the parameter group

H(Q) . Let r , ..., r be the indices r for which deg / (x) > 0 .

Then, by (3.3),

det A = & [f ) .. . 6 (/ ) S .
ri rs

At the same time, by (U.23), the element of H(Q) corresponding to (A) „
LTJJ

has the form

ri r2 rs

It follows that the mapping described in the lemma is indeed a homomorphism

fl(fi) -»- F* and that the image of #(fi) is

s

i=l

This proves the lemma.

We are now in a position to prove (^.15). Let D, E, A, d, & be

sor

G = P becomes

divisors of q - 1 with DE\n(q-l) . The set U)p.G in (U.13) with

(A) . = iXTAT : X € (F*K> d e t T € ̂ F*

Let T7(n) denote the set of all matrices in GL with s-index d and
o n

p-index 6 . Then the numerical restriction DE\n(q-l) guarantees that
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27(n) n F{n) is a disjoint union of sets of the form (A),, . , and C*.15)
o a ,11

is equivalent to the assertion that the number of such sets is

l d ^ E ) id. *)cn(d, 6) .

We shall prove this last result by showing that:

(a) if A € 2^(n) then (A) „ . i s a union of dE/(d, A) (6 , E)
O tt ,A

5Z--C lasses;

(b) 27(M) n P^(n) is a union of d(d, D)o (d, &)/D SL-classes.

Proof of (a). The direct product F* x F* acts on the set of all

Si-classes by the rule

(X, u) o U)SL = ( X ^ T "
1 ) ^ , where det T = u .

The orbit of (A)ar consists of those Si-classes which make up (4)__r .
OLj rLrh

Since A Z 2^(n) , it follows from (3.20) that the number of such

SL-classes is (q-l)d/8 . Since (F*)&
 x (F*) is contained in the

stabilizer of (4)cr and has index (q-l)d/& in F* x F* it must indeed

be the stabilizer.

On the other hand, the SL-classes making up (4)_, . form the orbit

of (A)SL under the action of (*"*) x (F*) . Therefore the number of

SL-classes into which {A)^ . splits is

\(F*)E : (F*)E n (F*)6||(F*)
A : (F*)A n (F*)d| = (E/(6, E))[d/{d, A))

= dE/(d, A)(6, £•) .

Proof of (b) . By (h.26) and (it.27), 1$M is the disjoint union of

those sets T{Q) in the lemma which satisfy

n(fl) = n , (d(0), q-l) = d , (fi(fi), q-l) = 6 .

By that lemma, the proportion of CL-classes in such a T(Q) having
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determinant in (F*) is

= ( d , 0)/Z> .

T h e r e f o r e t h e number o f < J L - c l a s s e s i n xtin) n P i n ) i s
o

(d, D)c (d, 6)/D . On the other hand, by (3.20), each GL-class in ifzin)

splits into d Si-classes. It follows that T7(n) n P^(n) splits into

d(d, D)c (d, 6)/Z) 5L-classes, as we had to prove. The proof of (1+.15) is

now complete.
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