A NEW CONGRUENCE MODULO 25 FOR 1-SHELL TOTALLY SYMMETRIC PLANE PARTITIONS

ERNEST X. W. XIA

(Received 25 May 2014; accepted 10 June 2014; first published online 8 October 2014)

Abstract

For any positive integer *n*, let f(n) denote the number of 1-shell totally symmetric plane partitions of *n*. Recently, Hirschhorn and Sellers ['Arithmetic properties of 1-shell totally symmetric plane partitions', *Bull. Aust. Math. Soc.* **89** (2014), 473–478] and Yao ['New infinite families of congruences modulo 4 and 8 for 1-shell totally symmetric plane partitions', *Bull. Aust. Math. Soc.* **90** (2014), 37–46] proved a number of congruences satisfied by f(n). In particular, Hirschhorn and Sellers proved that $f(10n + 5) \equiv 0 \pmod{5}$. In this paper, we establish the generating function of f(30n + 25) and prove that $f(250n + 125) \equiv 0 \pmod{25}$.

2010 Mathematics subject classification: primary 11P83, 05A17.

Keywords and phrases: congruence, 1-shell totally symmetric plane partitions, TSPP.

1. Introduction

A plane partition of *n* is a two-dimensional array of integers $\pi_{i,j}$ (with positive integer indices *i* and *j*) that are weakly decreasing in both indices and that add up to the given number *n*, that is, $\pi_{i,j} \ge \pi_{i+1,j}$, $\pi_{i,j} \ge \pi_{i,j+1}$ and $\sum \pi_{i,j} = n$. A plane partition is called a totally symmetric plane partition (TSPP) if it is invariant under any permutation of the three axes. (For more details about TSPPs, the reader may wish to see Andrews *et al.* [1] and Stembridge [7].) In 2012, Blecher [3] introduced a special class of totally symmetric plane partitions, called 1-shell totally symmetric plane partitions. A totally symmetric plane partition is a 1-shell totally symmetric plane partition if this partition has a self-conjugate first row and column (as an ordinary partition) and all other entries are 1. For example, the following totally symmetric plane partitions are 1-shell totally symmetric plane partitions:

2	2	1		4	4	2	2	
	2	1		4	1	1	1	
2	I		,	2	1			•
1				2	1			

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

E. X. W. Xia

For any positive integer *n*, let f(n) denote the number of 1-shell totally symmetric plane partitions of *n*. As usual, set f(0) = 1. Blecher [3] proved that

$$\sum_{n=0}^{\infty} f(n)q^n = 1 + \sum_{n=1}^{\infty} q^{3n-2} \prod_{i=0}^{n-2} (1+q^{6i+3}).$$

Recently, utilising elementary generating function manipulations and some wellknown results due to Ramanujan and Watson, Hirschhorn and Sellers [6] proved a number of congruences satisfied by f(n). More precisely, they proved that for $n \ge 1$,

$$f(3n) = f(3n - 1) = 0,$$

$$f(n) \equiv \begin{cases} 1 \pmod{2} & \text{if } 3 \nmid n \text{ and } n = k^2 \text{ for some integer } k, \\ 0 \pmod{2} & \text{otherwise} \end{cases}$$
(1.1)

and

$$f(10n - 5) \equiv 0 \pmod{5}.$$
 (1.2)

Very recently, Yao [8] proved several infinite families of congruences modulo 4 and 8 satisfied by f(n).

In this paper, we establish the generating function of f(30 + 25) and a new congruence modulo 25 for f(n) by employing some well-known results due to Hirschhorn [5], Hirschhorn and Sellers [6] and Ramanujan [2].

In order to state and prove the main results of this paper, we introduce some notation and terminology on q-series. In this paper, we adopt the common notation

$$(a;q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n).$$

The Ramanujan theta function f(a, b) is defined by

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2},$$
(1.3)

where |ab| < 1. The Jacobi triple product identity can be restated as

$$f(a,b) = (-a;ab)_{\infty}(-b;ab)_{\infty}(ab;ab)_{\infty}.$$
(1.4)

Three special cases of (1.3) are

$$\psi(q) := f(q, q^3) = \sum_{n=0}^{\infty} q^{(n^2 + n)/2},$$
(1.5)

$$\varphi(q) := f(q,q) = \sum_{n=-\infty}^{\infty} q^{n^2}$$
(1.6)

and

$$f(-q) := f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2}.$$

By (1.4),

$$f(-q) = (q;q)_{\infty}.$$

For any positive integer k, we use f_k to denote $f(-q^k)$, that is,

$$f_k = (q^k; q^k)_{\infty} = \prod_{n=1}^{\infty} (1 - q^{nk}).$$

By (1.4)–(1.6) and the notation f_k ,

$$\psi(q) = \frac{f_2^2}{f_1} \tag{1.7}$$

and

$$\varphi(q) = \frac{f_2^5}{f_1^2 f_4^2}.$$
(1.8)

Replacing q by -q in (1.8),

$$\varphi(-q) = \frac{f_1^2}{f_2}$$

The following two theorems are the main results of this paper.

THEOREM 1.1. For all $n \ge 0$,

$$\sum_{n=0}^{\infty} f(30n+25)q^n = 5\frac{f_2^2 f_5^2 f_{10}}{f_1^4}.$$
(1.9)

In view of (1.1), for $n \ge 0$,

$$f(30n+5) = f(30n+15) = 0.$$
(1.10)

Therefore, congruence (1.2) follows from (1.9) and (1.10).

Theorem 1.2. For $n \ge 0$,

 $f(250n + 125) \equiv 0 \pmod{25}$.

2. Proof of Theorem 1.1

Hirschhorn and Sellers [6] proved that for $n \ge 1$,

$$f(3n-2) = h(n),$$
 (2.1)

where h(n) is defined by

$$\sum_{n=1}^{\infty} h(n)q^n = \sum_{n=1}^{\infty} q^n \prod_{i=0}^{n-2} (1+q^{2i+1}).$$

E. X. W. Xia

Employing some well-known results due to Ramanujan [1, Entry 9.5.2, page 238] and Watson [4, (26.82), page 61], Hirschhorn and Sellers [6] proved that

$$\sum_{n=0}^{\infty} h(2n+1)q^n = \prod_{n=1}^{\infty} (1+q^n)^3 (1-q^n).$$
(2.2)

Employing the notation f_k , we can rewrite (2.2) as:

$$\sum_{n=0}^{\infty} h(2n+1)q^n = \frac{f_2^3}{f_1^2}.$$
(2.3)

From [2, Entry 10(v), page 262],

$$\psi^2(q) - q\psi^2(q^5) = f(q, q^4)f(q^2, q^3).$$
(2.4)

By (1.4) and (1.7), we can rewrite (2.4) as

$$\frac{f_2^4}{f_1^2} = \frac{f_2 f_5^3}{f_1 f_{10}} + q \frac{f_{10}^4}{f_5^2}.$$
(2.5)

Substituting (2.5) into (2.3),

$$\sum_{n=0}^{\infty} h(2n+1)q^n = \frac{1}{f_2} \left(\frac{f_2 f_5^3}{f_1 f_{10}} + q \frac{f_{10}^4}{f_5^2} \right) = \frac{f_5^3}{f_1 f_{10}} + q \frac{f_{10}^4}{f_2 f_5^2}.$$
 (2.6)

Hirschhorn [5] also established the following identity:

$$\frac{1}{f_1} = \frac{f_{25}^5}{f_5^6} \Big(\frac{1}{R^4(q^5)} + \frac{q}{R^3(q^5)} + \frac{2q^2}{R^2(q^5)} + \frac{3q^3}{R(q^5)} + 5q^4 - 3q^5R(q^5) + 2q^6R^2(q^5) - q^7R^3(q^5) + q^8R^4(q^5) \Big),$$
(2.7)

where R(q) is defined by

$$R(q) = \frac{(q; q^5)_{\infty}(q^4; q^5)_{\infty}}{(q^2; q^5)_{\infty}(q^3; q^5)_{\infty}}.$$
(2.8)

If we substitute (2.7) into (2.6) and then extract those terms in which the power of q is congruent to 4 modulo 5, and use (2.5), we get

$$\sum_{n=0}^{\infty} h(10n+9)q^n = 5\frac{f_5^5}{f_1^3 f_2} + 5q\frac{f_{10}^5}{f_1^2 f_2^2} = \frac{5f_5^2 f_{10}}{f_1^2 f_2^2} \left(\frac{f_2 f_5^3}{f_1 f_{10}} + q\frac{f_{10}^4}{f_5^2}\right)$$
$$= \frac{5f_5^2 f_{10}}{f_1^2 f_2^2} \cdot \frac{f_2^4}{f_1^2} = 5\frac{f_2^2 f_5^2 f_{10}}{f_1^4}.$$
(2.9)

Theorem 1.1 follows from (2.1) and (2.9). This completes the proof.

3. Proof of Theorem 1.2

By the binomial theorem, it is easy to see that, for any positive integer k,

$$f_k^5 \equiv f_{5k} \pmod{5}.$$
 (3.1)

It follows from (2.9) and (3.1) that

$$\sum_{n=0}^{\infty} h(10n+9)q^n \equiv 5\frac{f_1^2 f_5^4}{f_2} + 5q\frac{f_1^3 f_2^3 f_{10}^4}{f_5} \pmod{25}.$$
 (3.2)

It is trivial to show that

$$f_1^3 \equiv f(-q^{10}, -q^{15}) - 3qf(-q^5, -q^{20}) \pmod{5}$$
(3.3)

and

$$\frac{f_1^2}{f_2} = \frac{f_{25}^2}{f_{50}} - 2qf(-q^{15}, -q^{35}) + 2q^4f(-q^5, -q^{45}).$$
(3.4)

Substituting (3.3) and (3.4) into (3.2),

$$\begin{split} \sum_{n=0}^{\infty} h(10n+9)q^n &\equiv 5f_5^4 \left(\frac{f_{25}^2}{f_{50}} - 2qf(-q^{15},-q^{35}) + 2q^4f(-q^5,-q^{45}) \right) \\ &+ 5q\frac{f_{10}^4}{f_5} \left(f(-q^{10},-q^{15}) - 3qf(-q^5,-q^{20}) \right) \\ &\times \left(f(-q^{20},-q^{30}) - 3q^2f(-q^{10},-q^{40}) \right) \; (\text{mod } 25). \end{split}$$

If we extract those terms in which the power of q is congruent to 0 modulo 5, and replace q^5 by q, and then employ (3.1), we deduce that

$$\sum_{n=0}^{\infty} h(50n+9)q^n \equiv 5\frac{f_1^5 f_2^2}{f_1 f_{10}} \equiv 5\frac{f_5^3}{f_1 f_{10}} \pmod{25}.$$
(3.5)

Substituting (2.7) into (3.5), for $n \ge 0$,

$$h(250n + 209) \equiv 0 \pmod{25}.$$

Replacing *n* by 250n + 209 in (2.1), for $n \ge 0$,

$$f(750n + 625) \equiv 0 \pmod{25}.$$
 (3.6)

By (1.1), for $n \ge 0$,

$$f(750n + 125) = f(750n + 375) = 0.$$
(3.7)

Theorem 1.2 follows from (3.6) and (3.7). The proof is complete.

Acknowledgement

This work was supported by the CPSFFP (2014M551506) and the National Natural Science Foundation of China (11201188).

References

- [1] G. E. Andrews, P. Paule and C. Schneider, 'Plane partitions VI: Stembridge's TSPP theorem', *Adv. Appl. Math.* **34** (2005), 709–739.
- [2] B. C. Berndt, Ramanujan's Notebooks, Part III (Springer, New York, 1991).
- [3] A. Blecher, 'Geometry for totally symmetric plane partitions (TSPPs) with self-conjugate main diagonal', Util. Math. 88 (2012), 223–235.
- [4] N. J. Fine, *Basic Hypergeometric Series and Applications*, Mathematical Surveys and Monographs, 27 (American Mathematical Society, Providence, RI, 1988).
- [5] M. D. Hirschhorn, 'An identity of Ramanujan, and applications', in: *q-Series from a Contemporary Perspective*, Contemporary Mathematics, 254 (American Mathematical Society, Providence, RI, 2000), 229–234.
- [6] M. D. Hirschhorn and J. A. Sellers, 'Arithmetic properties of 1-shell totally symmetric plane partitions', *Bull. Aust. Math. Soc.* 89 (2014), 473–478.
- [7] J. R. Stembridge, 'The enumeration of totally symmetric plane partitions', *Adv. Math.* **111** (1995), 227–243.
- [8] O. X. M. Yao, 'New infinite families of congruences modulo 4 and 8 for 1-shell totally symmetric plane partitions', *Bull. Aust. Math. Soc.* **90** (2014), 37–46.

ERNEST X. W. XIA, Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China e-mail: ernestxwxia@163.com