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1. Introduction

In this paper we study certain operators allied to the Poisson operator
and the transforms Ha(f) considered by the author in [2]. We define the
integrals y4a)(/) and 0<,a)(/) as follows:

where <p(a) = 2J'(a) sin \nv., and the principal value of tan^1 x (lying be-
tween —\n and \n) is taken throughout. Further, we define the integrals
W^ (/) and 6^a) (/) which will be employed later in obtaining inversion pro-
cesses for y40) and d^K We have

sin («tanM/q) |

)w j / w (
The Poisson operator and its "conjugate" are given respectively by

and

Next we define the transform Ha(f) and operators related to it. These are
given by
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= - T T 1-r^f{t)dt,

\t-x\-if(t)dt,

1 r°
n*(/) () n V 7 m dt

and

Finally we define the Hilbert transform by

1 r°° fit)

#(/)(*) = -(p.v.) r1^.
n J_oat—x

In what follows we shall use the known properties of the transforms
Ha(f) and Ka(f) in obtaining identities involving the operators vio)(/) and
0io>(/)- These identities are then applied in deriving inversion processes
for the new operators. In the formulae given here, the integrals Pa(f) and
Qa{f) are expressed in terms of ^ia)(/) a n d ^io>(/)- The function / may then
be given in terms of the new operators by applying processes similar to
those given in [4]. It will be observed that the relationship between
the pair (ip£\ 0io)) and the pair (Po, Qa) is analogous to that between
(Ha, Ka) and (H, I), where / denotes the identity operator.

The space Lp(— oo, oo) will be denoted by Lv, the pair of numbers p
and p' will be connected by the equation l/p+l/p' = 1, and the norm

will be denoted by

2. Preliminary results

In this section we obtain certain properties of the operators Pa, Qa,
Ha and Ka which will be applied later.

THEOREM 1. Let feL", p > 1. Then Pa(f) e L" and Qa(f) e L" for
q jS: p. Further, for g e Lq', we have

and

https://doi.org/10.1017/S1446788700004262 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004262


[3] On integral operators 265

PROOF. It is obvious that the function hx(t) = aj{a2-\-t2) belongs to
L" for q ^ 1. Hence by applying a well-known inequality (see Lemma (i
page 97 of [6]), we clearly have Pa{f) e L" for q^p. Now the function
h2(t) = tl(a2-{-t2) belongs to Lq for q > 1. Hence by applying the above
inequality again, it follows that Qa(f) e L" for q > p. In Theorem 2 (below),
we prove that Qa(f) = Pa{H(f)}. This result together with Theorem 101 of
[6] and the fact that Pa(f) e Lv shows that Qa(f) e Lp also.

By the absolute convergence of the integrals involved, we clearly have

f°° g(t)dt f°° f(x)hl(x—t)dx = f°° /(<*;)<& f °° g(t)h1(t—x)dt.
J —oo J —oo J —oo J —oo

This proves the first product formula. The second result can be obtained
similarly by considering h2(t).

THEOREM 2. Let f e L", p > 1, and a and b be positive numbers. Then
we have

(i) Pa{P*V)} = -Qa{Qb(f)} = Pa+b(f);

(iii) Pa{H(f)} = Qa(f) and (iv) Qa{H(f)} = -Pa{f).

PROOF. The result Pa{Pb(f)} = Pa+b{t) ^s a well-known property of
Poisson transforms (see [5]). Since the other results of (i) and (ii) can be
obtained by applying (iii) and (iv), we shall only prove the latter. It is
known that if a > 0 and

then
H[hj)(x) = ~hz(x) and H(h2){x) = hx{x)

(see [6] page 121). Hence by applying the product formula for Hilbert trans-
forms (Theorem 102 of [6]), we clearly have

and

This proves (iii) and (iv).

Note: By making suitable interchanges in the order of integration, it is
not difficult to show that

Pa{H(f)} = H{Pa(f)} and Qa{H{f)} = H{Qa(f)}-

We note here the following convergence property of the operators Pa

and Qa.
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(1) lim \\f-Paif)\\, = 0.
o->0+

(2) lim\\H(f)-Qa(f)\\P = 0.

In the next two theorems we state the results involving Ha(f) and Ka(J)
to be applied in this paper.

THEOREM 3. Let f e Lv, p > 1, let 0 < a < \\p and let \\r = \\p-a..
Then Ha(f) e LT, Ka(f) e LT, and for g e U', we have

and

= - j~J(t)Ha{g)(t)dt

= j"j(t)Kx(g){t)dt.

The resuls Ha(f) e Lr and Ka(f) e Lr follow as in the proofs of similar
results for the Riemann-Liouville and Weyl fractional integrals (see Theorem
383 of [1]). The product formulae follow from the absolute convergence of
the ingerals involved.

The inversion processes for y40) and Q^ will be derived from correspond-
ing results for Hx and Ka. The latter results have been established by the
author (Theorem 6 of [3]), and we state them in the next theorem.

THEOREM 4. Let feLp,p> 1, and let 0 < a < \\p. Then

(i) L^KMV) = -cot irca jxj(t)dt,

(ii) Mi_{ff.(/)}(*) = - t a n I™ \xJ{t)dt.

Note: The results of Theorem 4 are alternative forms of the inversion
process given in [2].

The following lemma will be applied later.

LEMMA 1. Let y be a fixed number and let

kx{x) = Is -yl- l -1*1-1, k2(x) = -! *L - 1-L •
x—y x

Then for 1 — ljq < a < 2—1/y, we have k-^eL" and k2eL".

PROOF. It is clearly sufficient to prove the result for either kx or k2.
We consider k1 and assume without loss of generality that y = 1. The inte-
gral

clearly converges if (a— l)q+l > 0 (i.e. if a > l — l/q).
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Now let

I = f" \(t-l)'-l-p-l\*(tt.

On making obvious changes of variables in the integral, we have

(1—I)"-1— 1
T dt.

Hence the integral / converges if its integrand is O(ty) as t -> 0, where
y+1 > 0. Now

lim = lim -—

Hence y = — (a— 2-\-2/q)q, and this implies that 2—1/q > a.

3. Representation theorems for ip^ and 0̂ o)

We shall now express yf
a

a), 0<,o), «flo) and <9io) in terms of the Poisson
operators and the /^-transforms. The following lemmas will be employed
in the proofs of the theorems.

LEMMA 2. Let h^t) = al{a2+t2), h2(t) = tl(a2+P) and let a > 0. Then
we have

(i) H^K)(x) = -cot / > ^

C O S 0̂C tcLIl—^

(ii) / ^ ( A . ) (x) = cot ̂ a K^iK) (x) = r(«) ,V 2 ^ 2.

PROOF. Let / denote the Fourier transform of a function /. Then by
proceeding as in the proof of the identity (5) of [2], it follows that if / e L2

and if / e L, then
i r

Ha(f)(x) = - —
V27rJV27rJ_oo *

The expression given here incorporates a correction in the sign of (5) of
[2], and the redundant condition / e L is excluded. Also, by considering
f(x-\-t) -\-f{x—t) and proceeding similarly, we have

Now it is well-known that

Jt1(x)=\/-e-W and h2(x) = i ]l - «-"l
f 2i f Z

XX.
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Hence by using the identities given above, we have

x !. r°° \t\* _o]t| _ixt
l-a 1 2 7 1 * 1-a 2 2 J ^ {

= Jo ^ atSmXtdt'

2 2 J _ 0 0

= F-1 e~at cos x^ dt.
Jo

The integrals can now be evaluated by known methods (e.q. contour inte-
gration) to give the required result.

LEMMA 3. Let y be a fixed real number, let a > 0 and let

t? I 'V\ & I rY*\ I 'V ")/ —^ —— 1* —^
t\i \tJU i " j /VQ 1*1 \*As fj | I*** [ *

x—y x
Then

Pa(k)(x) = -
r(a.)<p(l—a.) (sin (« tan"1 (x—y)ja) sin (a tan-1 xja]

/'(a)9?(l—a) fcos (a tan"1 {x—y)\a) cos (a tan"1 */«)

PROOF. The results of Lemma 2 can be written in the form

\l—X\ a COI oT3C <t-l _____ fit

sin (a. tan-1 x I a)

J_dt
+^2 ^(1—oc)J_00

l ' « 2 +
cos (a tan-1a;/fl)

The results of Lemma 3 are easily deduced from these identities.
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THEOREM 5. Letf e Lp, p > 1, let 1—\\p < a < 1 and let a > 0. Then

(i) yi°>(/) = (sin **«) Pa{^_a(/)} = (cos froOWtf^tf)},

(ii) 0io) (/) = - (sin \mL)Qa{H^{f)} = (cos ^ a ) P a { ^

PROOF. Let hx(x) and Ag^) be defined as in Lemma 2. Since 0 < 1—a
< ljp, by applying the product formulae of Theorem 3, we have

The results

and e '( /) = (cos

are obtained from these integrals by applying Lemma 2.
The other results of the theorem are obtained by applying the product

formula with h2(x) in place of hx(x).

REMARK 1. From the results of Theorems 2 and 3, it follows by applying
the identities of Theorem 5, that if the conditions of the latter theorem are
satisfied, then

y>la)(f)eL> and 0^{f)eL',

where s Sg q and \jq = ljp-\-a.—l. Also, by the absolute convergence of
the integrals involved, or by applying Theorems 1 and 3, we have

and

THEOREM 6. Let f e V, p > 1, let 0 < a < 1 — ljp and let a > 0. Then

(i) »*•>(/) = (sin ^a)L1_a{P0(/)} = (cos

(ii) 6>i°>(/) = - (sin i^L^QM)} = (cos

PROOF. Let &(a;) and A0(x) be defined as in Lemma 3. From Lemma 1, it
follows that k e V and k0 e Lv if we have

1 - 1 / / ' < 1-a < 2 - 1 / / ' (i.e. -Ijp < a < 1-1//).

If we also have a > 0, then the functions Pa{k), Pa(k0), Qa(k) and Qa{k0)
are given by Lemma 3. Hence by applying the product formulae of Theorem
1, we have
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a(f) (t)dt = j~J(t)Pa(k)(t)dt,

= - f~J(t)Qa{k){t)dt.

The results

^ and <9<°>(/) = - (sin

now follow by applying Lemma 3. The other results of the theorem are ob-
tained by considering ko(x) in place of k(x).

In the next section we shall require the result that the operators Pa

and Qa commute with H1_a and Kx_a. Hence we prove

THEOREM 7. Let feLp,p> 1 and let 0 < y < \\p. Then

(i) Hy{Pa(f)} = Pa{Hy(f)}, (ii) Hy{Qa(f)} = Qa{Hy{f)},

(iii) Ky{Pa{f)} = Pa{Ky{f)}, (iv) Ky{Qa{t)} = Qa{Ky(f)}.

PROOF. It is clearly sufficient to consider any one of the four identities.
When one of them has been established, the proofs of the others follow simi-
larly. Consider (iii), let c and cx be numbers such that

— oo < — cx < c < oo,

and let h^x) = a/(a2+x2). Then it is clear that

P it-xp-Wr f{y+t)h1{y)dy = f~ hx(y)dy \° f(y+t)\t-x\r^dt

= f°° h1(y-x)dy \c~x f(y+t)\t\r-*dt.

Also, it follows from Theorem 3 that

I"""" Ht+yW^dt and j 0 0 f(t+y)\t\y-idt
J—Cj—X J—OO

are both members of Lr{ljr = \\p~a), so that

lim
l f c-»oo

f * W+yW-idt- r f(t+y)\t\r-idt
J — Cj^—X J— 00

= 0.

Hence since hx e Lr', the required result follows by letting cx and c tend to
oo in the above equation.

4. The inversion process

We shall now obtain results expressing the P and Q operators in terms
of the t/4o) and 0£° operators. As indicated in the introduction, / may then
be obtained by processes like those given in [4] or by the limiting processes
given below.
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THEOREM 8. Let f eLp, p > l,letl — ljp<a.< 1 and let a and b be
positive numbers. Then we have

(i) YPM'Hf)} = -@{a2Mb)(f)} = - i(sin^a) f*Qa+i(f)(t)dt,

(ii)

PROOF. Let /S satisfy 1 — 1 / / > < £ < 1. Then it follows from Remark 1
that yf{f)eL> and d^(f)eL', where s ^ q and 1/q = l / ^+ j8 - l . Now
if 0 < y < l - ( l / />+ /3 - l ) = 2-p-l/p, then

and 6><o»({^

can be obtained from Theorem 6. Hence by substituting for y)f] (/) and 0J,*1 (/)
from expressions similar to those given in Theorem 5 and using Theorems 2,
6 and 7, we have the following:

(3) = (sin &p) (cos
= (sin \ny) (cos

(4) = (sin 1^) (cos ^ ) L 1 _ y { ^ w

- (sin ITT/3)(COS htyW1-y{H1_

The inversion formulae of Theorem 8 follow from Theorem 4 by taking

1-y = /? = «.

REMARK 2. By letting a and b tend to 0 in Theorem 8 and applying the
results (1) and (2) of section 1, we have

Mm S*L>B{y(?>(/)}= - lim © J ^
/J\ o,6-»0+ o,6-»0+

lim nalMi)(f)}= lim 0i°Ja
/jj\ o, 6-.0+ a,b->0+
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