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APPROXIMATELY PERIODIC FUNCTIONALS ON
C*-ALGEBRAS AND VON NEUMANN ALGEBRAS

JOHN C. QUIGG

1. Introduction. In the duality for locally compact groups, much use is
made of a version of the Hopf algebra technique in the context of von
Neumann algebras, culminating in the theory of Kac algebras [6], [14]. It
seems natural to ask whether something like a Hopf algebraic structure
can be defined on the pre-dual of a Kac algebra. This leads to the question
of whether the multiplication on a von Neumann algebra M, viewed as a
linear map m from M O M (the algebraic tensor product) to M, can be
pre-transposed to give a co-multiplication on the pre-dual M,, i.e., a linear
map m, from M, to the completion of M, O M, with respect to some
cross-norm. A related question is whether the multiplication on a
C*-algebra A can be transposed to give a co-multiplication on the dual 4*.
Of course, this can be regarded as a special case of the preceding question
by taking M = A**, where the double dual A** is identified with the
enveloping von Neumann algebra of 4. Keeping in mind the relationship
with Kac algebras, the most desirable choice for the cross-norm on
M, O M, would be the dual of the spatial (least) C*-norm on M O M.

To make the problem more precise, note that, since m is continuous
with respect to the greatest cross-norm y on M O M, we can extend m to
the completion M ®y M and then transpose to get a map m* from M* to
M ®y M)*. We shall not pause to seek conditions under which the range
of m* is contained in M* ®y* M* (see [13] for a study of this question in
the Banach algebra context). Rather, since we want to work with
C*-tensor products, we should require first of all that m be continuous
with respect to the spatial C*-norm, which turns out to be a surprisingly
restrictive condition. Of course, this is not enough for our present
purposes, since this only gives

m*:M* — (M ® M)*

(here M ® M denotes the completion of M O M relative to the spatial
C*-norm). We actually need m to extend to a o-weakly continuous map
from M @ M (the von Neumann algebra tensor product) to M, so that we
can pre-transpose to get
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(by which we denote the completion of M, ® M, relative to the dual of
the spatial C*-norm). To see what this entails, recall that there is an
1sometric isomorphism

T(M Q, M)* — B(M, M*)
(the bounded linear maps from M to M*) defined by
x, T(@y) =(x®y.¢) (x,y € M, ¢ € (MO M)*).

It is immediate that T(¢) is finite rank with range in M, for
¢ € M, O M,, and hence that T(¢) is compact with range in M,
for ¢ € M, ® M,. We conclude that a necessary condition for m to
pre-transpose to give a co-multiplication on M, is that T(m*(¢)) be a
compact linear map from M to M,, for each ¢ € M,. Letting M act on M,
via

(x,y o) =(xp.¢) (x,y € M, ¢ € M,),
it 1s straightforward to compute that

Tm*(®))y =y-¢ (y € M, ¢ € M,).

Therefore the above necessary condition can be re-written as: M, - ¢ is
relatively compact in M, for each ¢ € M,, where M, denotes the unit ball
of M. For a Banach algebra A4, Kitchen [9] calls a functional ¢
almost periodic if the linear map x — x - ¢ from 4 to A* is compact. If
A = L'(G) for alocally compact group G, then this reduces to the classical
notion of almost periodicity for ¢ € L°°(G). However, if ¢ is a faithful
normal state on a von Neumann algebra, then Connes [2] calls ¢ almost
periodic if its modular operator Ay is diagonalizable. This has nothing to
do with the compactness of x — x - ¢. Since we are interested primarily in
C*-algebras and von Neumann algebras, and since we do not wish to
introduce terminology conflicting with that of Connes, we will use the
term approximately periodic.

In Section 2 we characterize those von Neumann algebras M having the
property that every normal functional is approximately periodic, and we
use this to characterize the set of approximately periodic normal
functionals in the pre-dual of any von Neumann algebra.

In Section 3 we specialize to the case where M = A** for a C*-algebra
A, and we characterize those 4 having the property that every functional
is approximately periodic. We use this to define what we call the uni-
versal approximately periodic representation, which is a generalization of
the construction of the Bohr compactification of a locally compact
group.

In Section 4 we characterize those von Neumann algebras whose
multiplication is continuous relative to the spatial C*-norm.
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In Section 5 we show that the multiplication on a von Neumann algebra
pre-transposes to give a co-multiplication on the pre-dual if and only if
every normal functional is approximately periodic and the multiplication
1s continuous relative to the spatial C*-norm.

In Section 6 we discuss a certain approximation property satisfied by
the approximately periodic functionals on a C*-algebra.

Finally, Section 7 is devoted to an indication of the way in which the
co-multiplication on the pre-dual can be utilized in connection with
actions of Kac algebras on von Neumann algebras.

2. Approximately periodic functionals on von Neumann algebras. Let M
be a von Neumann algebra, and let
AP, (M) = {¢ € MM, - ¢ is relatively compact}

denote the set of approximately periodic normal functionals on M. Thus, ¢
is approximately periodic if and only if the map x — x - ¢ from M to M, is
compact. We proceed to study the condition AP, (M) = M,.

LEMMA 2.1. Let M = B(H), the set of bounded linear operators on the
Hilbert space H. Then AP, M) = M, if and only if H is finite
dimensional.

Proof. M, is identified with the set of trace class operators on H,
equipped with the trace norm, via

(x, ¢y = tr(xo).

A trivial computation shows that x - ¢ = x¢ (x € M, ¢ € M,).
Now, M, is also identified with the projective tensor product H ®7 H
of the conjugate space to H and H via

E®@m = (@lm ¢ € H).
Under this identification, if £ and % have norm one, we have

M, -E®n) =£@H,
which is relatively compact in H ®Y H if and only if H, is compact
in H, which is equivalent to the finite dimensionality of H.

LEMMA 2.2. If AP, (M) = M, and N is a von Neumann subalgebra of M,
then AP,(N) = N,.

Proof. 1dentify N, with the set M,|N of restrictions to N of elements of
M,. Then, for ¢ € M,,

Ny - (¢IN) = (N, - ¢)IN
C (M, - $)IN,

which is relatively compact in N, since restriction to N is a continuous
map from M, to N,.
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LEMMA 2.3. If M is the direct sum of the von Neumann algebras M; (i €
1), then AP (M) = M, if and only if

AP (M,) = (M,)y foralli € I.

Proof. As the necessity is immediate from Lemma 2.2, we show only the
sufficiency.
M, is identified with the /' direct sum of the pre-duals (M,), via

(x. ¢) = 2} (x, 6 (x € M, ¢ € M,).

A straightforward computation shows that
(X'¢),‘ = X; " ¢ (x €M ¢ €M,).

In particular, if ¢ has only finitely many non-zero components, then M, - ¢
is a sum of finitely many relatively compact sets, and is therefore relatively
compact. The proof is concluded by observing that such ¢ are dense
in M,.

LEMMA 2.4. If M = L°(S, p), where p is a Radon measure on the locally
compact Hausdorff space S, then AP (M) = M, if and only if u is purely
atomic.

Proof. By restricting to compact subsets, we may assume without loss of
generality that p is bounded. If M, is identified with L'(S, p) in the usual
way, it is clear that

fo=Jfo (feM e M,

In particular, if ¢ is the constant function 1, then M, - ¢ is the image of the
unit ball of M under the natural embedding of L™(S, p) in L'(s, ©), which
is relatively compact if and only if p is purely atomic. This proves the
necessity, and the sufficiency follows at once from Lemma 2.3.

THEOREM 2.5. AP, (M) = M, if and only if M is a direct sum of matrix
algebras.

Proof. The sufficiency follows immediately from Lemmas 2.1 and 2.3.

For the necessity, first note that M must be finite, for it would otherwise
contain a type I, factor, in violation of Lemmas 2.1 and 2.2.

Similarly, M must be a direct sum of factors, for its center would
otherwise be a non-atomic abelian von Neumann algebra, in violation of
Lemmas 2.2 and 2.4.

Finally, if M were not type I, then it would contain a type /I, factor,
which would contain the hyperfinite //, factor, which would in turn
contain a non-atomic abelian von Neumann algebra, again in violation of
Lemmas 2.2 and 2.4.
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We now proceed to characterize AP,(M) as a subspace of M,. Recall
that a subset S of M, is called invariant if

M-S-McS,
where
(2x ¢y = (v2x, @) (x,y,z € M. ¢ € M,).
LEMMA 2.6. AP (M) is a closed invariant subspace of M.

Proof. This is routine in view of the fact that the maps x > x- ¢ (x €
M) vary continuously with ¢ € M,.

Recall [12] that there is a bijection between the closed invariant
subspaces V of M,, the o-weakly closed ideals N of M, and the central
projections z of M via

Ve = N = M1 — 2),

where V° denotes the polar of V. Under this correspondence, V = z - M,
V* is identified with Mz, and we have the decompositions

M= M:® M1 — 2)
M, = (Mz),, ©® (M(1 — z) ),
=z M, O — z)-M,.

Also, if ¥} and V, are closed invariant subspaces of M,, then V| C V, if
and only if V} C V3.

LEMMA 2.7. If N is a o-weakly closed ideal of M, then
AP (N) = Ny N AP (M).

Proof. Let N = Mz, where z is a central projection of M. Then, for
¢ €N, =2z-M,,

Ni-op=(M:z),-¢=Mz) - ¢ =M (z-9¢) =M ¢
Therefore, AP, (N) = z - AP (M).

Let M,, be the largest ideal of M which is a direct sum of matrix
algebras.

THEOREM 2.8. (Map)* = AP.(M).
Proof. By construction and Theorem 2.5,
AP(M,,) = (M,)s.
so that by Lemma 2.7
(M,,)s C APL(M).
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On the other hand, if N = AP (M)*, then AP,(N) = N, by Lemma 2.7,
so that N is a direct sum of matrix algebras. But M, is the largest such
ideal, so that we must have N C Mup and hence AP, (M) C (Mup)*.

3. Approximately periodic functionals on C*-algebras. Let 4 be a
C*-algebra and let

AP(A) = {¢ € A*|4, - ¢ is relatively compact}

denote the set of approximately periodic functionals on 4. Thus, ¢ is
approximately periodic if and only if the map x — x - ¢ from 4 to A* is
compact.

LEMMA 3.1. AP (A**) = AP(A).

Proof. This follows immediately from the observation that the double
dual of the map x — x - ¢ from 4 to A* is the map x — x - ¢ from A** to
A*, so that the compactness of either implies that of the other.

Recall [8] that A is called scattered if every positive functional on 4 is a
sum of pure positive functionals, or, equivalently, if 4** is a direct sum of
type I factors. By Theorem 2.5 and Lemma 3.1, we have

THEOREM 3.2. AP(A) = A* if and only if A is scattered and its irreducible
representations are finite dimensional.

We now characterize AP(A4) by means of a representation which is the
analogue of the construction of the Bohr compactification of a locally
compact group.

Definition. A representation 7 of A is approximately periodic if
AP (m(A)") = m(A)" 4.

Recall that every nondegenerate representation 7 of 4 extends uniquely
to a normal representation 7 of A**, and that m(4**) = @(A4)”. Let z,, be
the central projection in A** such that

ker m = A**(1 — z_).
Then 7(A4)” ~ A**z_, and we have
ProPOSITION 3.3. 7 is approximately periodic if and only if
z, - A* C AP(A).
Proof. This follows immediately from Lemma 2.7.

Let 7, be the direct sum of all the finite dimensional cyclic
representations obtained from the application of the Gelfand-Naimark-
Segal construction to the states of A, and denote the corresponding central

projection by z,,,.
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THEOREM 3.4. 7, - A* = AP(A).

Proof. It is clear from the construction that A**z,, s the largest ideal of
A** which is a direct sum of matrix algebras, i.e.,

A**Zup — (A**)ap'
The result now follows from Theorem 2.8.

COROLLARY 3.5. A representation of A is approximately periodic if and
only if it is quasi-equivalent to a sub-representation of Tup-

In view of Corollary 3.5, we make the

Definition. w,, is the universal approximately periodic representation

p
of A.

Note that if 4 is the group C*-algebra of a locally compact group G,
then the weak operator closure of {=,(s):s € G} is the Bohr com-
pactification of G.

By analogy with groups, we could call a C*-algebra maximally
approximately periodic if its universal approximately periodic representa-
tion is faithful. In regard to this, Choi [1] has shown that the C*-algebra of
the free group on two generators is maximally approximately periodic.

4. Continuity of the multiplication.

Definition. For a C*-algebra A, let m;:A © 4 — A denote the
multiplication, and let ||m || denote the norm of m , relative to the spatial
C*-normon A O A.

In this section we characterize those von Neumann algebras M
satisfying ||m,,|| < oo.

LemMma 4.1. If |lm,ll] < oo and B is a C*-subalgebra of A, then
[Impgll < oo.

Proof. The spatial C*-norm on B O B is the same as the restriction of
the spatial C*-norm on 4 O A [8]. Since my = m4|B O B, we conclude
that [[mp|| = [Im,][.

LEMMA. 4.2. Let {A,li € I} be a collection of C*-algebras. Then there is a
*-monomorphism

@I(@iAi) ® (@,A,) - ®i.in ® Aj
defined by
Px®y),; = x; Dy,

Proof. If each A, is faithfully represented on a Hilbert space H,, then
(@A) ® (D4,) and @, j4, ® 4, are faithfully represented on
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(®@,H,) ® (@.H,) and O, H, ® H,, respectively (where @ here de-

notes the /* direct sum and & the Hllbert space tensor product). Define
isometries

ViH, — @H, and
W, H, ® H; — @, H, Q H,

by
§i=
(V’E)/ - {O, else
Li=kj=1
Wikt = {O, else.

Then U = 3, W, ;VE @ V¥ converges in the strong operator topology and
defines a umtary from (EB H,)® (@,H,) onto @, H, ® H, which is easily
seen to implement the map <I) defined in the statement of the lemma.

Remark. The above map ® need not be surjective. For example, if
I = Nand 4, = Cforalli € I, then

DA, = [“(N) and @, 4, ® 4, = (N X N)
(where C ® C is identified with C), but
[(N X N) ~ [°(N) ® I®°(N) # [°(N) ® [*(N),
where & here denotes the von Neumann algebra tensor product.

CoroLLARY 4.3. If 4 = @, ,A4,, then

lm4ll = sup [lm|I.
1

Proof. Let

> x(k)®y(k) € A0A.
k

Then

mA(E K ®y(k)),~ = 3 kgt

k k

I

mA,(Z a2 ®Y(k)),

k

y }m/,(z xR ®y‘k)) H = sup
k i

(5 400,5)
k
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mA,(; xi(k) ®}‘§A)) ‘ ‘

= sup
1

k) (k
‘2 eyt ’
k

= sup [lmy]l - sup
1 1

= sup| |2 o™ @y,
iJ k

= sup @(2 P ®y“"))
k

i)

But

‘ = sup 2 xf-k) ®yj(-k’

sup
i i,j k

k k
';ﬂ’@W

ij

@(2 X ®y(k)) ‘ l
k

‘ b}

2 x(k) ®y(r’\')
k

by Lemma 4.2.
LEMMA 4.4. |lmp )|l < oo if and only if H is finite dimensional.

Proof. Only the necessity is unclear. If H is infinite dimensional, then
B(H) contains a non-semidiscrete factor M, so that

MO M c B(H)O B(H).
But ||mB(H)|M O M'|| = oo [4].

COROLLARY 4.5. If A contains a type 1, factor for arbitrarily large n, then
[lm ]|l = oo.

Proof. 1t suffices to show that

sup IImB(Cn)H = oo.
n
Now, the C*-algebra K(H) of compact operators on a separable infinite
dimensional Hilbert space H contains an increasing sequence of
sub-algebras 4, ~ B(C") whose union is dense. Hence, U,4, O 4, =
UA,O UA, is dense in K(H) O K(H), so that

llmg )l = sup llmy || = sup [lmpcn)ll.
n n

Suppose that ||m H)II < oo. Then we can extend to get a bounded map
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my - K(H) @ K(H) = K(H)
whose double dual is a o-weakly continuous map
m iy BUH) @ B(H) — B(H).

But, using the separate o-weak continuity of multiplication, it is easy to
see that

m,?("},)IB(H) O B(H) = Mp 11y

which is not even norm continuous by Lemma 4.4. This contradiction
forces us to conclude that

lmg il =llmg |l = oo.

THEOREM 4.6. If M is a von Neumann algebra, then ||m,,l| < oo if and
only if M is type I and the factors contained in M have bounded
dimension.

Proof. We start with the necessity. First, M must be finite, since it would
otherwise contain a type I, factor, in violation of Lemmas 4.1 and 4.4.
Similarly, M must be type I, since a non-type / von Neumann algebra
contains type I, factors for arbitrarily large n, which M cannot contain by
Lemma 4.1 and Corollary 4.5. Of course, this last observation shows that
the factors contained in M must have bounded dimension.

For the sufficiency, if M is type I and the factors contained in M have
bounded dimension, then there is a finite set I and for each i € I there are
an abelian von Neumann algebra N, and a finite dimensional Hilbert
space H, such that

M =~ eielNi ® B(H)).

Hence, by Corollary 4.3, assume without loss of generality that M is of
the form N @ B(H), where N is abelian and H is finite dimensional. Since
H is finite dimensional, the von Neumann algebra tensor product reduces
to the spatial C*-tensor product N ® B(H). Since N is abelian, there is a
hyper-Stonian space S such that N =~ C(S). Since C(S) is a C*-subalgebra
of /°°(S), C(S) ® B(H) is a C*-subalgebra of

1°(S) ® B(H) = @, sB(H).
The proof is completed by an appeal to Lemma 4.1 and Corollary 4.3.

5. Co-multiplication on the pre-dual. In the introduction we observed
that a necessary condition for the multiplication on M to give rise to a
co-multiplication on M, is that AP, (M) = M,. We also mentioned that
the continuity of the multiplication relative to the spatial C*-norm is
necessary, which we prove in this section. We shall also prove that these
two conditions are sufficient.

https://doi.org/10.4153/CJM-1985-043-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-043-9

APPROXIMATELY PERIODIC FUNCTIONALS 779

Let m = my, Since m is always continuous relative to the greatest
cross-norm y, we can transpose to get

m*:M* — (M ®y M)*.

Let § = m*/M,. By the definition of the dual cross-norm, M, ® M, is
isometrically embedded in (M O M)* which is (non-isometrically)
embedded in (M ®Y M)*. For m to give rise to a co-multiplication on M,
we need

(M, c M, ® M,.

THEOREM 5.1. The following are equivalent:
(i) 8(My) € M, ® M, and ||8|| < oo;
(i) AP (M) = M, and ||myl| < oo;
(iii) M is a direct sum of matrix algebras of bounded dimension.

Proof. (i) = (ii). We have already pointed out the necessity of the
condition AP, (M) = M,. If §(M,) ¢ M, ® M,, then

*MQQM— M.

But by construction m,, = §*|M O M.

(11) = (1i1). This is immediate from Theorems 2.5 and 4.6.

(ii1) = (1). Let M be a direct sum of matrix algebras of bounded
dimension. Then M = A** where A4 is the ¢, direct sum of the matrix
algebras. Since ||m,,|| < co by Theorem 4.6, we get

myA Q@A — A
Now, (4 @ A)** = A** ® A** (something which is false in general), and
so we have

m*MQ@Q M — M.

But separate o-weak continuity of multiplication shows that
my, = m¥*IM O M, and we finally arrive at

8§ =mi:M, > M, ®M,.

Remarks. (1) The above proof shows that if M is a direct sum of matrix
algebras of bounded dimension, then m,;, extends to a o-weakly
continuous map on M, @ M, (although the multiplication will of course
not be jointly continuous in general). This is primarily a consequence of
the fact that, under these hypotheses, there is a C*-algebra A4 such that

M=A4** and MO M = (4 ® A)**.

In general, 4** @Q A** can be identified with a o-weakly closed ideal of
(4 ® 4)**, and it is not difficult to see that if ||m,|| < co, then

mA**IA** O 4A** = n g x*
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if and only if
A** ®A** = (4 ® A)**.

For example, if A =CJ[0, 1], then ||m /|| < co and ||m **|| < co but
MFF|A** O A** # m .

(i1) If M = VN(G), the von Neumann algebra generated by the left
regular representation of a locally compact group G, then M, is
the Fourier algebra 4(G) of G [7], which is contained in the algebra
Cy(G) of continuous functions on G which vanish at infinity. When
VN(G) @ VN(G) is identified with VN(G X G), the map 8 can be
computed by

8(f)s, 1) = f(st),

forf € A(G)ands, t € G. If G is not compact, then 8(4(G) ) is not even
contained in Cy(G X G). Theorem 5.1 shows that, even when G is
compact, 8(4(G)) will not lie in 4(G X G) unless the irreducible
representations of G have bounded dimension. On the other hand,
Theorem 5.1 shows that, if the left regular representation of G is a direct
sum of irreducibles of bounded dimension, then G is compact. These facts
are undoubtedly well-known, although the author could not find a
reference.

6. An approximation property. If 4 is any Banach algebra and X is any
two-sided 4-module, Kitchen [9] says that the approximation theorem holds
for (X, A) if every closed invariant subspace of 4P (X) (obvious definition)
is a direct sum of finite dimensional invariant subspaces. Using our
characterization of approximately periodic functionals, it is easy to
prove:

PROPOSITION 6.1. If A is a C*-algebra and M is a von Neumann algebra,
then the approximation theorem holds for (A*, A) and (M, M).

Actually, one of Kitchen’s [9] results implies that, for any Banach
algebra A, if there is a bounded subgroup of the invertible multipliers of 4
that determines the closed invariant subspaces of AP(A), then the
approximation theorem holds for (4*, 4). When A4 is a C*-algebra, the
group of unitary multipliers will do, and this leads to another proof of
Proposition 6.1. It is tempting to conjecture that the same technique
would work for any Banach *-algebra 4 which can be isometrically
embedded in its multiplier algebra. Of course, this is not trivial, for 4
could possess unitary multipliers (multipliers u satisfying uu* = u*u = 1)
of norm larger than one. For example, if G is a locally compact group,
then, as is well known, the approximation theorem holds for (L°(G),
L'(G) ), essentially because the multiplier algebra M(G) (the bounded
Radon measures on G) of Ll(G) contains a sufficiently large bounded
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group (namely, the point masses at the elements of G, all of which have
norm one). However, L!(G) has many unitary multipliers of norm greater
than one. In fact,

PROPOSITION 6.2. If A is a Banach *-algebra having the property that
lIxll = sup{max{ llxyll, llyxll }:y € A, [yl = 1}, x € 4,

then the norms of the unitary multipliers of A are equal to one (resp.,
bounded) if and only if A is (resp. is *-isomorphic to) a C*-algebra.

Proof. The hypothesis guarantees that 4 can be isometrically embedded
in its multiplier algebra, so the result follows from Problems 4 and 6 of
Section 15.6 in [3].

Note that the hypothesis is satisfied when 4 = LY(G) or A(G).

We are indebted to J. DeCanniére and C. Apostol for discussions
concerning an earlier version of the above result (before we found the
reference to Dieudonné).

7. An application. If K = (M, T, «, ¢) is a Kac algebra and N is a von
Neumann algebra, then an action of K on N is defined as a unital
*-monomorphism a:N — N @ M satisfying the co-associativity property
expressed in the commutative diagram

o4

N SNQM
a ®T
N M >NQQ MO M
a®.

(Enock, [5]).
Taking pre-duals, we obtain a map a,:N, ® M, — N, which makes the
following diagram commute:

N, ® M, ® M, = | wNoM,
(7.1 (T, oy
Ny ® M, >N,
Oy

Keeping in mind that I, is the multiplication on the Banach algebra M,,
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diagram (7.1) expresses the fact that N, is a right M,-module, although we
are using the tensor product ® rather than the more usual ®Y. Pursuing
this, we see almost immediately how to translate the unicity, injectivity,
and involutivity of a into corresponding properties of a,. However, the
homomorphicity of a is not so easily transferred to a.

Let us assume that both M and N are direct sums of matrix algebras of
bounded dimension. Then so is N @ M, and we can express the
homomorphicity of « in the commutative diagram

NN 1@ NOMONOM
(7.2) my My@M
N >NQQ M
43

We want to write diagram (7.2) in a more convenient form by removing
the cumbersome myg,,. In order to do so, we define the tensor product
a; @ a, of two actions a; and a, of K on von Neumann algebras N, and
N, by the commutative diagram

. o ®O’. N J
N, ® N, L U NON,®M
(7.3) 49 ®0[2 L®m’,rw
NNOMAON, QM >N QN, QMO M
T

where 7 is the “middle two flip”:
TxQy®:0w)=xQ:Q0yQw.

It is tedious but straightforward to check the co-associative law for
Using this, diagram (7.2) can be re-written as

N®N 2 ®a >N ®

X

M

(7.4) my my O

QreE——=

<
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In words, diagram (7.4) expresses the condition that the multiplication on
N should “intertwine” the actions a @ « and a.

We can pre-transpose diagram (7.3) to obtain a tensor product of the
right M,-modules N, and N,,:

O % 2y Q)%

Nix © Npy ® M, Nix ® Ny,

(7.5) L ® 8/”* Oé]* ® az*

T

where §,, is the co-multiplication on M,. We can then use this to
pre-transpose the homomorphicity of a:

o9

N, ® M, > Ny
(7.6) 8y ®. 8.
N, ®N, ® M, - >N, © N,
Ay ®a*

Diagram (7.6) expresses the requirement that the co-multiplication on N,
be an M,-module map.

Remarks. (1) The condition that the multiplication on M pre-transpose
to give a co-multiplication on M, is very restrictive. It seems likely that a
construction accomplishing a similar purpose can be performed in a more
general setting. For example, if G is a locally compact group, then the
multiplication on L®(G) gives rise to a map from L'(G) to M(Ll(G) ®
L'(G) ), the multiplier algebra of LI(G) ® L'(G). In the general situation
where M is the von Neumann algebra of a Kac algebra, this suggests a
search for conditions under which the multiplication on M will give rise to
a map from M, to M(M, ® M,), the multiplier algebra of M, ® M,,
which is a Banach algebra since M is a Kac algebra. However, this still
seems to require at least the continuity of the multiplication on M relative
to the spatial C*-norm, which is still fairly restrictive. Of course, this is
always satisfied for M = L°°(G), but is rarely satisfied in the case M =
VN(G), the von Neumann algebra of the regular representation of G.

(ii) Let G be a locally compact group. Then L°(G) is a Kac algebra, and
actions of L°(G) correspond to automorphic actions of G. If G is compact
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with irreducible representations of bounded dimension, our definition of
a; ® a, via diagram (7.3) generalizes the tensor product of group actions.
It would be useful to have a definition of the tensor product of actions of a
Kac algebra in the general case. For example, a definition of semi-direct
products of Kac algebras can be formulated using tensor products of
actions. Nakagami [11] has proposed a definition of the tensor product of
actions of a Kac algebra; unfortunately, his definition does not entail

0, @ ay(N,ON)c NON,®M

unless K is abelian (the group case), so that he does not actually get an
action.
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