ON INTEGRAL OPERATORS ASSOGIATED WITH POISSON TRANSFORMS
 AND THE OPERATOR $\boldsymbol{H}_{\boldsymbol{\alpha}}$

G. O. OKIKIOLU

(Received 23 July 1965)

1. Introduction

In this paper we study certain operators allied to the Poisson operator and the transforms $H_{\alpha}(f)$ considered by the author in [2]. We define the integrals $\psi_{\alpha}^{(a)}(f)$ and $\theta_{\alpha}^{(a)}(f)$ as follows:

$$
\begin{aligned}
\psi_{\alpha}^{(a)}(f)(x) & =\frac{1}{\varphi(1-\alpha)} \int_{-\infty}^{\infty} f(t+x) \frac{\sin \left(\alpha \tan ^{-1} t / a\right)}{\left(a^{2}+t^{2}\right)^{\frac{1}{2} \alpha}} d t \\
\theta_{\alpha}^{(a)}(f)(x) & =\frac{1}{\varphi(1-\alpha)} \int_{-\infty}^{\infty} f(t+x) \frac{\cos \left(\alpha \tan ^{-1} t / a\right)}{\left(a^{2}+t^{2}\right)^{\frac{1}{2} \alpha}} d t
\end{aligned}
$$

where $\varphi(\alpha)=2 \Gamma(\alpha) \sin \frac{1}{2} \pi \alpha$, and the principal value of $\tan ^{-1} x$ (lying between $-\frac{1}{2} \pi$ and $\frac{1}{2} \pi$) is taken throughout. Further, we define the integrals $\Psi_{a}^{(a)}(f)$ and $\Theta_{a}^{(a)}(f)$ which will be employed later in obtaining inversion processes for $\psi_{\alpha}^{(a)}$ and $\theta_{\alpha}^{(a)}$. We have

$$
\begin{aligned}
& \Psi_{\alpha}^{(a)}(f)(x)=\frac{1}{\varphi(1-\alpha)} \int_{-\infty}^{\infty} f(t)\left\{\frac{\sin \left(\alpha \tan ^{-1}(t-x) / a\right)}{\left(a^{2}+(t-x)^{2}\right)^{\frac{1}{2} \alpha}}-\frac{\sin \left(\alpha \tan ^{-1} t / a\right)}{\left(a^{2}+t^{2}\right)^{\frac{1}{2} \alpha}}\right\} d t, \\
& \Theta_{\alpha}^{(a)}(f)(x)=\frac{1}{\varphi(1-\alpha)} \int_{-\infty}^{\infty} f(t)\left\{\frac{\cos \left(\alpha \tan ^{-1}(t-x) / a\right)}{\left(a^{2}+(t-x)^{2}\right)^{\frac{1}{2} \alpha}}-\frac{\cos \left(\alpha \tan ^{-1} t / a\right)}{\left(a^{2}+t^{2}\right)^{\frac{1}{2} \alpha}}\right\} d t .
\end{aligned}
$$

The Poisson operator and its "conjugate" are given respectively by

$$
P_{a}(f)(x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^{2}+(t-x)^{2}} f(t) d t
$$

and

$$
Q_{a}(f)(x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{t-x}{a^{2}+(t-x)^{2}} f(t) d t .
$$

Next we define the transform $H_{\alpha}(f)$ and operators related to it. These are given by

$$
\begin{aligned}
& H_{\alpha}(f)(x)=\frac{1}{\varphi(\alpha)} \int_{-\infty}^{\infty} \frac{|t-x|^{\alpha}}{t-x} f(t) d t \\
& K_{\alpha}(f)(x)=\frac{1}{\varphi(\alpha)} \int_{-\infty}^{\infty}|t-x|^{\alpha-1} f(t) d t \\
& L_{\alpha}(f)(x)=\frac{1}{\varphi(\alpha)} \int_{-\infty}^{\infty}\left\{\frac{|t-x|^{\alpha}}{t-x}-\frac{|t|^{\alpha}}{t}\right\} f(t) d t
\end{aligned}
$$

and

$$
M_{\alpha}(f)(x)=\frac{1}{\varphi(\alpha)} \int_{-\infty}^{\infty}\left\{|t-x|^{\alpha-1}-|t|^{\alpha-1}\right\} f(t) d t
$$

Finally we define the Hilbert transform by

$$
H(f)(x)=\frac{1}{\pi} \text { (P.V.) } \int_{-\infty}^{\infty} \frac{f(t)}{t-x} d t
$$

In what follows we shall use the known properties of the transforms $H_{\alpha}(f)$ and $K_{\alpha}(f)$ in obtaining identities involving the operators $\psi_{\alpha}^{(a)}(f)$ and $\theta_{\alpha}^{(a)}(f)$. These identities are then applied in deriving inversion processes for the new operators. In the formulae given here, the integrals $P_{a}(f)$ and $Q_{a}(f)$ are expressed in terms of $\psi_{\alpha}^{(a)}(f)$ and $\theta_{\alpha}^{(a)}(f)$. The function f may then be given in terms of the new operators by applying processes similar to those given in [4]. It will be observed that the relationship between the pair $\left(\psi_{\alpha}^{(a)}, \theta_{\alpha}^{(a)}\right)$ and the pair $\left(P_{a}, Q_{a}\right)$ is analogous to that between (H_{α}, K_{α}) and (H, I), where I denotes the identity operator.

The space $L^{p}(-\infty, \infty)$ will be denoted by L^{p}, the pair of numbers p and p^{\prime} will be connected by the equation $1 / p+1 / p^{\prime}=1$, and the norm

$$
\left(\int_{-\infty}^{\infty}|f(t)|^{p} d t\right)^{1 / p}
$$

will be denoted by $\|f\|_{p}$.

2. Preliminary results

In this section we obtain certain properties of the operators P_{a}, Q_{a}, H_{α} and K_{α} which will be applied later.

Theorem 1. Let $f \in L^{p}, p>1$. Then $P_{a}(f) \in L^{q}$ and $Q_{a}(f) \in L^{q}$ for $q \geqq p$. Further, for $g \in L^{q^{\prime}}$, we have

$$
\int_{-\infty}^{\infty} g(t) P_{a}(f)(t) d t=\int_{-\infty}^{\infty} f(t) P_{a}(g)(t) d t
$$

and

$$
\int_{-\infty}^{\infty} g(t) Q_{a}(f)(t) d t=-\int_{-\infty}^{\infty} f(t) Q_{a}(g)(t) d t
$$

Proof. It is obvious that the function $h_{1}(t)=a /\left(a^{2}+t^{2}\right)$ belongs to L^{q} for $q \geqq 1$. Hence by applying a well-known inequality (see Lemma β page 97 of [6]), we clearly have $P_{a}(f) \in L^{q}$ for $q \geqq p$. Now the function $h_{2}(t)=t /\left(a^{2}+t^{2}\right)$ belongs to L^{q} for $q>1$. Hence by applying the above inequality again, it follows that $Q_{a}(f) \in L^{q}$ for $q>p$. In Theorem 2 (below), we prove that $Q_{a}(f)=P_{a}\{H(f)\}$. This result together with Theorem 101 of [6] and the fact that $P_{a}(f) \in L^{p}$ shows that $Q_{a}(f) \in L^{p}$ also.

By the absolute convergence of the integrals involved, we clearly have

$$
\int_{-\infty}^{\infty} g(t) d t \int_{-\infty}^{\infty} f(x) h_{1}(x-t) d x=\int_{-\infty}^{\infty} f(x) d x \int_{-\infty}^{\infty} g(t) h_{1}(t-x) d t .
$$

This proves the first product formula. The second result can be obtained similarly by considering $h_{2}(t)$.

Theorem 2. Let $f \in L^{p}, p>1$, and a and b be positive numbers. Then we have
(i) $P_{a}\left\{P_{b}(f)\right\}=-Q_{a}\left\{Q_{b}(f)\right\}=P_{a+b}(f)$;
(ii) $\quad P_{a}\left\{Q_{b}(f)\right\}=Q_{a}\left\{P_{b}(f)\right\}=Q_{a+b}(f)$;
(iii) $P_{a}\{H(f)\}=Q_{a}(f)$ and (iv) $Q_{a}\{H(f)\}=-P_{a}(f)$.

Proof. The result $P_{a}\left\{P_{b}(f)\right\}=P_{a+b}(f)$ is a well-known property of Poisson transforms (see [5]). Since the other results of (i) and (ii) can be obtained by applying (iii) and (iv), we shall only prove the latter. It is known that if $a>0$ and

$$
h_{1}(t)=a /\left(a^{2}+t^{2}\right), \quad h_{2}(t)=t /\left(a^{2}+t^{2}\right),
$$

then

$$
H\left(h_{1}\right)(x)=-h_{2}(x) \quad \text { and } \quad H\left(h_{2}\right)(x)=h_{1}(x)
$$

(see [6] page 121). Hence by applying the product formula for Hilbert transforms (Theorem 102 of [6]), we clearly have

$$
\int_{-\infty}^{\infty} h_{1}(t-x) f(t) d t=-\int_{-\infty}^{\infty} h_{2}(t-x) H(f)(t) d t,
$$

and

$$
\int_{-\infty}^{\infty} h_{2}(t-x) f(t) d t=\int_{-\infty}^{\infty} h_{1}(t-x) H(f)(t) d t .
$$

This proves (iii) and (iv).
Note: By making suitable interchanges in the order of integration, it is not difficult to show that

$$
P_{a}\{H(f)\}=H\left\{P_{a}(f)\right\} \quad \text { and } \quad Q_{a}\{H(f)\}=H\left\{Q_{a}(f)\right\} .
$$

We note here the following convergence property of the operators P_{a} and Q_{a}.

$$
\begin{align*}
& \lim _{a \rightarrow 0+}\left\|f-P_{a}(f)\right\|_{p}=0 \tag{1}\\
& \lim _{a \rightarrow 0+}\left\|H(f)-Q_{a}(f)\right\|_{p}=0
\end{align*}
$$

In the next two theorems we state the results involving $H_{\alpha}(f)$ and $K_{\alpha}(f)$ to be applied in this paper.

Theorem 3. Let $f \in L^{p}, p>1$, let $0<\alpha<1 / p$ and let $1 / r=1 / p-\alpha$. Then $H_{\alpha}(f) \in L^{r}, K_{\alpha}(f) \in L^{r}$, and for $g \in L^{r^{\prime}}$, we have

$$
\int_{-\infty}^{\infty} g(t) H_{\alpha}(f)(t) d t=-\int_{-\infty}^{\infty} f(t) H_{\alpha}(g)(t) d t
$$

and

$$
\int_{-\infty}^{\infty} g(t) K_{\alpha}(f)(t) d t=\int_{-\infty}^{\infty} f(t) K_{\alpha}(g)(t) d t
$$

The resuls $H_{\alpha}(f) \in L^{r}$ and $K_{\alpha}(f) \in L^{r}$ follow as in the proofs of similar results for the Riemann-Liouville and Weyl fractional integrals (see Theorem 383 of [1]). The product formulae follow from the absolute convergence of the ingerals involved.

The inversion processes for $\psi_{\alpha}^{(a)}$ and $\theta_{\alpha}^{(a)}$ will be derived from corresponding results for H_{α} and K_{α}. The latter results have been established by the author (Theorem 6 of [3]), and we state them in the next theorem.

Theorem 4. Let $f \in L^{p}, p>1$, and let $0<\alpha<1 / p$. Then

$$
\begin{equation*}
L_{1-\alpha}\left\{K_{\alpha}(f)\right\}(x)=-\cot \frac{1}{2} \pi \alpha \int_{0}^{x} f(t) d t \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
M_{1-\alpha}\left\{H_{\alpha}(f)\right\}(x)=-\tan \frac{1}{2} \pi \alpha \int_{0}^{x} f(t) d t \tag{ii}
\end{equation*}
$$

Note: The results of Theorem 4 are alternative forms of the inversion process given in [2].

The following lemma will be applied later.
Lemma 1. Let y be a fixed number and let

$$
k_{1}(x)=|x-y|^{\alpha-1}-|x|^{\alpha-1}, \quad k_{2}(x)=\frac{|x-y|^{\alpha}}{x-y}-\frac{|x|^{\alpha}}{x}
$$

Then for $1-1 / q<\alpha<2-1 / q$, we have $k_{1} \in L^{q}$ and $k_{2} \in L^{q}$.
Proof. It is clearly sufficient to prove the result for either k_{1} or k_{2}. We consider k_{1} and assume without loss of generality that $y=1$. The integral

$$
\int_{0}^{1}|t-1|^{\alpha-1}-\left.|t|^{\alpha-1}\right|^{q} d t
$$

clearly converges if $(\alpha-1) q+1>0$ (i.e. if $\alpha>1-1 / q)$.

Now let

$$
I=\int_{1}^{\infty}\left|(t-1)^{\alpha-1}-t^{\alpha-1}\right|^{a} d t .
$$

On making obvious changes of variables in the integral, we have

$$
I=\int_{0}^{1}\left|\frac{(1-t)^{\alpha-1}-1}{t^{\alpha+2 / q-1}}\right|^{q} d t .
$$

Hence the integral I converges if its integrand is $O\left(t^{\gamma}\right)$ as $t \rightarrow 0$, where $\gamma+1>0$. Now

$$
\lim _{t \rightarrow 0} \frac{(1-t)^{\alpha-1}-1}{t^{\alpha-1+2 / q}}=\lim _{t \rightarrow 0} \frac{(1-\alpha)(1-t)^{\alpha-2}}{(\alpha-1+2 / q) t^{\alpha-2+2 / q}} .
$$

Hence $\gamma=-(\alpha-2+2 / q) q$, and this implies that $2-1 / q>\alpha$.

3. Representation theorems for $\psi_{\alpha}^{(a)}$ and $\theta_{\alpha}^{(a)}$

We shall now express $\psi_{\alpha}^{(a)}, \theta_{\alpha}^{(a)}, \Psi_{\alpha}^{(a)}$ and $\Theta_{\alpha}^{(a)}$ in terms of the Poisson operators and the H_{α}-transforms. The following lemmas will be employed in the proofs of the theorems.

Lemma 2. Let $h_{1}(t)=a /\left(a^{2}+t^{2}\right), h_{2}(t)=t /\left(a^{2}+t^{2}\right)$ and let $a>0$. Then we have
(i) $\quad H_{1-\alpha}\left(h_{1}\right)(x)=-\cot \frac{1}{2} \pi \alpha K_{1-\alpha}\left(h_{2}\right)(x)=-\Gamma(\alpha) \frac{\sin \left(\alpha \tan ^{-1} x / a\right)}{\left(a^{2}+x^{2}\right)^{\frac{1}{2} \alpha}}$,
(ii) $\quad H_{1-\alpha}\left(h_{2}\right)(x)=\cot \frac{1}{2} \pi \alpha K_{1-\alpha}\left(h_{1}\right)(x)=\Gamma(\alpha) \frac{\cos \left(\alpha \tan ^{-1} x / a\right)}{\left(a^{2}+x^{2}\right)^{\frac{1}{\alpha}}}$.

Proof. Let \hat{f} denote the Fourier transform of a function f. Then by proceeding as in the proof of the identity (5) of [2], it follows that if $f \in L^{2}$ and if $\hat{f} \in L$, then

$$
H_{\alpha}(f)(x)=-\frac{i}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{|t|^{1-\alpha}}{t} \hat{f}(t) e^{-i x t} d t
$$

The expression given here incorporates a correction in the sign of (5) of [2], and the redundant condition $f \in L$ is excluded. Also, by considering $f(x+t)+f(x-t)$ and proceeding similarly, we have

$$
K_{\alpha}(f)(x)=\frac{\cot \frac{1}{2} \pi \alpha}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}|t|-\alpha \hat{f}(t) e^{-i x t} d t .
$$

Now it is well-known that

$$
\hat{h}_{1}(x)=\left\lvert\, \frac{\pi}{2} e^{-a|x|} \quad\right. \text { and } \left.\quad h_{2}(x)=i ل \frac{\pi}{2} e^{-a|x|}|x| \right\rvert\, x .
$$

Hence by using the identities given above, we have

$$
\begin{aligned}
H_{1-\alpha}\left(h_{1}\right)(x)=-\left(\cot \frac{1}{2} \pi \alpha\right) K_{1-\alpha}\left(h_{2}\right)(x) & =-\frac{1}{2} i \int_{-\infty}^{\infty} \frac{|t|^{\alpha}}{t} e^{-a|t|} e^{-i x t} d t \\
& =-\int_{0}^{\infty} t^{\alpha-1} e^{-a t} \sin x t d t \\
H_{1-\alpha}\left(h_{2}\right)(x)=\left(\cot \frac{1}{2} \pi \alpha\right) K_{1-\alpha}\left(h_{1}\right)(x) & =\frac{1}{2} \int_{-\infty}^{\infty}|t|^{\alpha-1} e^{-a|t|} e^{-i x t} d t \\
& =\int_{0}^{\infty} t^{\alpha-1} e^{-a t} \cos x t d t
\end{aligned}
$$

The integrals can now be evaluated by known methods (e.q. contour integration) to give the required result.

Lemma 3. Let y be a fixed real number, let $a>0$ and let

$$
k(x)=\frac{|x-y|^{1-\alpha}}{x-y}-\frac{|x|^{1-\alpha}}{x}, \quad k_{0}(x)=|x-y|^{-\alpha}-|x|^{-\alpha}
$$

Then

$$
\begin{aligned}
P_{a}(k)(x) & =-\left(\cot \frac{1}{2} \pi \alpha\right) Q_{a}\left(k_{0}\right)(x) \\
& =\frac{\Gamma(\alpha) \varphi(1-\alpha)}{\pi}\left\{\frac{\sin \left(\alpha \tan ^{-1}(x-y) / a\right)}{\left(a^{2}+(x-y)^{2}\right)^{\frac{1}{2} \alpha}}-\frac{\sin \left(\alpha \tan ^{-1} x / a\right)}{\left(a^{2}+x^{2}\right)^{\frac{1}{2} \alpha}}\right\} \\
Q_{a}(k)(x) & =\left(\cot \frac{1}{2} \pi \alpha\right) P_{a}\left(k_{0}\right)(x) \\
& =\frac{\Gamma(\alpha) \varphi(1-\alpha)}{\pi}\left\{\frac{\cos \left(\alpha \tan ^{-1}(x-y) / a\right)}{\left(a^{2}+(x-y)^{2}\right)^{\frac{1}{2} \alpha}}-\frac{\cos \left(\alpha \tan ^{-1} x / a\right)}{\left(a^{2}+x^{2}\right)^{\frac{1}{2} \alpha}}\right\} .
\end{aligned}
$$

Proof. The results of Lemma 2 can be written in the form

$$
\begin{aligned}
\frac{1}{\varphi(1-\alpha)} \int_{-\infty}^{\infty} \frac{|t-x|^{1-\alpha}}{t-x} \frac{a}{a^{2}+t^{2}} d t & =-\frac{\cot \frac{1}{2} \tau \alpha}{\varphi(1-\alpha)} \int_{-\infty}^{\infty}|t-x|^{\alpha-1} \frac{t}{a^{2}+t^{2}} d t \\
& =-\Gamma(\alpha) \frac{\sin \left(\alpha \tan ^{-1} x / a\right)}{\left(a^{2}+x^{2}\right)^{\frac{1}{2} \alpha}} \\
\frac{1}{\varphi(1-\alpha)} \int_{-\infty}^{\infty} \frac{|t-x|^{1-\alpha}}{t-x} \frac{t}{a^{2}+t^{2}} d t & =\frac{\cot \frac{1}{2} \pi \alpha}{\varphi(1-\alpha)} \int_{-\infty}^{\infty}|t-x|^{\alpha-1} \frac{a}{a^{2}+t^{2}} d t \\
& =\Gamma(\alpha) \frac{\cos \left(\alpha \tan ^{-1} x / a\right)}{\left(a^{2}+x^{2}\right)^{\frac{1}{2} \alpha}}
\end{aligned}
$$

The results of Lemma 3 are easily deduced from these identities.

Theorem 5. Let $f \in L^{p}, p>1$, let $1-1 / p<\alpha<1$ and let $a>0$. Then

$$
\begin{equation*}
\psi_{\alpha}^{(a)}(f)=\left(\sin \frac{1}{2} \pi \alpha\right) P_{a}\left\{H_{1-\alpha}(f)\right\}=\left(\cos \frac{1}{2} \pi \alpha\right) Q_{a}\left\{K_{1-\alpha}(f)\right\} \tag{i}
\end{equation*}
$$

$$
\theta_{\alpha}^{(a)}(f)=-\left(\sin \frac{1}{2} \pi \alpha\right) Q_{a}\left\{H_{1-\alpha}(f)\right\}=\left(\cos \frac{1}{2} \pi \alpha\right) P_{a}\left\{K_{1-\alpha}(f)\right\}
$$

Proof. Let $h_{1}(x)$ and $h_{2}(x)$ be defined as in Lemma 2. Since $0<1-\alpha$ $<1 / p$, by applying the product formulae of Theorem 3 , we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h_{1}(t-x) H_{1-\alpha}(f)(t) d t=-\int_{-\infty}^{\infty} f(t) H_{1-\alpha}\left(h_{1}\right)(t-x) d t \\
& \int_{-\infty}^{\infty} h_{1}(t-x) K_{1-\alpha}(f)(t) d t=\int_{-\infty}^{\infty} f(t) K_{1-\alpha}\left(h_{1}\right)(t-x) d t
\end{aligned}
$$

The results

$$
\psi_{\alpha}^{(a)}(f)=\left(\sin \frac{1}{2} \pi \alpha\right) P_{a}\left\{H_{1-\alpha}(f)\right\} \quad \text { and } \quad \theta_{\alpha}^{(a)}(f)=\left(\cos \frac{1}{2} \pi \alpha\right) P_{a}\left\{K_{1-\alpha}(f)\right\}
$$

are obtained from these integrals by applying Lemma 2.
The other results of the theorem are obtained by applying the product formula with $h_{2}(x)$ in place of $h_{1}(x)$.

Remark 1. From the results of Theorems 2 and 3, it follows by applying the identities of Theorem 5, that if the conditions of the latter theorem are satisfied, then

$$
\psi_{\alpha}^{(a)}(f) \in L^{s} \quad \text { and } \quad \theta_{\alpha}^{(a)}(f) \in L^{s}
$$

where $s \geqq q$ and $1 / q=1 / p+\alpha-1$. Also, by the absolute convergence of the integrals involved, or by applying Theorems 1 and 3 , we have

$$
\int_{-\infty}^{\infty} g(t) \psi_{\alpha}^{(a)}(f)(t) d t=-\int_{-\infty}^{\infty} f(t) \psi_{\alpha}^{(a)}(g)(t) d t
$$

and

$$
\int_{-\infty}^{\infty} g(t) \theta_{\alpha}^{(a)}(f)(t) d t=\int_{-\infty}^{\infty} f(t) \theta_{\alpha}^{(a)}(g)(t) d t
$$

Theorem 6. Let $f \in L^{p}, p>1$, let $0<\alpha<1-1 / p$ and let $a>0$. Then

$$
\begin{equation*}
\Psi_{\alpha}^{(a)}(f)=\left(\sin \frac{1}{2} \pi \alpha\right) L_{1-\alpha}\left\{P_{a}(f)\right\}=\left(\cos \frac{1}{2} \pi \alpha\right) M_{1-\alpha}\left\{Q_{a}(f)\right\} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\Theta_{\alpha}^{(a)}(f)=-\left(\sin \frac{1}{2} \pi \alpha\right) L_{1-\alpha}\left\{Q_{a}(f)\right\}=\left(\cos \frac{1}{2} \pi \alpha\right) M_{1-\alpha}\left\{P_{a}(f)\right\} . \tag{ii}
\end{equation*}
$$

Proof. Let $k(x)$ and $k_{0}(x)$ be defined as in Lemma 3. From Lemma 1, it follows that $k \in L^{\boldsymbol{p}^{\prime}}$ and $k_{0} \in L^{\boldsymbol{p}^{\prime}}$ if we have

$$
1-1 / p^{\prime}<1-\alpha<2-1 / p^{\prime} \text { (i.e. }-1 / p<\alpha<1-1 / p \text {) }
$$

If we also have $\alpha>0$, then the functions $P_{a}(k), P_{a}\left(k_{0}\right), Q_{a}(k)$ and $Q_{a}\left(k_{0}\right)$ are given by Lemma 3. Hence by applying the product formulae of Theorem l, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} k(t) P_{a}(f)(t) d t & =\int_{-\infty}^{\infty} f(t) P_{a}(k)(t) d t \\
\int_{-\infty}^{\infty} k(t) Q_{a}(f)(t) d t & =-\int_{-\infty}^{\infty} f(t) Q_{a}(k)(t) d t
\end{aligned}
$$

The results

$$
\Psi_{\alpha}^{(a)}(f)=\left(\sin \frac{1}{2} \pi \alpha\right) L_{1-\alpha}\left\{P_{a}(f)\right\} \quad \text { and } \quad \Theta_{\alpha}^{(a)}(f)=-\left(\sin \frac{1}{2} \pi \alpha\right) L_{1-\alpha}\left\{Q_{a}(f)\right\}
$$

now follow by applying Lemma 3. The other results of the theorem are obtained by considering $k_{0}(x)$ in place of $k(x)$.

In the next section we shall require the result that the operators P_{a} and Q_{a} commute with $H_{1-\alpha}$ and $K_{1-\alpha}$. Hence we prove

Theorem 7. Let $f \in L^{p}, p>1$ and let $0<\gamma<1 / p$. Then

$$
\begin{align*}
H_{\gamma}\left\{P_{a}(f)\right\}=P_{a}\left\{H_{\gamma}(f)\right\}, & \text { (ii) } H_{\gamma}\left\{Q_{a}(f)\right\}=Q_{a}\left\{H_{\gamma}(f)\right\} \tag{i}\\
K_{\gamma}\left\{P_{a}(f)\right\}=P_{a}\left\{K_{\gamma}(f)\right\}, & \text { (iv) } K_{\gamma}\left\{Q_{a}(f)\right\}=Q_{a}\left\{K_{\gamma}(f)\right\} \tag{iii}
\end{align*}
$$

Proof. It is clearly sufficient to consider any one of the four identities. When one of them has been established, the proofs of the others follow similarly. Consider (iii), let c and c_{1} be numbers such that

$$
-\infty<-c_{1}<c<\infty
$$

and let $h_{1}(x)=a /\left(a^{2}+x^{2}\right)$. Then it is clear that

$$
\begin{aligned}
\int_{-c_{1}}^{c}|t-x|^{\gamma-1} d t \int_{-\infty}^{\infty} f(y+t) h_{1}(y) d y & =\int_{-\infty}^{\infty} h_{1}(y) d y \int_{-c_{1}}^{c} f(y+t)|t-x|^{\gamma-1} d t \\
& =\int_{-\infty}^{\infty} h_{1}(y-x) d y \int_{-c_{1}-x}^{c-x} f(y+t)|t|^{\gamma-1} d t
\end{aligned}
$$

Also, it follows from Theorem 3 that

$$
\int_{-c_{1}-x}^{c-x} f(t+y)|t|^{\gamma-1} d t \quad \text { and } \quad \int_{-\infty}^{\infty} f(t+y)|t|^{\gamma-1} d t
$$

are both members of $L^{r}(1 / r=1 / p-\alpha)$, so that

$$
\lim _{c_{1}, c \rightarrow \infty}\left\|\int_{-c_{1}-x}^{c-x} f(t+y)|t|^{\gamma-1} d t-\int_{-\infty}^{\infty} f(t+y)|t|^{\gamma-1} d t\right\|_{\tau}=0
$$

Hence since $h_{1} \in L^{r^{\prime}}$, the required result follows by letting c_{1} and c tend to ∞ in the above equation.

4. The inversion process

We shall now obtain results expressing the P and Q operators in terms of the $\psi_{\alpha}^{(a)}$ and $\theta_{\alpha}^{(a)}$ operators. As indicated in the introduction, f may then be obtained by processes like those given in [4] or by the limiting processes given below.

Theorem 8. Let $f \in L^{p}, p>1$, let $1-1 / p<\alpha<1$ and let a and b be positive numbers. Then we have

$$
\begin{align*}
& \Psi_{1-\alpha}^{(a)}\left\{\psi_{\alpha}^{(b)}(f)\right\}=-\Theta_{1-\alpha}^{(a)}\left\{\theta_{\alpha}^{(b)}(f)\right\}=-\frac{1}{2}(\sin \pi \alpha) \int_{0}^{x} Q_{a+b}(f)(t) d t \tag{i}\\
& \Psi_{1-\alpha}^{(a)}\left\{\theta_{\alpha}^{(b)}(f)\right\}=\Theta_{1-\alpha}^{(a)}\left\{\psi_{\alpha}^{(b)}(f)\right\}=-\frac{1}{2}(\sin \pi \alpha) \int_{0}^{x} P_{a+b}(f)(t) d t
\end{align*}
$$

Proof. Let β satisfy $1-1 / p<\beta<1$. Then it follows from Remark 1 that $\psi_{\beta}^{(b)}(f) \in L^{s}$ and $\theta_{\beta}^{(b)}(f) \in L^{s}$, where $s \geqq q$ and $1 / q=1 / p+\beta-1$. Now if $0<\gamma<1-(1 / p+\beta-1)=2-\beta-1 / p$, then

$$
\Psi_{\gamma}^{(a)}\left\{\psi_{\beta}^{(b)}(f)\right\}, \quad \Psi_{\gamma}^{(a)}\left\{\theta_{\beta}^{(b)}(f)\right\}, \quad \Theta_{\gamma}^{(a)}\left\{\theta_{\beta}^{(b)}(f)\right\} \quad \text { and } \quad \Theta_{\gamma}^{(a)}\left(\left\{\psi_{\beta}^{(b)}(f)\right\}\right.
$$

can be obtained from Theorem 6. Hence by substituting for $\psi_{\beta}^{(b)}(f)$ and $\theta_{\beta}^{(b)}(f)$ from expressions similar to those given in Theorem 5 and using Theorems 2, 6 and 7 , we have the following:

$$
\begin{align*}
\Psi_{\gamma}^{(a)}\left\{\psi_{\beta}^{(b)}(f)\right\} & =-\Theta_{\gamma}^{(a)}\left\{\theta_{\beta}^{(b)}(f)\right\} \\
& =\left(\sin \frac{1}{2} \pi \beta\right)\left(\cos \frac{1}{2} \pi \gamma\right) M_{1-\gamma}\left\{H_{1-\beta}\left(Q_{a+b}(f)\right)\right\} \tag{3}\\
& =\left(\sin \frac{1}{2} \pi \gamma\right)\left(\cos \frac{1}{2} \pi \beta\right) L_{1-\gamma}\left\{K_{1-\beta}\left(Q_{a+b}(f)\right)\right\} \\
\Psi_{\gamma}^{(a)}\left\{\theta_{\beta}^{(b)}(f)\right\} & =\Theta_{\gamma}^{(a)}\left\{\psi_{\beta}^{(b)}(f)\right\} \\
& =\left(\sin \frac{1}{2} \pi \gamma\right)\left(\cos \frac{1}{2} \pi \beta\right) L_{1-\gamma}\left\{K_{1-\beta}\left(P_{a+b}(f)\right)\right\} \tag{4}\\
& =\left(\sin \frac{1}{2} \pi \beta\right)\left(\cos \frac{1}{2} \pi \gamma\right) M_{1-\gamma}\left\{H_{1-\beta}\left(P_{a+b}(f)\right)\right\} .
\end{align*}
$$

The inversion formulae of Theorem 8 follow from Theorem 4 by taking

$$
1-\gamma=\beta=\alpha
$$

Remark 2. By letting a and b tend to 0 in Theorem 8 and applying the results (1) and (2) of section 1 , we have

$$
\begin{align*}
\lim _{a, b \rightarrow 0+} \Psi_{1-\alpha}^{(a)}\left\{\psi_{\alpha}^{(b)}(f)\right\} & =-\lim _{a, b \rightarrow 0+} \Theta_{1-\alpha}^{(a)}\left\{\theta_{\alpha}^{(b)}(f)\right\} \tag{i}\\
& =-\frac{1}{2}(\sin \pi \alpha) \int_{0}^{x} H(f)(t) d t
\end{align*}
$$

$$
\begin{align*}
\lim _{a, b \rightarrow 0+} \Psi_{1-\alpha}^{(a)}\left\{\theta_{\alpha}^{(b)}(f)\right\} & =\lim _{a, b \rightarrow 0+} \Theta_{1-\alpha}^{(a)}\left\{\psi_{\alpha}^{(b)}(f)\right\} \tag{ii}\\
& =-\frac{1}{2}(\sin \pi \alpha) \int_{0}^{x} f(t) d t
\end{align*}
$$

References

[1] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities (Cambridge University Press, 1934).
[2] G. O. Okikiolu, A Generalisation of the Hilbert transform, Journal London Math. Soc. 40 (1965), $27-30$.
[3] G. O. Okikiolu, Fourier transforms and the operator H_{α}^{\prime}, Proc. Cambridge Phil. Soc. 62 (1966) 73-78.
[4] H. Pollard, The Poisson transformation, Trans. A merican Math. Soc. 78 (1955), 541-550.
[5] H. Pollard, The semi-group property of Poisson transformation and Snow's inversion formula, Proc. American Math. Soc. 14 (1963), 285-290.
[6] E. C. Titchmarsh, The theory of Fourier integrals (Oxford Clarendon Press, 1948).
Mathematics Division
University of Sussex, Brighton,
England
and
University of East Anglia
Norwich

