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A database of number fields

John W. Jones and David P. Roberts

Abstract

We describe an online database of number fields which accompanies this paper. The database
centers on complete lists of number fields with prescribed invariants. Our description here focuses
on summarizing tables and connections to theoretical issues of current interest.

1. Introduction

A natural computational problem is to completely determine the set K(G,D) of all degree-n
number fields K with a given Galois group G ⊆ Sn and a given discriminant D. Many
papers have solved instances of this problem, some relatively early contributions being
[3, 16, 32, 36].

This paper describes our online database of number fields at http://hobbes.la.asu.edu/
NFDB/. This database gives many complete determinations of K(G,D) in small degrees
n, collecting previous results and going well beyond them. Our database complements the
Klüners–Malle online database [25], which covers more groups and signatures, but is not as
focused on completeness results and the behavior of primes. Like the Klüners–Malle database,
our database is searchable and intralinked.

Section 2 explains in practical terms how one can use the database. Section 3 explains
some of the internal workings of the database, including how it keeps track of completeness.
Section 4 presents tables summarizing the contents of the database in degrees n 6 11, which
is the setting of most of our completeness results. The section also briefly indicates how fields
are chosen for inclusion in the database and describes connections with previous work.

The remaining sections each summarize an aspect of the database, and explain how the
tabulated fields shed some light on theoretical issues of current interest. As a matter of
terminology, we incorporate the signature of a field into our notion of discriminant, considering
the formal product D = −s|D| to be the discriminant of a field with s complex places and
absolute discriminant |D|.

Section 5 focuses on the complete list of all 11 279 quintic fields with Galois group G = S5 and
discriminant of the form −s2a3b5c7d. The summarizing table here shows that the distribution
of discriminants conforms moderately well to the mass heuristic of [5]. Section 6 summarizes
lists of fields for more nonsolvable groups, but now with attention restricted to discriminants
of the form −spaqb with p < q primes.

Sections 7 and 8 continue to pursue cases with D = −spaqb, but now for octic groups G of
2-power order. Section 7 treats the cases p > 2 and discusses connections to tame maximal
nilpotent extensions as studied in [9, 10]. Section 8 treats the case p = 2 and takes a first step
towards understanding wild ramification in some of the nilpotent extensions studied in [26].

Sections 9 and 10 illustrate progress in the database on a large project initiated in [21]. The
project is to completely classify Galois number fields with root discriminant |D|1/n at most the
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Serre–Odlyzko constant Ω := 8πeγ ≈ 44.76. Upper bounds on degrees coming from analysis
of Dedekind zeta functions [29, 30] play a prominent role. The database gives many solvable
fields satisfying the root discriminant bound. In this paper, for brevity, we restrict attention
to nonsolvable fields, where, among other interesting things, modular forms [8, 35] sometimes
point the way to explicit polynomials.

The database we are presenting here has its origin in posted versions of the complete tables
of our earlier work [18]. Other complete lists of fields were posted sporadically in the next
ten years, while most fields and the new interface are recent additions. Results from the
predecessors of the present database have occasionally been used as ingredients of formal
arguments, as in for example [12, 15, 31]. The more common use of our computational results
has been to guide investigations into number fields in a more general way. With our recent
enhancements and this accompanying paper, we aim to increase the usefulness of our work to
the mathematical community.

2. Using the database

A simple way to use the database is to request K(G,D) for a particular (G,D). A related
but more common way is to request the union of these sets for varying G and/or D. Implicit
throughout this paper and the database is that fields are always considered up to isomorphism.
As a very simple example, asking for quartic fields with any Galois group G and discriminant
D satisfying |D| 6 250 returns Table 2.1.

In general, the monic polynomial f(x) ∈ Z[x] in the last column defines the field of its
line, via K = Q[x]/f(x). It is standardized by requiring the sum of the absolute squares
of its complex roots to be minimal, with ties broken according to the conventions of Pari’s
polredabs. Note that the database, like its local analog [20], is organized around non-Galois
fields. However, on a given line, some of the information refers to a Galois closure Kg.

The Galois group G = Gal(Kg/Q) is given by its common name, as in Table 2.1, or its T -
name, as in [11, 37, 38], if it does not have a very widely accepted common name. Information
about the group, essential for intelligibility in higher degrees, is obtainable by clicking on the
group. For example, the database reports 10T42 as having structure A2

5.4 and hence order
6024 = 14 400; moreover, it is isomorphic to 12T278, 20T457, and 20T461.

Continuing to explain Table 2.1, the column D prints −s|D|, where s is the number of
complex places and |D| is given in factored form. This format treats the infinite completion
Q∞ = R on a parallel footing with the p-adic completions Qp. If n 6 11, then clicking on any
appearing prime p links into the local database of [20], thereby giving a detailed description

Table 2.1. Results of a query for quartic fields with absolute discriminant less than or equal to
250, sorted by root discriminant.

Results below are proven complete

rd(K) grd(K) D h G Polynomial

3.29 6.24 −232131 1 D4 x4 − x3 − x2 + x+ 1

3.34 3.34 −253 1 C4 x4 − x3 + x2 − x+ 1

3.46 3.46 −22432 1 V4 x4 − x2 + 1

3.71 6.03 −23371 1 D4 x4 − x3 + 2x+ 1

3.87 3.87 −23252 1 V4 x4 − x3 + 2x2 + x+ 1

3.89 15.13 −22291 1 S4 x4 − x+ 1
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of the p-adic algebra Kp = Qp[x]/f(x). This automatic p-adic analysis also often works in
degrees n > 11.

The root discriminant rd(K) = |D|1/n is placed in the first column, since one commonly
wants to sort by root discriminant. Here and later we often round real numbers to the nearest
hundredth without further comment. When it is implemented, our complete analysis at all
ramifying primes p automatically determines the Galois root discriminant of K, meaning the
root discriminant of a Galois closure Kg. The second column gives this more subtle invariant
grd(K). Clicking on the entry gives the exact form and its source. Often it is better to sort
by this column, as fields with the same Galois closure are then put next to each other. As an
example, quartic fields with G = D4 come in twin pairs with the same Galois closure. The
twin Kt of the first listed field K in Table 2.1 is off the table because |D(Kt)| = 31132 = 507;
however, grd(Kt) = grd(K) = 31/2131/2 ≈ 6.24.

Class numbers are given in the column h, factored as h1 . . . hd, where the class group is a
product of cyclic groups of size hi. There is a toggle button, so that one can alternatively
receive narrow class numbers in the same format. To speed up the construction of the table,
class numbers were computing assuming the generalized Riemann hypothesis (GRH); they
constitute the only part of the database that is conditional. Theoretical facts about class
groups can be seen repeatedly in various parts of the database. For example, let n be an odd
positive integer and consider a degree-n field K with dihedral Galois group Dn. Let L be its
Galois closure with unique quadratic subfield F . Let p be a prime not dividing 2n and consider
the p-parts of all class groups in question. Then, decomposing via the natural Dn action on
Clp(L) and using the triviality of Clp(Q), one gets

Clp(L) ∼= Clp(K)2 × Clp(F ). (2.1)

One explicit example comes from the unique D7 field K with Galois root discriminant
19871/2 ∼= 44.58. Illustrating (2.1), the database reports Cl(L) = 13 · 13, Cl(K) = 13, and
Cl(F ) = 7.

When the response to a query is known to be complete, the table is headed by the
completeness statement shown in Table 2.1. As emphasized in the introduction, keeping track
of completeness is one of the most important features of the database. The completeness
statement often reflects a very long computational proof, even if the table returned is very
short.

There are many other ways to search the database, mostly connected to the behavior of
primes. For example, one can restrict the search to find fields with restrictions on ordp(D) or
one can search directly for fields with Galois root discriminant in a given range. On the other
hand, there are some standard invariants of fields that the database does not return, such as
Frobenius partitions and regulators. The database does allow users to download the list of
polynomials returned, so that it can be used as a starting point for further investigation.

3. Internal structure

The website needs to be able to search and access a large amount of information. It uses a
fairly standard architecture: data is stored in a MySQL database and web pages are generated
by programs written in Perl.

A MySQL database consists of a collection of tables, where each table is analogous to a single
spreadsheet with columns representing the types of data being stored. We use data types for
integers, floating point numbers, and strings, all of which come in various sizes, that is, amount
of memory devoted to a single entry. When searching, one can use equalities and inequalities
where strings are ordered lexicographically.
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When a user requests number fields, the Perl program takes the following steps.
(1) Construct and execute a MySQL query to pull fields from the database.
(2) Filter out fields which satisfy all of the user’s requirements when needed (see below).
(3) Check completeness results known to the database.
(4) Generate the output web page.
The main MySQL table has one row for each field. There are columns for each piece of

information indicated by the input boxes in the top portion of the search screen, plus columns
for the defining polynomial (as a string), and an internal identifier for the field. The only
unusual aspect of this portion of the database is how discriminants are stored and searched. The
difficulty stems from the fact that many number fields in the database have discriminants which
are too large to store in MySQL as integers. An option would be to store the discriminants
as strings, but then it would be difficult to search for ranges: string comparisons in MySQL
are lexicographic, so ‘11’ comes before ‘4’. Our solution is to store absolute discriminants |D|
as strings, but prepend the string with four digits which give blog10(|D|)c, padded on the left
with zeros as needed. So, 4 is stored as ‘00004’, 11 is ‘000111’, etc. In this way we can use
strings to store each discriminant in its entirety, but searches for ranges work correctly.

The MySQL table of number fields also has a column for the list of all primes which ramify
in the field, stored as a string with a separator between primes. This is used to accelerate
searches when it is clear from the search criteria that only a small finite list of possibilities can
occur, for example when the user has checked the box that ‘Only listed primes can ramify’.

Information on ramification of specific primes can be input in the bottom half of the
search inputs. To aid in searches involving these inputs, we have a second MySQL table,
the ramification table, which stores a list of triples. A triple (field identifier, p, e) indicates that
pe exactly divides the discriminant of the corresponding field. The most common inputs to
the bottom half of the search page work well with this table, namely those which list specific
primes and allowable discriminant exponents. However, the search boxes allow much more
general inputs, that is, where a range of values is allowed for the prime and the discriminant
exponent allows both 0 and positive values. It is possible to construct MySQL queries for
inputs of this sort, but they are complicated, involve subqueries, and are relatively slow.
Moreover, a search condition of this type typically rules out relatively few number fields. If
a user does make such a query, we do not use the information at this stage. Instead, we
invoke Step (2) above to select fields from the MySQL query which satisfy these additional
requirements.

The database supports a variety of different types of completeness results. Complicating
matters is that these results can be interrelated. We use four MySQL tables for storing ways
in which the data is complete. In describing them, G denotes the Galois group of a field, n is
the degree, s is the number of complex places, and |D| is the absolute discriminant, as above.
The tables are:
(A) store (n, s,B) to indicate that the database is complete for fields with the given n and s

such that |D| 6 B;
(B) store (n, s,G,B) to indicate that the database is complete for fields with the given n, s,

and G such that |D| 6 B;
(C) store (n, S, L), where S is a list of primes and L is a list of Galois groups, to indicate

that the database is complete for degree-n fields unramified outside S for each Galois
group in L;

(D) store (n,G,B) to indicate that the database is complete for degree-n fields K with Galois
group G such that grd(K) 6 B.

In each case, database entries include the degree, so individual Galois groups can be stored
by their T -number (a small integer). In the third case, we store the list L by an integer whose
bits indicate which T -numbers are included in the set. For example, there are 50 T -numbers
in degree 8, so a list of Galois groups in that degree is a subset of S ⊆ {1, . . . , 50}, which we
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represent by the integer
∑
t∈S 2t−1. These integers are too large to store in the database as

integers, so they are stored as strings and converted to multiprecision integers in Perl. The list
of primes in the third table is simply stored as a string consisting of the primes and separating
characters.

To start checking for completeness, we first check that there are only finitely many degrees
involved, and that the search request contains an upper bound on at least one of: |D|, rd(K),
grd(K), or the largest ramifying prime. We then loop over the degrees in the user’s search.
We allow for the possibility that a search is known to be complete by some combination of
completeness criteria. So, throughout the check, we maintain a list of Galois groups which need
to be checked, and the discriminant values to check. If one check shows that some of the Galois
groups for the search are known to be complete, they are removed from the list. If that list
drops to being empty, then the search in that degree is known to be complete. Discriminant
values are treated analogously.

For each degree, bounds on |D| and rd(K) are clearly equivalent. Less obviously, bounds
between rd(K) and grd(K) are related. In particular, we always have rd(K) 6 grd(K), but also
have, for each Galois group, grd(K) 6 rd(K)α(G), where α(G) is a rational number depending
only on G (see [23]).

We then perform the following checks.
– We compare the request with Tables A, B, and D for discriminant bound restrictions.
– Remove Galois groups from the list to be checked based on grd.
– If there are at most ten discriminants not accounted for, check each individually against

Table C.
– If there is a bound on the set of ramifying primes, which could arise from the user

checking ‘Only these primes ramify’, or from a bound on the maximum ramifying prime,
check Table C.

4. Summarizing tables

The tables of this section summarize all fields in the database of degree less than or equal to
eleven. Numbers in tables which are known to be correct are given in regular type. Numbers
which are merely the bounds which come from perhaps incomplete lists of fields are given in
italics. The table has a line for each group nTj, sorted by degree n and the index j. A more
descriptive name is given in the second column.

The next four columns represent a main focus of the database, complete lists of fields ramified
within a given set of primes. As a matter of notation, we write for example K(G,−∗p∗q∗) to
denote the union of all K(G,−spaqb). The database contains completeness results for many
other prime combinations beyond those given in the table; §§ 5–8 give examples of these further
completeness results.

Degree 2

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 2 7 7 3 15 1.73 1.73 1220 1 216 009

Degree 3

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 3 1 0 1 1 3.66 3.66 47 1015

2 S3 8 1 5 31 2.84 4.80 610 856 522
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Degree 4

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 4 4 12 2 24 3.34 3.34 228 10 078

2 22 7 7 1 35 3.46 3.46 2421 52 559

3 D4 28 24 0 176 3.29 6.03 2850 1 228 701

4 A4 1 0 0 1 7.48 10.35 59 28 786

5 S4 22 3 1 143 3.89 13.56 527 720 093

Degree 5

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 5 0 1 1 1 6.81 6.81 7 181

2 D5 0 4 2 8 4.66 6.86 146 11 595

3 F5 1 19 7 82 8.11 11.08 102 1646

4 A5 0 5 6 62 7.14 18.70 78 98 138

5 S5 5 38 22 1353 4.38 24.18 192 898 183

Degree 6

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 6 7 0 3 15 5.06 5.06 399 5291

2 S3 8 1 5 31 4.80 4.80 610 8353

3 D6 48 6 10 434 4.93 8.06 3590 149 303

4 A4 1 0 0 1 7.32 10.35 59 5219

5 3 o 2 8 0 5 31 4.62 10.06 254 8207

6 2 o 3 7 0 0 15 5.61 12.31 243 176 809

7 S+
4 22 3 1 143 5.69 13.56 527 242 007

8 S4 22 3 1 143 6.63 13.56 527 43 944

9 S2
3 22 0 4 375 7.89 15.53 445 49 242

10 32 : 4 4 0 2 44 8.98 23.57 34 829

11 2 o S3 132 18 2 2002 4.65 16.13 2196 367 901

12 PSL2(5) 0 5 6 62 8.12 18.70 78 96 742

13 32 : D4 50 0 0 624 4.76 21.76 274 236 136

14 PGL2(5) 5 38 22 1353 11.01 24.18 192 898 183

15 A6 8 2 4 540 8.12 31.66 10 901

16 S6 54 30 42 8334 4.95 33.50 26 301 802

Degree 7

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 7 0 0 0 0 17.93 17.93 4 117

2 D7 0 0 0 0 6.21 8.43 80 496

3 7 : 3 0 0 0 0 21.03 31.64 2 56

4 7 : 6 0 0 1 5 12.10 15.99 94 189

5 SL3(2) 0 0 0 7.95 32.25 36 618

6 A7 0 2 3 204 8.74 39.52 1 332

7 S7 10 24 14 4391 5.65 40.49 1 13 827
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Degree 8

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 8 4 8 0 16 11.93 11.93 23 5817

2 4× 2 6 18 1 84 5.79 5.79 581 15 523

3 23 1 1 0 15 6.93 6.93 908 10 687

4 D4 14 12 0 88 6.03 6.03 1425 24 458

5 Q8 2 0 0 8 18.24 18.24 7 788

6 D8 20 20 0 104 6.71 9.75 708 29 794

7 8 : {1, 5} 6 20 1 88 9.32 9.32 55 8088

8 8 : {1, 3} 22 10 0 120 10.09 10.46 121 10 845

9 D4 × 2 28 24 0 528 6.51 10.58 5908 175 572

10 22 : 4 8 24 0 160 6.09 9.46 620 29 745

11 Q8 : 2 18 18 0 312 6.51 9.80 921 17 350

12 SL2(3) 0 0 0 0 12.77 29.84 4 681

13 A4 × 2 7 0 0 15 8.06 12.31 243 26 637

14 S4 22 3 1 143 9.40 13.56 527 7203

15 8 : 8× 42 42 0 928 8.65 13.79 818 60 490

16 1/2[24]4 8 24 0 176 7.45 13.56 76 15 571

17 4 o 2 16 72 0 480 5.79 13.37 252 42 156

18 22 o 2 24 8 0 608 7.04 16.40 2544 216 411

19 E(8) : 4 8 24 0 192 9.51 14.05 220 24 440

20 [23]4 4 12 0 96 8.46 14.05 110 13 661

21 1/2[24]E(4) 4 12 0 96 8.72 14.05 110 10 121

22 E(8) : D4 0 0 0 204 8.43 18.42 882 19 733

23 GL2(3) 128 24 4 912 8.31 16.52 388 6304

24 S4 × 2 132 18 2 2002 6.04 16.13 2196 45 996

25 23 : 7 0 0 0 0 12.50 17.93 1 20

26 1/2[24]eD(4) 64 24 0 1872 7.23 20.37 840 135 840

27 2 o 4 16 48 0 448 5.95 19.44 160 86 547

28 1/2[24]dD(4) 16 48 0 448 8.67 19.44 160 47 196

29 E(8) : D8 48 24 0 1296 6.58 19.41 1374 170 694

30 1/2[24]cD(4) 16 48 0 448 8.25 19.44 140 48 317

31 2 o 22 16 8 0 432 5.92 19.41 458 54 843

32 [23]A4 0 0 0 0 13.56 34.97 24 29 970

33 E(8) : A4 6 0 0 14 13.73 30.01 24 3240

34 E(4)2 : D6 11 1 0 132 14.16 27.28 55 3907

35 2 oD(4) 168 72 0 5568 5.83 22.91 1464 729 730

36 23 : 7 : 3 0 0 0 0 14.37 31.64 4 298

37 PSL2(7) 0 0 21.00 32.25 18 352

38 2 oA4 24 0 0 112 10.66 37.27 46 67 160

39 [23]S4 168 24 0 2496 6.73 32.35 84 24 625

40 1/2[24]S(4) 216 24 0 3872 7.67 29.71 98 12 796

41 E(8) : S4 90 12 0 2282 8.38 28.11 222 11 950

42 A4 o 2 12 0 0 83 7.68 32.18 14 3550

43 PGL2(7) 4 8 11.96 27.35 27 1495

44 2 o S4 656 96 0 22944 5.84 31.38 336 440 683

45 [1/2.S2
4 ]2 110 0 0 836 9.28 29.35 39 8028

46 1/2[S(4)2]2 28 0 0 54 11.35 49.75 0 224

47 S4 o 2 542 0 0 2185 5.83 35.05 15 262 530

48 23 : SL3(2) 0 0 11.36 39.54 6 495

49 A8 2 4 1 55 15.24 72.03 90

50 S8 72 30 9 1728 11.33 43.99 1 4026
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Degree 9

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 9 1 0 1 1 13.70 13.70 3 52

2 32 0 0 0 0 15.83 15.83 9 189

3 D9 6 0 4 20 9.72 12.19 105 705

4 S3 × 3 8 0 5 31 8.38 10.06 254 10 139

5 32 : 2 1 0 1 15 14.29 15.19 48 373

6 1/3[33]3 0 0 0 0 17.63 31.18 2 85

7 32 : 3 0 0 0 0 26.09 50.20 0 90

8 S3 × S3 22 0 4 375 8.93 15.53 445 7055

9 E(9) : 4 2 0 1 22 19.92 23.57 17 142

10 [32]S(3)6 22 0 17 171 9.57 17.01 69 1066

11 E(9) : 6 6 0 4 20 14.67 16.83 64 880

12 [32]S(3) 12 0 12 180 8.92 16.72 148 13 929

13 E(9) : D6 6 0 4 20 10.98 16.83 64 642

14 32 : Q8 4 0 0 19 21.52 29.72 2 47

15 E(9) : 8 5 1 0 18 17.74 25.41 3 40

16 E(9) : D8 25 0 0 312 9.19 21.76 137 434

17 3 o 3 0 0 0 0 14.93 75.41 0 1274

18 E(9) : D12 80 0 8 1380 8.53 22.06 290 9260

19 E(9) : 2D8 60 1 0 124 17.89 23.41 33 624

20 3 o S3 18 0 12 60 7.83 29.89 30 7989

21 1/2.[33 : 2]S3 54 0 54 1296 9.82 24.90 126 4282

22 [33 : 2]3 18 0 12 60 10.27 26.46 51 784

23 E(9) : 2A4 0 0 0 0 16.48 49.57 0 40

24 [33 : 2]S(3) 321 0 48 8307 9.15 30.64 111 17 973

25 [1/2.S(3)3]3 4 0 0 4 12.89 29.96 4 303

26 E(9) : 2S4 250 2 10 362 12.79 27.88 51 866

27 PSL2(8) 4 4 16.25 30.31 15 19

28 S3 o 3 28 0 0 90 8.18 33.56 7 6738

29 [1/2.S(3)3]S(3) 45 0 1 512 9.38 40.81 2 1255

30 1/2[S(3)3]S(3) 232 1 40 1637 6.86 30.37 35 5026

31 S3 o S3 616 0 5 19 865 6.83 36.26 15 112 887

32 ΣL2(8) 64 240 16.09 34.36 15 1141

33 A9 13 2 314 14.17 62.12 627

34 S9 46 1 1 1507 7.84 53.19 3189
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Degree 10

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 10 0 7 3 15 8.65 8.65 69 360

2 D5 0 4 2 8 6.86 6.86 146 822

3 D10 0 24 4 112 8.08 10.91 768 857

4 1/2[F (5)]2 1 19 7 82 10.23 11.08 102 698

5 F5 × 2 6 114 14 1148 9.48 14.50 584 1611

6 [52]2 0 8 4 16 6.84 18.02 32 175

7 A5 0 5 6 62 12.35 18.70 78 1417

8 [24]5 0 3 0 3 12.75 24.98 18 36

9 [1/2.D(5)2]2 0 12 2 56 12.71 24.72 34 87

10 1/2[D(5)2]2 0 22 12 126 14.02 24.00 22 144

11 A5 × 2 0 35 18 930 9.42 22.24 179 1177

12 S5(10a) 5 38 22 1353 12.04 24.18 192 1560

13 S5(10d) 5 38 22 1353 9.16 24.18 192 2083

14 2 o 5 0 21 0 45 9.32 26.08 45 2050

15 [24]D(5) 0 60 0 360 9.33 25.15 72 620

16 1/2[25]D(5) 0 60 0 360 9.46 25.15 72 509

17 [52 : 4]2 0 65 0 922 17.46 26.65 34 1100

18 [52 : 4]22 0 16 0 17 19.75 35.98 3 22

19 [52 : 42]2 0 17 0 63 16.96 28.08 18 111

20 [52 : 42]22 0 0 0 31 27.36 48.25 0 43

21 D5 o 2 0 34 0 118 7.54 28.08 36 235

22 S5 × 2 30 228 44 18 942 7.06 26.99 570 26 851

23 2 oD5 0 360 0 5040 7.26 26.26 240 24 024

24 [24]F (5) 7 173 0 1250 14.13 27.62 30 1491

25 1/2[25]F (5) 7 173 0 1250 13.84 27.62 30 1491

26 PSL2(9) 4 1 2 270 20.20 31.66 5 334

27 [1/2.F 2
5 ]2 0 56 0 652 13.40 40.43 18 1052

28 1/2[F 2
5 ]2 1 37 2 70 15.16 32.71 8 72

29 2 o F5 42 1038 0 17 500 11.44 32.17 90 19 112

30 PGL2(9) 11 5 1 55 22.64 34.42 6 149

31 M10 20 4 13 83 27.73 53.50 198

32 S6 27 15 21 4166 14.74 33.50 13 6913

33 F5 o 2 0 177 0 484 9.93 35.41 3 485

34 [24]A5 0 35 0 1322 10.82 35.81 5 1388

35 PΓL2(9) 100 32 15 1666 17.98 38.61 15 3531

36 2 oA5 0 245 0 19 830 10.39 36.60 8 20 660

37 [24]S5 91 450 8 42 059 7.80 38.11 17 60 029

38 1/2[25]S5 91 450 8 42 059 9.41 38.11 17 42 851

39 2 o S5 546 2700 16 588 826 6.79 38.11 30 1 095 840

40 A5 o 2 12 68 29 1098 9.48 41.90 1 1129

41 [A5 : 2]2 28 148 11 9444 9.30 43.89 1 9686

42 1/2[S2
5 ]2 18 84 31 866 14.35 45.93 898

43 S5 o 2 185 471 20 792 6.82 48.97 31 896

44 A10 23 16 6 801 19.37 51.68 1201

45 S10 1 12 3 2585 7.77 70.36 4944
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Degree 11

T G {2, 3} {2, 5} {3, 5} {2, 3, 5} rd(K) grd(K) |K[G,Ω]| Tot

1 11 0 0 0 0 17.30 17.30 1 18

2 D11 0 0 0 0 10.24 12.92 32 55

3 11 : 5 0 0 0 0 88.82 105.74 0 2

4 11 : 10 17.01 20.70 4 56

5 PSL2(11) 15.36 42.79 2 91

6 M11 1 96.24 270.83 10

7 A11 4 21.15 146.24 71

8 S11 5 4 1 123 7.72 91.50 931

The next column gives minimal values of root discriminants. More refined minima can easily
be obtained from the database. For example, for S5, minimal discriminants for s = 0, 1, and 2
complex places are respectively (61 · 131)1/5 ≈ 7.53, (13 · 347)1/5 ≈ 5.38, and 16091/5 ≈ 4.38.
Completeness is typically known well past the minimum.

In understanding root discriminants, the Serre–Odlyzko constant Ω = 8πeγ ≈ 44.76
mentioned in the introduction plays an important role, as follows. First, if K has root
discriminant<Ω/2, then its maximal unramified extensionK ′ has finite degree overK. Second,
if rd(K) < Ω, then the GRH implies the same conclusion [K ′ : K] < ∞. Third, suggesting
that there is a modestly sharp qualitative transition associated with Ω, the field Q(e2πi/81)
with root discriminant 33.5 ≈ 46.77 has [K ′ : K] =∞ by [14].

The next two columns of the tables again represent a main focus of the database, complete
lists of fields with small Galois root discriminant. We write K[G,B] for the set of all fields with
Galois group G and grd(K) 6 B. The tables give first the minimal Galois root discriminant.
They next give |K[G,Ω]|. For many groups, the database is complete for cutoffs well past Ω.
For example, the set K[9T17,Ω] is empty and not adequate for the purposes of [17]. However,
the database identifies |K[9T17, 200]| = 36 and this result is adequate for the application.

The last column in a table gives the total number of fields in the database for the given
group. Over time, the number of fields in the database will increase as results from new
searches are added. Note that one could easily make this number much larger in any case. For
example, a regular family over Q(t) for each group is given in [28, Appendix 1], and one could
simply specialize at many rational numbers t. However, we do not do this: all the fields in our
database are there only because discriminants met one criterion or another for being small.
The fluctuations in this column should not be viewed as significant, as the criteria depend on
the group in ways driven erratically by applications.

There are a number of patterns in the summarizing tables which hold because of relations
between transitive groups. For example, the groups 5T4 = A5, 6T12 = PSL2(5), and 10T7 are
all isomorphic. Most of the corresponding lines necessarily agree. Similarly, A5 is a quotient of
10T11, 10T34, and 10T36. Thus, the fact that K(A5,−∗2∗3∗) = ∅ immediately implies that
also K(10Tj,−∗2∗3∗) = ∅ for j ∈ {11, 34, 36}.

Almost all fields in the database come from complete searches of number fields carried
out by the authors. In a few cases, we obtained polynomials from other sources, notably for
number fields of small discriminant: those compiled by the Bordeaux group [7], which in turn
were computed by several authors, and the tables of totally real fields of Voight [39, 40]. In
addition, we include fields found by the authors in joint work with others [13, 24].

To compute cubic fields, we used the program of Belabas [1, 2]. Otherwise, we obtained
complete lists by using traditional and targeted Hunter searches [18, 19] or the class field
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theory functions in Pari/gp [38]. For larger nonsolvable groups where completeness results are
currently out of reach, we obtained most of our fields by specializations of families at carefully
chosen points to keep ramification small in various senses.

5. S5 quintics with discriminant −s2a3b5c7d

One of our longest searches determined K(S5,−∗2∗3∗5∗7∗), finding it to consist of 11 279 fields.
In this section, we consider how this set interacts with mass heuristics.

In general, mass heuristics [5, 27] give one expectations as to the sizes |K(G,D)| of the sets
contained in the database. Here we consider these heuristics only in the most studied case
G = Sn. The mass of a Qv-algebra Kv is by definition 1/|Aut(Kv)|. Thus, the mass of Rn−2sCs
is

µn,−s =
1

(n− 2s)!s!2s
. (5.1)

For p a prime, similarly let µn,pc be the total mass of all p-adic algebras with degree n and
discriminant pc. For n < p, all algebras involved are tame and

µn,pc = |{Partitions of n having n− c parts}|. (5.2)

For n > p, wild algebras are involved. General formulas for µn,pc are given in [34].
The mass heuristic says that if the discriminant D = −s

∏
p p

cp in question is a nonsquare,
then ∣∣∣∣K(Sn,−s∏

p

pcp
)∣∣∣∣ ≈ δnµn,−s

∏
p

µn,pcp . (5.3)

Here δn = 1/2, except for the special cases δ1 = δ2 = 1, which require adjustment for simple
reasons. The left-hand side is an integer and the right-hand side is often close to zero because
of (5.1) and (5.2). So, (5.3) is intended only to be used in suitable averages.

For n 6 5 fixed and |D| → ∞, the heuristics are exactly right on average, the case n = 3
being the Davenport–Heilbronn theorem and the cases n = 4 and 5 more recent results of
Bhargava [4, 6]. For a fixed set of ramifying primes S and n→∞, the mass heuristic predicts
no fields after a fairly sharp cutoff N(S), while in fact there can be many fields in degrees well
past this cutoff [33]. Thus, the regime of applicability of the mass heuristic is not clear.

To get a better understanding of this regime, it is of interest to consider other limits. Let
µn,p∗ be the total mass of all Qp-algebras of degree n. Thus, µn,p∗ is the number of partitions
of n if n < p. Then, for k →∞, the mass heuristic predicts the asymptotic equivalence

|K(Sn,−∗2∗ . . . p∗k})| ∼ δnµn,−∗

k∏
j=1

µn,p∗ . (5.4)

Both sides of (5.4) are 1 for all k when n = 1. For n = 2 and k > 1, the statement becomes
2k+1 − 1 ∼ 2k+1, which is true. Using the fields in the database as a starting point, we have
carried out substantial calculations suggesting that, after removing fields with discriminants
of the form −3u2 from the count on the left, (5.4) holds also for n = 3 and n = 4.

In this section, we focus on the first nonsolvable case, n = 5. For k > 3, (5.4) becomes

|K(S5,−∗2∗ . . . p∗k)| ∼ 1
2 ·

26
120 · 40 · 19 · 27 · 7k−3 ≈ 6.48 · 7k. (5.5)

Through the cutoff k = 4, there are fewer fields than predicted by the mass heuristic:

pk 2 3 5 7

|K(S5,−∗2∗ . . . p∗k)| 0 5 1353 11 279

0% 6% 61% 72%
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Table 5.1. Local masses 120µ5,−c and µ5,pc , compared with frequencies of local discriminants from
K(S5,−∗2∗3∗5∗7∗).

v \ c 0 1 2 3 4 5 6 7 8 9 10 11 Total

∞ 1 10 15 26

0.71 9.52 15.77

2 1 2 2 5 4 6 4 4 4 8 40

0.73 1.66 1.48 4.71 3.83 5.66 4.47 4.37 4.15 8.94

3 1 1 1 3 5 5 3 19

0.76 0.85 0.78 2.89 5.24 5.13 3.43

5 1 1 2 2 4 4 4 4 5 27

0.37 0.39 0.96 1.32 4.07 4.17 4.70 4.65 6.38

7 1 1 2 2 1 7

0.84 0.88 1.92 2.12 1.24

For comparison, the ratio 11 279/(6.48 · 74) ≈ 72% is actually larger than the ratios at
k = 4 for cubic and quartic fields with discriminant −3u2 removed, these being respectively
64/(1.33 · 34) ≈ 47% and 740/(3.30 · 5k) ≈ 36%. As remarked above, these other cases
experimentally approach 100% as k increases. This experimental finding lets one reasonably
argue that (5.5) may hold too, with the small percentage 72% being a consequence of a small
discriminant effect.

Table 5.1 compares local masses with frequencies of actually occurring local discriminants,
inflated by the ratio (6.58 ·74)/11 279 to facilitate direct comparison. Thus, for example, the 7-
adic discriminants (70, 71, 72, 73, 74) are predicted by the mass heuristic to occur with relatively
frequency (1, 1, 2, 2, 1). They actually occur with relative frequency (0.84, 0.88, 1.92, 2.12, 1.24).
Here and for the other four places, trends away from the predicted asymptotic values are
explained by consistent under-representation of fields with small discriminant. The consistency
of the data with the mass heuristic on this refined level provides further support for (5.5).

6. Low-degree nonsolvable fields with discriminant −spaqb

Our earliest contributions to the general subject of number field tabulation were [18] and
[19]. These papers respectively found that there are exactly 398 sextic and 10 septic fields
with discriminant of the form −s2a3b. In the lists from these papers, the nonsolvable groups
PSL2(5) ∼= A5, PGL2(5) ∼= S5, A6, S6 and SL3(2), A7, S7 respectively arise zero, five, eight,
54 and zero, zero, ten times. In this section, we summarize further results from the database
of this form, identifying or providing lower bounds for |K(G,−∗p∗q∗)|.

The format of our tables exploits the fact that in the range considered for a given group,
there are no fields ramified at one prime only. In fact [22], the smallest prime p for which
K(G,−∗p∗) is nonempty is as follows:

G A5 S5 A6 S6 SL3(2) A7 S7 PGL2(7)

p 653 101 1579 197 227 >227 191 53

Here 7T5 = SL3(2) is abstractly isomorphic to 8T37 = PSL2(7) and thus has index two in
8T43 = PGL2(7).
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Table 6.1. |K(A5,−∗p∗q∗)| beneath the diagonal and |K(S5,−∗p∗q∗)| above the diagonal. It is
expected that A5 totals are smaller for primes p ≡ 2, 3 (5) because in this case p4 is not a possible
local discriminant.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 T

2 • 5 38 2 2 4 3 2 5 6 3 6 9 14 10 11 8 13 13 8 5 11 10 13 4 205

3 • 22 1 4 1 2 2 6 3 5 3 3 2 8 3 2 4 3 2 81

5 5 6 • 4 5 9 12 8 8 8 9 13 12 11 8 14 8 15 13 14 9 14 11 11 14 290

7 • 1 1 2 2 2 1 3 1 1 20

11 2 • 1 1 1 1 1 1 1 1 1 1 18

13 1 • 1 2 3 2 1 1 1 1 25

17 1 1 • 1 3 3 4 1 1 1 1 2 1 3 37

19 1 3 • 2 3 1 1 1 1 1 3 2 1 1 2 36

23 1 • 1 1 2 1 1 2 1 2 28

29 2 3 1 2 2 • 2 3 1 1 2 3 3 1 4 2 2 2 48

31 1 3 1 2 1 • 1 4 1 2 2 1 2 1 30

37 1 • 2 3 2 2 2 3 4 1 1 52

41 2 2 2 1 1 1 • 1 2 3 1 1 2 1 3 5 56

43 1 3 1 1 1 • 2 1 1 2 2 4 1 2 61

47 • 1 4 3 1 3 38

53 2 1 1 • 3 3 1 2 1 3 2 52

59 1 3 2 1 2 1 • 1 1 2 1 3 1 45

61 1 1 1 1 1 1 • 2 3 2 1 1 56

67 2 1 1 1 • 4 2 2 1 2 54

71 1 2 1 1 1 4 2 2 1 • 4 1 3 59

73 1 1 1 1 2 1 1 1 • 2 3 38

79 4 4 2 1 2 3 1 1 • 2 1 54

83 1 1 1 2 • 4 51

89 1 3 2 1 1 1 2 2 1 1 1 2 • 1 58

97 1 1 1 1 1 1 1 • 46

T 24 40 28 1 4 7 9 8 5 14 14 5 19 8 2 8 14 9 8 16 9 23 5 19 7

Restricting to the six groups G of the form An or Sn, our results on |K(G,−∗p∗q∗)| compare
with the mass heuristic as follows. First, local masses µn,v∗ are given in the middle six columns:

n ∞ 2 3 5 7 Tame µ

5 26/120 40 19 27 7 5.31

6 76/720 145 83 31 11 6.39

7 232/5040 180 99 55 57 15 5.18

(6.1)

The column µ contains the global mass 0.5µn,−∗µn,p∗µn,q∗ for two tame primes p and q.
When one or both of the primes are wild, the corresponding global mass is substantially
larger.

Tables 6.1, 6.2, and 6.3 clearly show that there tend to be more fields when one or more
of the primes p, q allow wild ramification, as one would expect from (6.1). To make plausible
conjectures about the asymptotic behavior of the numbers |K(G,−∗p∗q∗)|, one would have
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Table 6.2. |K(A6,−∗p∗q∗)| beneath the diagonal and |K(S6,−∗p∗q∗)| above the diagonal. All
entries are even because contributing fields come in twin pairs.

2 3 5 7 11 13 17 19 23 29 31 T

2 • 54 30 2 2 2 4 4 6 104

3 8 • 42 4 8 2 12 2 124

5 2 4 • 2 2 2 6 8 2 4 98

7 2 • 2

11 • 6

13 2 • 4

17 2 • 2 12

19 2 2 • 8

23 2 2 • 16

29 4 2 • 18

31 4 6 2 • 12

T 16 30 8 2 4 2 6 4 8 12

Table 6.3. Determinations or lower bounds for |K(G,−∗p∗q∗)| for four G. The entries
|K(SL3(2),−∗p∗q∗)| are all even because contributing fields come in twin pairs.

SL3(2) and PGL2(7)

2 3 5 7 11 13

2 • 4 0 51 0 0

3 0 • 0 28 0 0

5 0 0 • 4 0 0

7 44 12 4 • 4 6

11 4 0 0 6 • 0

13 0 0 0 0 0 •

A7 and S7

2 3 5 7 11 13

2 • 10 24 55 0 0

3 0 • 14 44 2 0

5 2 3 • 18 0 0

7 0 7 5 • 5 0

11 0 0 1 0 • 0

13 0 0 0 0 0 •

to do more complicated local calculations than those summarized in (6.1). These calculations
would have to take into account various secondary phenomena, such as the fact that s is forced
to be even if p ≡ q ≡ 1 (4). Tables 6.1, 6.2, and 6.3 each reflect substantial computation, but
the amount of evidence is too small to warrant making formal conjectures in this setting.

7. Nilpotent octic fields with odd discriminant −spaqb

The database has all octic fields with Galois group a 2-group and discriminant of the form
−spaqb with p and q odd primes <250. There are

(
52
2

)
= 1326 pairs {p, q} and the average

size of K(NilOct,−∗p∗q∗) in this range is about 12.01. In comparison with the nonsolvable
cases discussed in the previous two sections, there is much greater regularity in this setting.
We exhibit some of the greater regularity and explain how it makes some of the abstract
considerations of [9, 10] more concrete.
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Table 7.1. Nonzero cardinalities |K(8Tj,−∗p∗q∗)| for 8Tj an octic group of 2-power order.

p q 1 2 4 5 6 7 8 10 16 17 19 20 21 27 28 30 s3 # ν T s

3,7 3,7 1/4

72 31 1 1 4 193 1/8 ◦ 4

112 71 1 2 4 185 1/8 • > 5

3,7 5 1/4

31 51 1 1 4 219 1/8 i 4

114 52 1 2 2 2 4 6 87 1/16 ii 6

192 52 1 2 2 1 2 2 2 1 1 2 2 4 7 86 1/16 iii 19

3,7 1 1/4

31 171 2 1 4 162 1/8

192 172 2 1 2 2 1 1 2 2 6 66 1/16

234 412 2 1 2 4 1 2 2 2 4 2 1 1 4 4 4 8 52 1/16

5 5 1/16

51 131 3 2 5 42 1/32 I 6

52 292 3 3 1 6 8 4 2 2 4 4 9 11 1/128 II 27

134 534 3 3 1 2 2 6 8 12 6 6 12 12 16 11 13 1/128 III >17

132 294 3 3 1 6 2 12 4 2 2 2 2 4 9 25 1/64 IV >30

5 1 1/8

51 171 4 3 5 76 1/16

134 172 4 3 3 1 2 6 2 8 4 2 2 4 4 9 17 1/64

52 414 4 3 3 1 2 6 4 4 2 2 2 2 4 9 22 1/64

532 172 4 3 3 1 2 2 2 6 12 4 2 2 2 2 4 9 18 1/64

1094 734 4 3 3 1 4 2 4 6 2 16 12 6 6 12 12 16 11 6 1/128

1014 974 4 3 3 1 4 2 4 6 2 16 12 6 6 16 16 24 12 1 1/128

1 1 1/16

171 411 12 3 6 27 1/32

414 732 12 3 3 1 6 6 2 4 2 2 4 4 9 12 1/64

412 2412 12 3 3 1 4 6 4 6 2 16 4 2 2 4 4 4 10 2 1/128

734 894 12 3 3 1 6 6 6 6 6 24 12 6 6 16 16 16 12 2 1/256

734 1374 12 3 3 1 6 6 6 6 6 24 12 6 6 24 24 24 13 2 1/256
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Twenty-six of the 50 octic groups have 2-power order. Table 7.1 presents the nonzero
cardinalities, so that for example |K(8Tj,−∗5∗29∗)| = 4, 2, 2 for j = 19, 20, 21. The
repeated proportion (2, 1, 1) for these groups and other similar patterns are due to the sibling
phenomenon discussed in § 4. Only the sixteen 2-groups generated by two elements actually
occur. Columns s3, #, ν, T , and s are all explained later in this section.

The main phenomenon presented in Table 7.1 is that the multiplicities presented are highly
repetitious, with for example the multiplicities presented for (5, 29) occurring for altogether
eleven pairs (p, q), as indicated in the # column. The repetition is even greater than indicated
by the table itself. Namely, if (p1, q1) and (p2, q2) correspond to the same line, then not only
are the numbers K(8Tj,−∗p∗i q∗i ) independent of i, but the individual K(8Tj,−∗pai qbi ) and even
further refinements are also independent of i.

The line corresponding to a given pair (p, q) is almost determined by elementary
considerations, as follows. Let U be the order of q in (Z/p)× and let V be the order of p
in (Z/q)×. Let u = gcd(U, 4) and v = gcd(V, 4). Then all (p, q) on a given line have the same
u, v, and a representative is written (pu, qv) in the leftmost two columns. Almost all lines are
determined by their datum {[p]u, [q]v}, with [·] indicating reduction modulo eight. The only
exceptions are {[p]u, [q]v} = {54, 14} and {[p]u, [q]v} = {14, 14}, which have two lines each.
The column headed by # gives the number of occurrences in our setting p, q < 250. In the five
cases where this number is less than ten, we continued the computation up through p, q < 500
assuming the GRH. We expect that all possibilities are accounted for by the table, and they
occur with asymptotic frequencies given in the column headed by ν. Assuming that these
frequencies are correct, the average size of K(NilOct,−∗p∗q∗) is exactly 15.875, substantially
larger than the observed 12.01 in the p, q < 250 setting.

The connection with [9, 10] is as follows. Let L(p, q)k ⊂ C be the splitting field of all
degree-2k fields with Galois group a 2-group and discriminant −∗p∗q∗. The Galois group
Gal(L(p, q)k/Q) is a 2-group and so all ramification at the odd primes p and q is tame. Let
L(p, q) be the union of these L(p, q)k. The group Gal(L(p, q)/Q) is a pro-2-group generated
by the tame ramification elements τp and τq. The central question pursued in [9, 10] is the
distribution of the Gal(L(p, q)/Q) as abstract groups.

Table 7.1 corresponds to working at the level of the quotient Gal(L(p, q)3/Q). The fact that
this group has just the two generators τp and τq explains why only the sixteen 2-groups having
one or two generators appear. One has |Gal(L(p, q)3/Q)| = 2s3 , where s3 is as in Table 7.1. The
lines with an entry under T are pursued theoretically in [9]. The cases marked by ◦–•, i–iii,
and I–IV are respectively treated in §§ 5.2, 5.3, and 5.4 there. The entire group Gal(L(p, q),Q)
has order 2s, with s =∞ being expected sometimes in Case IV .

Some of the behavior for k > 3 is previewed by 2-parts of class groups of octic fields. For
example, in Case ii all 87 instances behave the same: the unique fields in K(8T2,−4p3q7),
K(8T4,−4p4q6), K(8T17,−4p6q5) and the two fields in K(8T17,−4p6q7) all have 2 exactly
dividing the class number; the remaining six fields all have odd class number. In contrast, in
Case iii the 86 instances break into two types of behaviors, represented by (p, q) = (19, 5) and
(p, q) = (11, 37). These patterns in the database reflect the fact [9, § 5.3] that in Case ii there
is just one possibility for (Gal(L(p, q)/Q); τp, τq), while in Case iii there are two.

8. Nilpotent octic fields with discriminant −s2aqb

The database has all octic fields with Galois group a 2-group and discriminant of the form
−s2aqb with q < 2500. The sets K(NilOct,−∗2∗q∗) average 1711 fields, the great increase
from the previous section being due to the fact that now there are many possibilities for
wild ramification at 2. As in the previous section, there is great regularity explained by
identifications of relevant absolute Galois groups [26]. Again, even more so this time, there is
further regularity not explained by theoretical results.
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Continuing with the notation of the previous section, consider the Galois extensions L(2, q) =⋃∞
k=1 L(2, q)k and their associated Galois groups Gal(L(2, q)/Q) = lim←− Gal(L(2, q)k/Q). As

before, octic fields with Galois group a 2-group let one study Gal(L(2, q)3/Q). Table 8.1
presents summarizing data for q < 2500 in a format parallel to Table 7.1 but more condensed.
Here the main entries count Galois extensions of Q. Thus, an entry m in the 192 20 21 column
corresponds to m Galois extensions of Q having degree 32. Each of these Galois extensions
corresponds to four fields in our database, of types 8T19, 8T19, 8T20, and 8T21.

In the range studied, there are thirteen different behaviors in terms of the cardinalities
|K(8Tj,−∗2∗q∗)|. As indicated by Table 7.1, these cardinalities depend mainly on the reduction
of q modulo sixteen. However, classes 1, 9, and 15 are broken into subclasses. The biggest
subclasses have size |1A| = 23, |9A| = 24, and |15A| = 28. The remaining subclasses are

1B = {113, 337, 353, 593, 881, 1249, 1777, 2113, 2129, 2273},
1C = {257, 1601},
1D = {577, 1201, 1217, 1553, 1889},
1E = {1153},
9B = {73, 281, 617, 1033, 1049, 1289, 1753, 1801, 1913, 2281, 2393},
9C = {137, 409, 809, 1129, 1321, 1657, 1993, 2137},

15B = {31, 191, 383, 607, 719, 863, 911, 991, 1103, 1231, 1327, 1471,

1487, 1567, 1583, 2063, 2111, 2287, 2351, 2383}.

Table 8.1. The q–j entry gives the number of Galois extensions of Q with Galois group 8Tj and
discriminant of the form −s2aqb. The number of Galois extensions of Q2 with Galois group 8Tj is also
given. Often a numerical entry in a given column persists for several more rows, and this repetition is
indicated by ditto marks.

|G| = 8 |G| = 16 |G| = 32 21 |G| = 64

20 282 312

q 1 2 3 4 5 62 7 8 94 102 113 152 162 172 188 192 264 272 296 304 358 Tot

Q2 24 18 1 18 6 16 36 36 9 12 16 38 12 48 4 24 24 48 16 24 48 1449

1A 24 18 1 30 2 42 36 44 15 36 12 64 36 96 16 48 80 104 32 52 72 2895

1B ′′ ′′ ′′ ′′ ′′ 54 36 60 ′′ ′′ ′′ 84 60 144 ′′ 96 144 256 80 128 312 6783

1C ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ 272 ′′ 136 336 7071

1D ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ 336 ′′ 168 384 7839

1E ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ 240 6687

9A 24 18 1 30 2 44 36 48 15 36 12 68 36 112 16 48 96 104 48 52 156 3807

9B ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ 132 3615

9C ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ 72 ′′ 36 156 3615

3, 11 4 6 1 14 2 10 6 22 7 4 6 21 4 8 3 4 16 8 8 4 21 579

5, 13 8 18 1 12 0 10 20 10 6 12 6 21 12 36 1 12 6 24 4 2 9 621

7 4 6 1 20 0 30 6 16 10 12 4 34 12 24 8 12 44 24 20 12 60 1401

15A 4 6 1 20 0 32 6 16 10 12 4 36 16 24 8 20 52 64 24 32 96 2041

15B ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ 84 1945
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A prime q ≡ 1 (16) is in 1A if and only if 2 6∈ F×4q . Otherwise, we do not have a concise
description of these decompositions.

Let D∞ = {1, c}, where c is complex conjugation. Let Dq ⊆ Gal(L(2, q)/Q) be a q-
decomposition group. Then, working always in the category of pro-2-groups, one has the
presentation Dq = 〈τ, σ|σ−1τσ = τ q〉; here τ is a ramification element and σ is a Frobenius
element. Representing a more general theory, for q ≡ 3, 5 (8) one has two remarkable facts
[26, Example 11.18]. First, the 2-decomposition group D2 is all of Gal(L(2, q)/Q). Second, the
global Galois group is a free product:

Gal(L(2, q)/Q) = D∞ ∗Dq. (8.1)

As a consequence, always for q ≡ 3, 5 (8), the quotients Gal(L(2, q)k/Q) are computable as
abstract finite groups and moreover depend only on q modulo eight. In particular, the counts
in the lines 3,11 and 5,13 of Table 8.1 can be obtained purely group theoretically. The other
lines of Table 8.1 are not covered by the theory in [26].

A important aspect of the situation is not understood theoretically, namely the wild
ramification at 2. The database exhibits extraordinary regularity at the level k = 3, as follows.
By 2-adically completing octic number fields K ∈ K(NilOct,−∗2∗q∗), one gets 579 octic 2-adic
fields if q ≡ 3 (8) and 621 octic 2-adic fields if q ≡ 5 (8). The regularity is that the subset
of all 1499 nilpotent octic 2-adic fields which arise depends on q only modulo eight, at least
in our range q < 2500. One can see some of this statement directly from the database: the
cardinalities |K(8Tj,−∗2aq∗)| for given (j, a) depend only on q modulo eight.

In the cases q ≡ 3, 5 (8), the group Gal(L(2, q)/Q) = D2 has a filtration by higher
ramification groups. From the group-theoretical description of Gal(L(2, q)/Q), one can
calculate that the quotient group Gal(L(2, q)3/Q) has size 218. The eighteen slopes measuring
wildness of 2-adic ramification work out to be

3 0, 2, 2, 2 1
2 3, 3, 3 1

2 , 3 1
2 , 3 5

8 , 3 3
4 , 4, 4, 4 1

4 , 4 1
4 , 4 3

8 , 4 1
2 , 4 3

4 5

5 0, 0, 2, 2, 2, 2 1
2 3, 3, 3, 3 1

2 , 3 1
2 , 3 3

4 , 4, 4 1
4 , 4 1

2 , 4 3
4 , 4 3

4 , 5.

Most of these slopes can be read off from the octic field part of the database directly, via the
automatic 2-adic analysis of fields given there. For example, the first four slopes for q = 3
all arise already from Q[x]/(x8 + 6x4 − 3), the unique member of K(8T8,−321637). A few of
the listed slopes can only be seen directly by working with degree-16 resolvents. A natural
question, not addressed in the literature, is to similarly describe the slopes appearing in all of
Gal(L(2, q)/Q).

9. Minimal nonsolvable fields with grd 6 Ω

Our focus for the remainder of the paper is on Galois number fields, for which root discriminants
and Galois root discriminants naturally coincide. As reviewed in the introduction, in [21] we
raised the problem of completely understanding the set K[Ω] of all Galois number fields K ⊂ C
with grd at most the Serre–Odlyzko constant Ω = 8πeγ ≈ 44.76. As in [21], we focus attention
here on the interesting subproblem of identifying the subset Kns[Ω] of K which are nonsolvable.
Our last two sections explain how the database explicitly exhibits a substantial part
of Kns[Ω].

We say that a nonsolvable number field is minimal if it does not contain a strictly smaller
nonsolvable number field. So, fields with Galois group say Sn are minimal, while fields with
Galois group say Cp × Sn or Ckp : Sn are not. Figure 9.1 draws a dot for each minimal
nonsolvable field K1 ∈ Kns

min[Ω] coming from the degree less than or equal to eleven part of the

https://doi.org/10.1112/S1461157014000424 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000424


a database of number fields 613

1 2 3 4
0

1

2

3

1 2 3 4
0

1

2

Figure 9.1. Galois root discriminants 2α3β (left) and 2α5β (right) arising from minimal nonsolvable
fields of degree less than or equal to eleven in the database. The lines have equation 2αqβ = Ω.

database with grd of the form 2α3β or 2α5β . There are 654 fields in the first case and 885 in
the second. Of these fields, 24 and 17 have grd 6 Ω. Figure 9.1 illustrates the extreme extent
to which the low-grd problem is focused on the least ramified of all Galois number fields.

Figure 9.1 also provides some context for the next section, as follows. Consider the
compositum K = K1K2 of distinct minimal fields K1 and K2 contributing to the same half
of Figure 9.1. Let 2αiqβi be the root discriminant of Ki. The root discriminant 2αqβ of K
satisfies α > max(α1, α2) and β > max(β1, β2). The figure makes it clear that one must have
almost exact agreement α1 ≈ α2 and β1 ≈ β2 for K to even have a chance of lying in Kns[Ω].
As some examples where one has exact agreement, consider the respective splitting fields K1,
K2, and K3 of

f1(x)=x5 − 10x3 − 20x2 + 110x+ 116,

f2(x)=x5 + 10x3 − 10x2 + 35x− 18,

f3(x)=x5 + 10x3 − 40x2 + 60x− 32.

Table 9.1. Lower bounds on |K[G,Ω]| for minimal nonsolvable groups G. Entries highlighted in
bold are completeness results from [21]. Fields found since [21] are indicated by ‘.’.

# |H| G = H # G = H.Q #

1 60 A5 78 S5 192

2 168 SL3(2) .18 PGL2(7) ...23

3 360 A6 5 S6, PGL2(9), M10, PΓL2(9) 13, ....6 , 0 , .15

4 504 SL2(8) 15 ΣL2(8) 15

5 660 PSL2(11) 1 PGL2(11) 0

8 2520 A7 1 S7 1

12 3600 A2
5 A2

5.2, A
2
5.V, A

2
5.C4, A

2
5.D4 1 , .1 , 0 , 0

10 4080 SL2(16) .1 SL2(16).2,SL2(16).4 0 , 0

12 6048 G2(2)′ 0 G2(2) .1

19 20 160 A8 0 S8 .1
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All three fields have Galois group A5 and root discriminant 23/258/5 ≈ 37.14. The first two
completely agree at 2, but differ at 5, so that K1K2 has root discriminant 23/2548/25 ≈ 62.17.
The other two composita also have root discriminant well over Ω, with grd(K2K3) = 29/458/5 ≈
62.47 and grd(K1K3) = 29/4548/25 ≈ 104.55. These computations, done automatically by
entering fi(x)fj(x) into the grd calculator of [20], are clear illustrations of the general difficulty
of using known fields in K[Ω] to obtain others.

In [21], we listed fields proving |Kns
min[Ω]| > 373. Presently, the fields in the database show

|Kns
min[Ω]| > 386. In [21], we highlighted the fact that the only simple groups involved were

the five smallest, A5, SL3(2), A6, SL2(8), and PSL2(11) and the eighth, A7. The new fields
add SL2(16), G2(2)′, and A8 to the list of simple groups involved. These groups are tenth,
twelfth, and tied for nineteenth in the list of all non-abelian simple groups in increasing order
of size.

Table 9.1 summarizes all fields in the database in Kns
min[Ω]. It is organized by the socle

H ⊆ G, which is a simple group except in the single case H = A5 ×A5. The ‘.’ indicate that,
for example, of the 23 known fields in K[PGL2(7),Ω], twenty are listed in [21] and three are
new. The polynomial for the SL2(16) field was found by Bosman [8], starting from a classical
modular form of weight two. We found polynomials for the new SL3(2) field and the three
new PGL2(7) fields starting from Schaeffer’s list [35, Appendix A] of ethereal modular forms
of weight one. Polynomials for the other new fields were found by specializing families. All
fields summarized by Table 9.1 come from the part of the database in degree less than or equal
to eleven, except for Bosman’s degree-17 polynomial and the degree-28 polynomial for G2(2).
It would be of interest to pursue calculations with modular forms more systematically. They
have the potential not only to yield new fields in Kns

min[Ω], but also to prove completeness for
certain G.

10. General nonsolvable fields with grd 6 Ω

We continue in the framework of the previous section, so that the focus remains on Galois
number fields contained in C. For K1 ∈ Kns

min[Ω] such a Galois number field, let K[K1; Ω] be
the subset of Kns[Ω] consisting of fields containing K1. Clearly,

Kns[Ω] =
⋃
K1

K[K1; Ω]. (10.1)

So, a natural approach to studying all of Kns[Ω] is to study each K[K1; Ω] separately.
The refined local information contained in the database can be used to find fields in K[K1; Ω].

The set of fields so obtained is always very small, often just {K1}. Usually it seems likely that
the set of fields obtained is all of K[K1; Ω], and sometimes this expectation is provable under the
GRH. We sketch such a proof for a particular K1 in the first example below. In the remaining
examples, we start from other K1 and construct proper extensions K ∈ K[K1; Ω], illustrating
several phenomena. Our examples are organized in terms of increasing degree [K : Q]. The
fields here are all extremely lightly ramified for their Galois group, and therefore worthy of
individual attention.

Our local analysis of a Galois number field K centers on the notion of p-adic slope content
described in [20, §3.4] and automated in the associated database. Thus, a p-adic slope content
of [s1, . . . , sm]ut indicates a wild inertia group P of order pm, a tame inertia group I/P of order
t, and an unramified quotient D/I of order u. Wild slopes si ∈ Q∩ (1,∞) are listed in weakly
increasing order and from [20, equation (7)] the contribution pα to the root discriminant of K
is determined by

α =

( m∑
i=1

p− 1

pi
sn+1−i

)
+

1

pm
t− 1

t
.

The quantities t and u are omitted from presentations of slope content when they are 1.

https://doi.org/10.1112/S1461157014000424 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000424


a database of number fields 615

Degree 120 and nothing more from S5. The polynomial

f1(x) = x5 + x3 + x− 1

has splitting field K1 with root discriminant ∆1 = 112/3371/2 ≈ 30.09. Since ∆122/3 ≈ 47.76,
∆131/2 ≈ 52.11, ∆1111/6 ≈ 44.87, and ∆1371/4 ≈ 74.20 are all more than Ω, any K ∈ K[K1; Ω]
has to have root discriminant ∆ = ∆1. The GRH bounds say that a field with root discriminant
30.09 can have degree at most 2400 [29].

The main part of the argument is to use the database to show that most other a priori
possible G in fact do not arise as Gal(K/Q) for K ∈ K[K1; Ω]. For example, if there were an
S3 field K2 with absolute discriminant 11237, then K1K2 would be in K[K1; Ω]; there is in fact
an S3 field with absolute discriminant 11 · 372, but not one with absolute discriminant 11237.
As an example of a group that needs a supplementary argument to be eliminated, the central
extension G = 2.S5 does not appear because the degree-12 subfield of K1 fixed by D5 ⊂ S5

has root discriminant ∆1 and class number 1.

Degree 1920 from A5. The smallest root discriminant of any nonsolvable Galois field is
26/7172/3 ≈ 18.70 coming from a field K1 with Galois group A5. This case is complicated
because one can add ramification in several incompatible directions, so that there are different
maximal fields in K[K1; Ω]. One overfield is the splitting field K̃1 of f−(x), where

f±(x) = x10 + 2x6 ± 4x4 − 3x2 ± 4.

In this direction, ramification has been added at 2, making the slope content there [2, 2, 2, 2, 4]6

and the root discriminant 239/16172/3 ≈ 35.81. The only solvable field K2 in the database which
is not contained in K̃1 but has rd(K̃1K2) < Ω is Q(i). The field K̃1K2 is the splitting field
of f+(x) with Galois group 10T36. There is yet another wild slope of 2, making the root
discriminant 279/32172/3 ≈ 36.60.

Degree 25 080 from PSL2(11). The only known field K1 with Galois group PSL2(11) and
root discriminant less than Ω first appeared in [25] and is the splitting field of

f1(x) = x11 − 2x10 + 3x9 + 2x8 − 5x7 + 16x6 − 10x5 + 10x4 + 2x3 − 3x2 + 4x− 1.

The root discriminant is ∆1 = 18311/2 ≈ 42.79, forcing all members of K[K1; Ω] to have root
discriminant 18311/2 as well.

The prime 1831 is congruent to 3 modulo 4, so that the associated quadratic field Q(
√
−1831)

is imaginary and its class number can be expected to be considerably larger than one. This
class number is in fact nineteen, and the splitting field of a degree-19 polynomial in the
database is the corresponding Hilbert class field K2. The field K1K2 ∈ K[K1; Ω] has degree
660 · 38 = 25 080.

Degree 48 384 from SL2(8).3. The splitting field K1 of

f1(x) = x9 − 3x8 + 4x7 + 16x2 + 8x+ 8

has Galois group Gal(K1/Q) = 9T32 = SL2(8).3 and root discriminant 273/2878/9 ≈ 34.36.
This root discriminant is the smallest known from a field with Galois group SL2(8).3. In fact,
it is small enough that it is possible to add ramification at both 2 and 7 and still keep the root
discriminant less than Ω. Namely, let

f2(x) =x4 − 2x3 + 2x2 + 2,

f3(x) =x4 − x3 + 3x2 − 4x+ 2.

The splitting fields K2 and K3 have Galois groups A4 and D4, respectively. Composing with
K2 increases degrees by four and adds wild slopes 2 and 2 to the original 2-adic slope content
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[20/7, 20/7, 20/7]37. Composing with K3 then increases degrees by eight, adding another wild
slope of 2 to the 2-adic slope content and increasing the 7-adic tame degree from nine to 36.
The root discriminant of K1K2K3 is then 2153/56735/36 ≈ 44.06.

Degree 80 640 from S8. The largest group in Table 9.1 is S8, and the only known field in
K[S8,Ω] is the splitting field K1 of

f1(x) = x8 − 4x7 + 4x6 + 8x3 − 32x2 + 32x− 20.

Here Galois slope contents are [15/4, 7/2, 7/2, 3, 2, 2]3 and [ ]7 at 2 and 5, respectively, giving
root discriminant 2111/3256/7 ≈ 43.99. The only field in the database which can be used to
give a larger field in K[K1; Ω] is K2 = Q(i). This field gives an extra wild slope of 2, raising
the degree of K1K2 to 80 640 and the root discriminant to 2223/6456/7 ≈ 44.47.

Degree 86 400 from A2
5.V . Another new field K1 in Table 9.1, found by Driver, is the

splitting field of

f1(x) = x10 − 2x9 + 5x8 − 10x6 + 28x5 − 26x4 − 5x2 + 50x− 25.

As in the previous example, this field K1 is wildly ramified at 2 and tamely ramified at 5. Slope
contents are [23/6, 23/6, 3, 8/3, 8/3]3 and [ ]6 for a root discriminant of 2169/4855/6 ≈ 43.89.
The splitting field K2 of x3 − x2 + 2x + 2 has Galois group S3, with 2-adic slope content [3]
and 5-adic slope content [ ]3. In the compositum K1K2, the extra slope is in fact 2, giving a

root discriminant of 285/2455/6 ≈ 44.53.

Degree 172 800 from S5 and S6. Consider the
(
386
2

)
= 74 305 composita K1K2, as K1 and

K2 vary over distinct known fields in Kns
min[Ω]. From our discussion of Figure 9.1, one would

expect that very few of these composita would have root discriminant less than Ω. In fact,
calculation shows that exactly one of these composita has rd(K1K2) 6 Ω, namely the joint
splitting field of

f1(x) =x5 − x4 − x3 + 3x2 − x− 19,

f2(x) =x6 − 2x5 + 4x4 − 8x3 + 2x2 + 24x− 20.

Here Gal(K1/Q) = S5 and Gal(K2/Q) = S6. Both fields have tame ramification of order
two at 3 and order five at 7. Both are otherwise ramified only at 2, with K1 having slope
content [2, 3]2 and K2 having slope content [2, 2, 3]3. In the compositum K1K2, there is partial
cancellation between the two wild slopes of 3, and the slope content is [2, 2, 2, 2, 3]6. The root
discriminant of K1K2 then works out to be 239/1631/274/5 ≈ 44.50. The existence of this
remarkable compositum contradicts [21, Corollary 12.1] and is the only error we have found
in [21].

The field discriminants of f1 and f2 are respectively −2263174 and −2293174. The splitting
fields K1 and K2 thus contain distinct quadratic fields, Q(

√
3) and Q(

√
6), respectively. The

compositum therefore has Galois group all of S5×S6, and so the degree [K1K2 : Q] = 120·720 =
86 400 ties with that of the previous example. But, moreover, K3 = Q(

√
−3) is disjoint from

Q(
√

3,
√

6) and does not introduce more ramification. So, K = K1K2K3 has the same root
discriminant 239/1631/274/5 ≈ 44.50, but the larger degree 2 · 86 400 = 172 800.

The GRH upper bound on degree for a given root discriminant δ ∈ [1,Ω) increases to infinity
as δ increases to Ω (as illustrated by [21, Figure 4.1]). However, we have only exhibited fields
K here of degree less than or equal to 172 800. Dropping the restriction that K is Galois and
nonsolvable may let one obtain somewhat larger degrees, but there remains a substantial and
intriguing gap between degrees of known fields and analytic upper bounds on degree.
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MR 1061762 (91i:11154).

31. K. Ono and Y. Taguchi, ‘2-adic properties of certain modular forms and their applications to arithmetic
functions’, Int. J. Number Theory 1 (2005) no. 1, 75–101; MR 2172333 (2006e:11057).

32. M. Pohst, ‘On the computation of number fields of small discriminants including the minimum
discriminants of sixth degree fields’, J. Number Theory 14 (1982) no. 1, 99–117; MR 644904 (83g:12009).

33. D. P. Roberts, ‘Chebyshev covers and exceptional number fields’, in preparation.
http://facultypages.morris.umn.edu/∼roberts/.

34. D. P. Roberts, ‘Wild partitions and number theory’, J. Integer Seq. 10 (2007) no. 6, Article 07.6.6;
MR 2335791 (2009b:11206).

35. G. J. Schaeffer, ‘The Hecke stability method and ethereal forms’, PhD Thesis, University of California,
Berkeley, CA (ProQuest, UMI Dissertations Publishing, Ann Arbor, MI, 2012); MR 3093915.

36. A. Schwarz, M. Pohst and F. Diaz y Diaz, ‘A table of quintic number fields’, Math. Comp. 63 (1994)
no. 207, 361–376; MR 1219705 (94i:11108).

37. The GAP Group, GAP—Groups, Algorithms, and Programming, version 4.4, 2006
(http://www.gap-system.org).

38. The PARI Group, Bordeaux, Pari/gp, version 2.6.2, 2013.
39. J. Voight, ‘Tables of totally real number fields’, http://www.math.dartmouth.edu/∼jvoight/nf-tables/

index.html.
40. J. Voight, ‘Enumeration of totally real number fields of bounded root discriminant’, Algorithmic number

theory, Lecture Notes in Computer Science 5011 (Springer, Berlin, 2008) 268–281;
MR 2467853 (2010a:11228).

John W. Jones
School of Mathematical and Statistical

Sciences
Arizona State University
PO Box 871804
Tempe, AZ 85287
USA

jj@asu.edu

David P. Roberts
Division of Science and Mathematics
University of Minnesota Morris
Morris, MN 56267
USA

roberts@morris.umn.edu

https://doi.org/10.1112/S1461157014000424 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=1061762
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=2172333
http://www.ams.org/mathscinet-getitem?mr=644904
http://www.ams.org/mathscinet-getitem?mr=644904
http://www.ams.org/mathscinet-getitem?mr=644904
http://www.ams.org/mathscinet-getitem?mr=644904
http://www.ams.org/mathscinet-getitem?mr=644904
http://www.ams.org/mathscinet-getitem?mr=644904
http://www.ams.org/mathscinet-getitem?mr=644904
http://www.ams.org/mathscinet-getitem?mr=644904
http://www.ams.org/mathscinet-getitem?mr=644904
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://facultypages.morris.umn.edu/~roberts/
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=2335791
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=3093915
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.ams.org/mathscinet-getitem?mr=1219705
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.gap-system.org
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.math.dartmouth.edu/~jvoight/nf-tables/index.html
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
http://www.ams.org/mathscinet-getitem?mr=2467853
https://doi.org/10.1112/S1461157014000424

	1 Introduction
	2 Using the database
	3 Internal structure
	4 Summarizing tables
	5 S5 quintics with discriminant -s 2a 3b 5c 7d
	6 Low-degree nonsolvable fields with discriminant -s pa qb
	7 Nilpotent octic fields with odd discriminant -s pa qb
	8 Nilpotent octic fields with discriminant -s 2a qb
	9 Minimal nonsolvable fields with grd≤Ω
	10 General nonsolvable fields with grd≤Ω
	References

