APPROXIMATELY PERIODIC FUNCTIONALS ON C^{*}-ALGEBRAS AND VON NEUMANN ALGEBRAS

JOHN C. QUIGG

1. Introduction. In the duality for locally compact groups, much use is made of a version of the Hopf algebra technique in the context of von Neumann algebras, culminating in the theory of Kac algebras [6], [14]. It seems natural to ask whether something like a Hopf algebraic structure can be defined on the pre-dual of a Kac algebra. This leads to the question of whether the multiplication on a von Neumann algebra M, viewed as a linear map m from $M \odot M$ (the algebraic tensor product) to M, can be pre-transposed to give a co-multiplication on the pre-dual M_{*}, i.e., a linear map m_{*} from M_{*} to the completion of $M_{*} \odot M_{*}$ with respect to some cross-norm. A related question is whether the multiplication on a C^{*}-algebra A can be transposed to give a co-multiplication on the dual A^{*}. Of course, this can be regarded as a special case of the preceding question by taking $M=A^{* *}$, where the double dual $A^{* *}$ is identified with the enveloping von Neumann algebra of A. Keeping in mind the relationship with Kac algebras, the most desirable choice for the cross-norm on $M_{*} \odot M_{*}$ would be the dual of the spatial (least) C^{*}-norm on $M \odot M$.

To make the problem more precise, note that, since m is continuous with respect to the greatest cross-norm γ on $M \odot M$, we can extend m to the completion $M \bigotimes_{\gamma} M$ and then transpose to get a map m^{*} from M^{*} to $\left(M \bigotimes_{\gamma} M\right)^{*}$. We shall not pause to seek conditions under which the range of m^{*} is contained in $M^{*} \bigotimes_{\gamma^{*}} M^{*}$ (see [13] for a study of this question in the Banach algebra context). Rather, since we want to work with C^{*}-tensor products, we should require first of all that m be continuous with respect to the spatial C^{*}-norm, which turns out to be a surprisingly restrictive condition. Of course, this is not enough for our present purposes, since this only gives

$$
m^{*}: M^{*} \rightarrow(M \otimes M)^{*}
$$

(here $M \otimes M$ denotes the completion of $M \odot M$ relative to the spatial C^{*}-norm). We actually need m to extend to a σ-weakly continuous map from $M \bar{\otimes} M$ (the von Neumann algebra tensor product) to M, so that we can pre-transpose to get

[^0]$$
m_{*}: M_{*} \rightarrow M_{*} \otimes M_{*}
$$
(by which we denote the completion of $M_{*} \otimes M_{*}$ relative to the dual of the spatial C^{*}-norm). To see what this entails, recall that there is an isometric isomorphism
$$
T:\left(M \otimes_{\gamma} M\right)^{*} \rightarrow B\left(M, M^{*}\right)
$$
(the bounded linear maps from M to M^{*}) defined by
$$
\langle x, T(\phi) y\rangle=\langle x \otimes y, \phi\rangle \quad\left(x, y \in M, \phi \in(M \otimes M)^{*}\right)
$$

It is immediate that $T(\phi)$ is finite rank with range in M_{*} for $\phi \in M_{*} \odot M_{*}$, and hence that $T(\phi)$ is compact with range in M_{*} for $\phi \in M_{*} \otimes M_{*}$. We conclude that a necessary condition for m to pre-transpose to give a co-multiplication on M_{*} is that $T\left(m^{*}(\phi)\right)$ be a compact linear map from M to M_{*}, for each $\phi \in M_{*}$. Letting M act on M_{*} via

$$
\langle x, y \cdot \phi\rangle=\langle x y, \phi\rangle \quad\left(x, y \in M, \phi \in M_{*}\right),
$$

it is straightforward to compute that

$$
T\left(m^{*}(\phi)\right) y=y \cdot \phi \quad\left(y \in M, \phi \in M_{*}\right) .
$$

Therefore the above necessary condition can be re-written as: $M_{1} \cdot \phi$ is relatively compact in M_{*} for each $\phi \in M_{*}$, where M_{1} denotes the unit ball of M. For a Banach algebra A, Kitchen [9] calls a functional ϕ almost periodic if the linear map $x \rightarrow x \cdot \phi$ from A to A^{*} is compact. If $A=L^{1}(G)$ for a locally compact group G, then this reduces to the classical notion of almost periodicity for $\phi \in L^{\infty}(G)$. However, if ϕ is a faithful normal state on a von Neumann algebra, then Connes [2] calls ϕ almost periodic if its modular operator Δ_{ϕ} is diagonalizable. This has nothing to do with the compactness of $x \rightarrow x \cdot \phi$. Since we are interested primarily in C^{*}-algebras and von Neumann algebras, and since we do not wish to introduce terminology conflicting with that of Connes, we will use the term approximately periodic.

In Section 2 we characterize those von Neumann algebras M having the property that every normal functional is approximately periodic, and we use this to characterize the set of approximately periodic normal functionals in the pre-dual of any von Neumann algebra.

In Section 3 we specialize to the case where $M=A^{* *}$ for a C^{*}-algebra A, and we characterize those A having the property that every functional is approximately periodic. We use this to define what we call the universal approximately periodic representation, which is a generalization of the construction of the Bohr compactification of a locally compact group.

In Section 4 we characterize those von Neumann algebras whose multiplication is continuous relative to the spatial C^{*}-norm.

In Section 5 we show that the multiplication on a von Neumann algebra pre-transposes to give a co-multiplication on the pre-dual if and only if every normal functional is approximately periodic and the multiplication is continuous relative to the spatial C^{*}-norm.

In Section 6 we discuss a certain approximation property satisfied by the approximately periodic functionals on a C^{*}-algebra.

Finally, Section 7 is devoted to an indication of the way in which the co-multiplication on the pre-dual can be utilized in connection with actions of Kac algebras on von Neumann algebras.
2. Approximately periodic functionals on von Neumann algebras. Let M be a von Neumann algebra, and let

$$
A P_{*}(M)=\left\{\phi \in M_{*} \mid M_{1} \cdot \phi \text { is relatively compact }\right\}
$$

denote the set of approximately periodic normal functionals on M. Thus, ϕ is approximately periodic if and only if the map $x \rightarrow x \cdot \phi$ from M to M_{*} is compact. We proceed to study the condition $A P_{*}(M)=M_{*}$.

Lemma 2.1. Let $M=B(H)$, the set of bounded linear operators on the Hilbert space H. Then $A P_{*}(M)=M_{*}$ if and only if H is finite dimensional.

Proof. M_{*} is identified with the set of trace class operators on H, equipped with the trace norm, via

$$
\langle x, \phi\rangle=\operatorname{tr}(x \phi) .
$$

A trivial computation shows that $x \cdot \phi=x \phi\left(x \in M, \phi \in M_{*}\right)$.
Now, M_{*} is also identified with the projective tensor product $\bar{H} \bigotimes_{\gamma} H$ of the conjugate space to H and H via

$$
(\bar{\xi} \otimes \eta) \zeta=(\zeta \mid \xi) \eta \quad(\xi, \eta, \zeta \in H)
$$

Under this identification, if ξ and η have norm one, we have

$$
M_{1} \cdot(\bar{\xi} \otimes \eta)=\bar{\xi} \otimes H_{1}
$$

which is relatively compact in $\bar{H} \otimes_{\gamma} H$ if and only if H_{1} is compact in H, which is equivalent to the finite dimensionality of H.

Lemma 2.2. If $A P_{*}(M)=M_{*}$ and N is a von Neumann subalgebra of M, then $A P_{*}(N)=N_{*}$.

Proof. Identify N_{*} with the set $M_{*} \mid N$ of restrictions to N of elements of M_{*}. Then, for $\phi \in M_{*}$,

$$
\begin{aligned}
N_{1} \cdot(\phi \mid N) & =\left(N_{1} \cdot \phi\right) \mid N \\
& \subset\left(M_{1} \cdot \phi\right) \mid N,
\end{aligned}
$$

which is relatively compact in N_{*} since restriction to N is a continuous map from M_{*} to N_{*}.

Lemma 2.3. If M is the direct sum of the von Neumann algebras $M_{i} \quad(i \in$ $I)$, then $A P_{*}(M)=M_{*}$ if and only if

$$
A P_{*}\left(M_{i}\right)=\left(M_{i}\right)_{*} \text { for all } i \in I
$$

Proof. As the necessity is immediate from Lemma 2.2, we show only the sufficiency.
M_{*} is identified with the l^{1} direct sum of the pre-duals $\left(M_{i}\right)_{*}$ via

$$
\langle x, \phi\rangle=\sum_{i \in I}\left\langle x_{i}, \phi_{i}\right\rangle \quad\left(x \in M, \phi \in M_{*}\right) .
$$

A straightforward computation shows that

$$
(x \cdot \phi)_{i}=x_{i} \cdot \phi_{i} \quad\left(x \in M, \phi \in M_{*}\right)
$$

In particular, if ϕ has only finitely many non-zero components, then $M_{1} \cdot \phi$ is a sum of finitely many relatively compact sets, and is therefore relatively compact. The proof is concluded by observing that such ϕ are dense in M_{*}.

Lemma 2.4. If $M=L^{\infty}(S, \mu)$, where μ is a Radon measure on the locally compact Hausdorff space S, then $A P_{*}(M)=M_{*}$ if and only if μ is purely atomic.

Proof. By restricting to compact subsets, we may assume without loss of generality that μ is bounded. If M_{*} is identified with $L^{1}(S, \mu)$ in the usual way, it is clear that

$$
f \cdot \phi=f_{\phi} \quad\left(f \in M, \phi \in M_{*}\right)
$$

In particular, if ϕ is the constant function 1 , then $M_{1} \cdot \phi$ is the image of the unit ball of M under the natural embedding of $L^{\infty}(S, \mu)$ in $L^{1}(S, \mu)$, which is relatively compact if and only if μ is purely atomic. This proves the necessity, and the sufficiency follows at once from Lemma 2.3.

Theorem 2.5. $A P_{*}(M)=M_{*}$ if and only if M is a direct sum of matrix algebras.

Proof. The sufficiency follows immediately from Lemmas 2.1 and 2.3.
For the necessity, first note that M must be finite, for it would otherwise contain a type I_{∞} factor, in violation of Lemmas 2.1 and 2.2.

Similarly, M must be a direct sum of factors, for its center would otherwise be a non-atomic abelian von Neumann algebra, in violation of Lemmas 2.2 and 2.4.

Finally, if M were not type I, then it would contain a type $I I_{1}$ factor, which would contain the hyperfinite $I I_{1}$ factor, which would in turn contain a non-atomic abelian von Neumann algebra, again in violation of Lemmas 2.2 and 2.4.

We now proceed to characterize $A P_{*}(M)$ as a subspace of M_{*}. Recall that a subset S of M_{*} is called invariant if

$$
M \cdot S \cdot M \subset S
$$

where

$$
\langle z, x \cdot \phi \cdot y\rangle=\langle y z x, \phi\rangle \quad\left(x, y, z \in M, \phi \in M_{*}\right)
$$

Lemma 2.6. $A P_{*}(M)$ is a closed invariant subspace of M_{*}.
Proof. This is routine in view of the fact that the maps $x \rightarrow x \cdot \phi \quad(x \in$ $M)$ vary continuously with $\phi \in M_{*}$.

Recall [12] that there is a bijection between the closed invariant subspaces V of M_{*}, the σ-weakly closed ideals N of M, and the central projections z of M via

$$
V^{\circ}=N=M(1-z),
$$

where V° denotes the polar of V. Under this correspondence, $V=z \cdot M_{*}$, V^{*} is identified with $M z$, and we have the decompositions

$$
\begin{aligned}
M & =M z \oplus M(1-z) \\
M_{*} & =(M z)_{*} \oplus(M(1-z))_{*} \\
& =z \cdot M_{*} \oplus(1-z) \cdot M_{*} .
\end{aligned}
$$

Also, if V_{1} and V_{2} are closed invariant subspaces of M_{*}, then $V_{1} \subset V_{2}$ if and only if $V_{1}^{*} \subset V_{2}^{*}$.

Lemma 2.7. If N is a σ-weakly closed ideal of M, then

$$
A P_{*}(N)=N_{*} \cap A P_{*}(M)
$$

Proof. Let $N=M z$, where z is a central projection of M. Then, for $\phi \in N_{*}=z \cdot M_{*}$,

$$
N_{1} \cdot \phi=(M z)_{1} \cdot \phi=\left(M_{1} z\right) \cdot \phi=M_{1} \cdot(z \cdot \phi)=M_{1} \cdot \phi
$$

Therefore, $A P_{*}(N)=z \cdot A P_{*}(M)$.
Let $M_{a p}$ be the largest ideal of M which is a direct sum of matrix algebras.

Theorem 2.8. $\left(M_{a p}\right)_{*}=A P_{*}(M)$.
Proof. By construction and Theorem 2.5,

$$
A P_{*}\left(M_{a p}\right)=\left(M_{a p}\right)_{*}
$$

so that by Lemma 2.7

$$
\left(M_{a p}\right)_{*} \subset A P_{*}(M)
$$

On the other hand, if $N=A P_{*}(M)^{*}$, then $A P_{*}(N)=N_{*}$ by Lemma 2.7, so that N is a direct sum of matrix algebras. But $M_{a p}$ is the largest such ideal, so that we must have $N \subset M_{a p}$ and hence $A P_{*}(M) \subset\left(M_{a p}\right)_{*}$.
3. Approximately periodic functionals on C^{*}-algebras. Let A be a C^{*}-algebra and let

$$
A P(A)=\left\{\phi \in A^{*} \mid A_{1} \cdot \phi \text { is relatively compact }\right\}
$$

denote the set of approximately periodic functionals on A. Thus, ϕ is approximately periodic if and only if the map $x \rightarrow x \cdot \phi$ from A to A^{*} is compact.

Lemma 3.1. $A P_{*}\left(A^{* *}\right)=A P(A)$.
Proof. This follows immediately from the observation that the double dual of the map $x \rightarrow x \cdot \phi$ from A to A^{*} is the map $x \rightarrow x \cdot \phi$ from $A^{* *}$ to A^{*}, so that the compactness of either implies that of the other.

Recall [8] that A is called scattered if every positive functional on A is a sum of pure positive functionals, or, equivalently, if $A^{* *}$ is a direct sum of type I factors. By Theorem 2.5 and Lemma 3.1, we have

Theorem 3.2. $A P(A)=A^{*}$ if and only if A is scattered and its irreducible representations are finite dimensional.

We now characterize $A P(A)$ by means of a representation which is the analogue of the construction of the Bohr compactification of a locally compact group.

Definition. A representation π of A is approximately periodic if $A P_{*}\left(\pi(A)^{\prime \prime}\right)=\pi(A)^{\prime \prime}{ }_{*}$.

Recall that every nondegenerate representation π of A extends uniquely to a normal representation $\bar{\pi}$ of $A^{* *}$, and that $\widetilde{\pi}\left(A^{* *}\right)=\pi(A)^{\prime \prime}$. Let z_{π} be the central projection in $A^{* *}$ such that

$$
\operatorname{ker} \tilde{\pi}=A^{* *}\left(1-z_{\pi}\right)
$$

Then $\pi(A)^{\prime \prime} \simeq A^{* *} z_{\pi}$, and we have
Proposition 3.3. π is approximately periodic if and only if

$$
z_{\pi} \cdot A^{*} \subset A P(A) .
$$

Proof. This follows immediately from Lemma 2.7.
Let $\pi_{a p}$ be the direct sum of all the finite dimensional cyclic representations obtained from the application of the Gelfand-NaimarkSegal construction to the states of A, and denote the corresponding central projection by $z_{a p}$.

Theorem 3.4. $z_{a p} \cdot A^{*}=A P(A)$.
Proof. It is clear from the construction that $A^{* *} z_{a p}$ is the largest ideal of $A^{* *}$ which is a direct sum of matrix algebras, i.e.,

$$
A^{* *} z_{a p}=\left(A^{* *}\right)_{a p} .
$$

The result now follows from Theorem 2.8.
Corollary 3.5. A representation of A is approximately periodic if and only if it is quasi-equivalent to a sub-representation of $\pi_{a p}$.

In view of Corollary 3.5, we make the
Definition. $\pi_{a p}$ is the universal approximately periodic representation of A.

Note that if A is the group C^{*}-algebra of a locally compact group G, then the weak operator closure of $\left\{\pi_{a p}(s): s \in G\right\}$ is the Bohr compactification of G.

By analogy with groups, we could call a C^{*}-algebra maximally approximately periodic if its universal approximately periodic representation is faithful. In regard to this, Choi [1] has shown that the C^{*}-algebra of the free group on two generators is maximally approximately periodic.

4. Continuity of the multiplication.

Definition. For a C^{*}-algebra A, let $m_{A}: A \odot A \rightarrow A$ denote the multiplication, and let $\left\|m_{A}\right\|$ denote the norm of m_{A} relative to the spatial C^{*}-norm on $A \odot A$.

In this section we characterize those von Neumann algebras M satisfying $\left\|m_{M}\right\|<\infty$.

Lemma 4.1. If $\left\|m_{A}\right\|<\infty$ and B is a C^{*}-subalgebra of A, then $\left\|m_{B}\right\|<\infty$.

Proof. The spatial C^{*}-norm on $B \odot B$ is the same as the restriction of the spatial C^{*}-norm on $A \odot A[8]$. Since $m_{B}=m_{A} \mid B \odot B$, we conclude that $\left\|m_{B}\right\| \leqq\left\|m_{A}\right\|$.

Lemma. 4.2. Let $\left\{A_{i} \mid i \in I\right\}$ be a collection of C^{*}-algebras. Then there is a *-monomorphism

$$
\Phi:\left(\oplus_{i} A_{i}\right) \otimes\left(\oplus_{i} A_{i}\right) \rightarrow \bigoplus_{i, j} A_{i} \otimes A_{j}
$$

defined by

$$
\Phi(x \otimes y)_{i, j}=x_{i} \otimes y_{j}
$$

Proof. If each A_{i} is faithfully represented on a Hilbert space H_{i}, then $\left(\oplus_{i} A_{i}\right) \otimes\left(\oplus_{i} A_{i}\right)$ and $\oplus_{i, j} A_{i} \otimes A_{j}$ are faithfully represented on
$\left(\oplus_{i} H_{i}\right) \bar{\otimes}\left(\oplus_{i} H_{i}\right)$ and $\bigoplus_{i, j} H_{i} \bar{\otimes} H_{j}$, respectively (where \oplus here denotes the l^{2} direct sum and $\stackrel{\otimes}{\otimes}$ the Hilbert space tensor product). Define isometries

$$
\begin{aligned}
& V_{i}: H_{i} \rightarrow \bigoplus_{j} H_{j} \text { and } \\
& W_{i, j}: H_{i} \bar{\otimes} H_{j} \rightarrow \bigoplus_{k, l} H_{k} \bar{\otimes} H_{l}
\end{aligned}
$$

by

$$
\begin{aligned}
& \left(V_{i} \xi\right)_{j}=\left\{\begin{array}{l}
\xi, i=j \\
0, \text { else }
\end{array}\right. \\
& \left(W_{i, j} \xi\right)_{k, l}=\left\{\begin{array}{l}
\xi, i=k, j=l \\
0, \text { else }
\end{array}\right.
\end{aligned}
$$

Then $U=\Sigma_{i, j} W_{i, j} V_{i}^{*} \otimes V_{j}^{*}$ converges in the strong operator topology and defines a unitary from $\left(\bigoplus_{i} H_{i}\right) \bar{\otimes}\left(\bigoplus_{i} H_{i}\right)$ onto $\bigoplus_{i, j} H_{i} \bar{\otimes} H_{j}$ which is easily seen to implement the map Φ defined in the statement of the lemma.

Remark. The above map Φ need not be surjective. For example, if $I=\mathbf{N}$ and $A_{i}=\mathbf{C}$ for all $i \in I$, then

$$
\oplus_{i} A_{i}=l^{\infty}(\mathbf{N}) \quad \text { and } \quad \oplus_{i, j} A_{i} \otimes A_{j}=l^{\infty}(\mathbf{N} \times \mathbf{N})
$$

(where $\mathbf{C} \otimes \mathbf{C}$ is identified with \mathbf{C}), but

$$
l^{\infty}(\mathbf{N} \times \mathbf{N}) \simeq l^{\infty}(\mathbf{N}) \bar{\otimes} l^{\infty}(\mathbf{N}) \neq l^{\infty}(\mathbf{N}) \otimes l^{\infty}(\mathbf{N})
$$

where $\bar{\otimes}$ here denotes the von Neumann algebra tensor product.
Corollary 4.3. If $A=\bigoplus_{i \in I} A_{i}$, then

$$
\left\|m_{A}\right\| \leqq \sup _{i}\left\|m_{A_{i}}\right\| .
$$

Proof. Let

$$
\sum_{k} x^{(k)} \otimes y^{(k)} \in A \odot A
$$

Then

$$
\begin{aligned}
m_{A}\left(\sum_{k} x^{(k)} \otimes y^{(k)}\right)_{i} & =\sum_{k} x_{i}^{(k)} y_{i}^{(k)} \\
& =m_{A_{i}}\left(\sum_{k} x_{i}^{(k)} \otimes y_{i}^{(k)}\right)
\end{aligned}
$$

so

$$
\left\|m_{A}\left(\sum_{k} x^{(k)} \otimes y^{(k)}\right)\right\|=\sup _{i}\left\|m_{A}\left(\sum_{k} x^{(k)} \otimes y^{(k)}\right)_{i}\right\|
$$

$$
\begin{aligned}
& =\sup _{i}| | m_{A_{i}}\left(\sum_{k} x_{i}^{(k)} \otimes y_{i}^{(k)}\right) \| \\
& \quad \leqq \sup _{i}\left\|m_{A_{i}}\right\| \cdot \sup _{i}\left\|\sum_{k} x_{i}^{(k)} \otimes y_{i}^{(k)}\right\| .
\end{aligned}
$$

But

$$
\begin{aligned}
\sup _{i}| | \sum_{k} x_{i}^{(k)} \otimes y_{i}^{(k)}| | & \leqq \sup _{i, j} \| \sum_{k} x_{i}^{(k)} \otimes y_{j}^{(k)}| | \\
& =\sup _{i, j}\left\|\sum_{k} \Phi\left(x^{(k)} \otimes y^{(k)}\right)_{i, j}\right\| \\
& =\sup _{i, j}\left\|\mid \Phi\left(\sum_{k} x^{(k)} \otimes y^{(k)}\right)_{i, j}\right\| \\
& =\left\|\mid \Phi\left(\sum_{k} x^{(k)} \otimes y^{(k)}\right)\right\| \\
& =\left\|\sum_{k} x^{(k)} \otimes y^{(k)}\right\|
\end{aligned}
$$

by Lemma 4.2.
Lemma 4.4. $\left\|m_{B(H)}\right\|<\infty$ if and only if H is finite dimensional.
Proof. Only the necessity is unclear. If H is infinite dimensional, then $B(H)$ contains a non-semidiscrete factor M, so that

$$
M \odot M^{\prime} \subset B(H) \odot B(H)
$$

But $\left\|m_{B(H)} \mid M \odot M^{\prime}\right\|=\infty[4]$.
Corollary 4.5. If A contains a type I_{n} factor for arbitrarily large n, then $\left\|m_{A}\right\|=\infty$.

Proof. It suffices to show that

$$
\sup _{n}\left\|m_{B\left(\mathbf{C}^{n}\right)}\right\|=\infty .
$$

Now, the C^{*}-algebra $K(H)$ of compact operators on a separable infinite dimensional Hilbert space H contains an increasing sequence of sub-algebras $A_{n} \simeq B\left(\mathbf{C}^{n}\right)$ whose union is dense. Hence, $U_{n} A_{n} \odot A_{n}=$ $U_{n} A_{n} \odot U_{n} A_{n}$ is dense in $K(H) \odot K(H)$, so that

$$
\left\|m_{K(H)}\right\|=\sup _{n}\left\|m_{A_{n}}\right\|=\sup _{n}\left\|m_{B\left(\mathbf{C}^{n}\right)}\right\| .
$$

Suppose that $\left\|m_{K(H)}\right\|<\infty$. Then we can extend to get a bounded map

$$
m_{K(H)}: K(H) \otimes K(H) \rightarrow K(H)
$$

whose double dual is a σ-weakly continuous map

$$
m_{K(H)}^{* *}: B(H) \bar{\otimes} B(H) \rightarrow B(H) .
$$

But, using the separate σ-weak continuity of multiplication, it is easy to see that

$$
m_{K(H)}^{* *} \mid B(H) \odot B(H)=m_{B(H)}
$$

which is not even norm continuous by Lemma 4.4. This contradiction forces us to conclude that

$$
\left\|m_{K(H)}\right\|=\left\|m_{K(H)}^{* *}\right\|=\infty
$$

Theorem 4.6. If M is a von Neumann algebra, then $\left\|m_{M}\right\|<\infty$ if and only if M is type I and the factors contained in M have bounded dimension.

Proof. We start with the necessity. First, M must be finite, since it would otherwise contain a type I_{∞} factor, in violation of Lemmas 4.1 and 4.4. Similarly, M must be type I, since a non-type I von Neumann algebra contains type I_{n} factors for arbitrarily large n, which M cannot contain by Lemma 4.1 and Corollary 4.5. Of course, this last observation shows that the factors contained in M must have bounded dimension.

For the sufficiency, if M is type I and the factors contained in M have bounded dimension, then there is a finite set I and for each $i \in I$ there are an abelian von Neumann algebra N_{i} and a finite dimensional Hilbert space H_{i} such that

$$
M \simeq \bigoplus_{i \in I} N_{i} \bar{\otimes} B\left(H_{i}\right)
$$

Hence, by Corollary 4.3, assume without loss of generality that M is of the form $N \bar{\otimes} B(H)$, where N is abelian and H is finite dimensional. Since H is finite dimensional, the von Neumann algebra tensor product reduces to the spatial C^{*}-tensor product $N \otimes B(H)$. Since N is abelian, there is a hyper-Stonian space S such that $N \simeq C(S)$. Since $C(S)$ is a C^{*}-subalgebra of $l^{\infty}(S), C(S) \otimes B(H)$ is a C^{*}-subalgebra of

$$
l^{\infty}(S) \otimes B(H)=\bigoplus_{s \in S} B(H)
$$

The proof is completed by an appeal to Lemma 4.1 and Corollary 4.3.
5. Co-multiplication on the pre-dual. In the introduction we observed that a necessary condition for the multiplication on M to give rise to a co-multiplication on M_{*} is that $A P_{*}(M)=M_{*}$. We also mentioned that the continuity of the multiplication relative to the spatial C^{*}-norm is necessary, which we prove in this section. We shall also prove that these two conditions are sufficient.

Let $m=m_{M}$. Since m is always continuous relative to the greatest cross-norm γ, we can transpose to get

$$
m^{*}: M^{*} \rightarrow\left(M \bigotimes_{\gamma} M\right)^{*}
$$

Let $\delta=m^{*} \mid M_{*}$. By the definition of the dual cross-norm, $M_{*} \otimes M_{*}$ is isometrically embedded in $(M \odot M)^{*}$, which is (non-isometrically) embedded in $\left(M \bigotimes_{\gamma} M\right)^{*}$. For m to give rise to a co-multiplication on M_{*}, we need

$$
\delta\left(M_{*}\right) \subset M_{*} \otimes M_{*}
$$

Theorem 5.1. The following are equivalent:
(i) $\delta\left(M_{*}\right) \subset M_{*} \otimes M_{*}$ and $\|\delta\|<\infty$;
(ii) $A P_{*}(M)=M_{*}$ and $\left\|m_{M}\right\|<\infty$;
(iii) M is a direct sum of matrix algebras of bounded dimension.

Proof. (i) \Rightarrow (ii). We have already pointed out the necessity of the condition $A P_{*}(M)=M_{*}$. If $\delta\left(M_{*}\right) \subset M_{*} \otimes M_{*}$, then

$$
\delta^{*}: M \bar{\otimes} M \rightarrow M .
$$

But by construction $m_{M}=\delta^{*} \mid M \odot M$.
(ii) \Rightarrow (iii). This is immediate from Theorems 2.5 and 4.6.
(iii) \Rightarrow (i). Let M be a direct sum of matrix algebras of bounded dimension. Then $M=A^{* *}$, where A is the c_{0} direct sum of the matrix algebras. Since $\left\|m_{M}\right\|<\infty$ by Theorem 4.6, we get

$$
m_{A}: A \otimes A \rightarrow A
$$

Now, $(A \otimes A)^{* *}=A^{* *} \bar{\otimes} A^{* *}$ (something which is false in general), and so we have

$$
m_{A}^{* *}: M \bar{\otimes} M \rightarrow M
$$

But separate σ-weak continuity of multiplication shows that $m_{M}=m_{A}^{* *} \mid M \odot M$, and we finally arrive at

$$
\delta=m_{A}^{*}: M_{*} \rightarrow M_{*} \otimes M_{*} .
$$

Remarks. (i) The above proof shows that if M is a direct sum of matrix algebras of bounded dimension, then m_{M} extends to a σ-weakly continuous map on $M_{*} \bar{\otimes} M_{*}$ (although the multiplication will of course not be jointly continuous in general). This is primarily a consequence of the fact that, under these hypotheses, there is a C^{*}-algebra A such that

$$
M=A^{* *} \quad \text { and } \quad M \bar{\otimes} M=(A \otimes A)^{* *}
$$

In general, $A^{* *} \bar{\otimes} A^{* *}$ can be identified with a σ-weakly closed ideal of $(A \otimes A)^{* *}$, and it is not difficult to see that if $\left\|m_{A}\right\|<\infty$, then

$$
m_{A}^{* *} \mid A^{* *} \odot A^{* *}=m_{A}^{* *}
$$

if and only if

$$
A^{* *} \bar{\otimes} A^{* *}=(A \otimes A)^{* *}
$$

For example, if $A=C[0,1]$, then $\left\|m_{A}\right\|<\infty$ and $\left\|m_{A} * *\right\|<\infty$ but

$$
m_{A}^{* *} \mid A^{* *} \odot A^{* *} \neq m_{A} \cdot *
$$

(ii) If $M=\mathrm{VN}(G)$, the von Neumann algebra generated by the left regular representation of a locally compact group G, then M_{*} is the Fourier algebra $A(G)$ of G [7], which is contained in the algebra $C_{0}(G)$ of continuous functions on G which vanish at infinity. When $\mathrm{VN}(G) \bar{\otimes} \mathrm{VN}(G)$ is identified with $\mathrm{VN}(G \times G)$, the map δ can be computed by

$$
\delta(f)(s, t)=f(s t)
$$

for $f \in A(G)$ and $s, t \in G$. If G is not compact, then $\delta(A(G))$ is not even contained in $C_{0}(G \times G)$. Theorem 5.1 shows that, even when G is compact, $\delta(A(G))$ will not lie in $A(G \times G)$ unless the irreducible representations of G have bounded dimension. On the other hand, Theorem 5.1 shows that, if the left regular representation of G is a direct sum of irreducibles of bounded dimension, then G is compact. These facts are undoubtedly well-known, although the author could not find a reference.
6. An approximation property. If A is any Banach algebra and X is any two-sided A-module, Kitchen [9] says that the approximation theorem holds for (X, A) if every closed invariant subspace of $A P(X)$ (obvious definition) is a direct sum of finite dimensional invariant subspaces. Using our characterization of approximately periodic functionals, it is easy to prove:

Proposition 6.1. If A is a C^{*}-algebra and M is a von Neumann algebra, then the approximation theorem holds for $\left(A^{*}, A\right)$ and $\left(M_{*}, M\right)$.

Actually, one of Kitchen's [9] results implies that, for any Banach algebra A, if there is a bounded subgroup of the invertible multipliers of A that determines the closed invariant subspaces of $A P(A)$, then the approximation theorem holds for $\left(A^{*}, A\right)$. When A is a C^{*}-algebra, the group of unitary multipliers will do, and this leads to another proof of Proposition 6.1. It is tempting to conjecture that the same technique would work for any Banach ${ }^{*}$-algebra A which can be isometrically embedded in its multiplier algebra. Of course, this is not trivial, for A could possess unitary multipliers (multipliers u satisfying $u u^{*}=u^{*} u=1$) of norm larger than one. For example, if G is a locally compact group, then, as is well known, the approximation theorem holds for ($L^{\infty}(G)$, $L^{1}(G)$), essentially because the multiplier algebra $M(G)$ (the bounded Radon measures on G) of $L^{1}(G)$ contains a sufficiently large bounded
group (namely, the point masses at the elements of G, all of which have norm one). However, $L^{1}(G)$ has many unitary multipliers of norm greater than one. In fact,

Proposition 6.2. If A is a Banach *-algebra having the property that

$$
\|x\|=\sup \{\max \{\|x y\|,\|y x\|\}: y \in A,\|y\| \leqq 1\}, \quad x \in A,
$$

then the norms of the unitary multipliers of A are equal to one (resp., bounded) if and only if A is (resp. is ${ }^{*}$-isomorphic to) a C^{*}-algebra.

Proof. The hypothesis guarantees that A can be isometrically embedded in its multiplier algebra, so the result follows from Problems 4 and 6 of Section 15.6 in [3].

Note that the hypothesis is satisfied when $A=L^{1}(G)$ or $A(G)$.
We are indebted to J. DeCannière and C. Apostol for discussions concerning an earlier version of the above result (before we found the reference to Dieudonné).
7. An application. If $\mathbf{K}=(M, \Gamma, \kappa, \phi)$ is a Kac algebra and N is a von Neumann algebra, then an action of \mathbf{K} on N is defined as a unital *-monomorphism $\alpha: N \rightarrow N \bar{\otimes} M$ satisfying the co-associativity property expressed in the commutative diagram

(Enock, [5]).
Taking pre-duals, we obtain a map $\alpha_{*}: N_{*} \otimes M_{*} \rightarrow N_{*}$ which makes the following diagram commute:

Keeping in mind that Γ_{*} is the multiplication on the Banach algebra M_{*},
diagram (7.1) expresses the fact that N_{*} is a right M_{*}-module, although we are using the tensor product \otimes rather than the more usual \otimes_{γ}. Pursuing this, we see almost immediately how to translate the unicity, injectivity, and involutivity of α into corresponding properties of α_{*}. However, the homomorphicity of α is not so easily transferred to α_{*}.

Let us assume that both M and N are direct sums of matrix algebras of bounded dimension. Then so is $N \bar{\otimes} M$, and we can express the homomorphicity of α in the commutative diagram

We want to write diagram (7.2) in a more convenient form by removing the cumbersome $m_{N} \bar{\otimes}_{M}$. In order to do so, we define the tensor product $\alpha_{1} \widetilde{\otimes} \alpha_{2}$ of two actions α_{1} and α_{2} of \mathbf{K} on von Neumann algebras N_{1} and N_{2} by the commutative diagram

where τ is the "middle two flip":

$$
\tau(x \otimes y \otimes z \otimes w)=x \otimes z \otimes y \otimes w .
$$

It is tedious but straightforward to check the co-associative law for $\alpha_{1} \widehat{\otimes} \alpha_{2}$.

Using this, diagram (7.2) can be re-written as

In words, diagram (7.4) expresses the condition that the multiplication on N should "intertwine" the actions $\alpha \widetilde{\otimes} \alpha$ and α.

We can pre-transpose diagram (7.3) to obtain a tensor product of the right M_{*}-modules $N_{1 *}$ and $N_{2 *}$:

where $\delta_{M_{*}}$ is the co-multiplication on M_{*}. We can then use this to pre-transpose the homomorphicity of α :

Diagram (7.6) expresses the requirement that the co-multiplication on N_{*} be an M_{*}-module map.

Remarks. (i) The condition that the multiplication on M pre-transpose to give a co-multiplication on M_{*} is very restrictive. It seems likely that a construction accomplishing a similar purpose can be performed in a more general setting. For example, if G is a locally compact group, then the multiplication on $L^{\infty}(G)$ gives rise to a map from $L^{1}(G)$ to $M\left(L^{1}(G) \otimes\right.$ $\left.L^{1}(G)\right)$, the multiplier algebra of $L^{1}(G) \otimes L^{1}(G)$. In the general situation where M is the von Neumann algebra of a Kac algebra, this suggests a search for conditions under which the multiplication on M will give rise to a map from M_{*} to $M\left(M_{*} \otimes M_{*}\right)$, the multiplier algebra of $M_{*} \otimes M_{*}$, which is a Banach algebra since M is a Kac algebra. However, this still seems to require at least the continuity of the multiplication on M relative to the spatial C^{*}-norm, which is still fairly restrictive. Of course, this is always satisfied for $M=L^{\infty}(G)$, but is rarely satisfied in the case $M=$ $\mathrm{VN}(G)$, the von Neumann algebra of the regular representation of G.
(ii) Let G be a locally compact group. Then $L^{\infty}(G)$ is a Kac algebra, and actions of $L^{\infty}(G)$ correspond to automorphic actions of G. If G is compact
with irreducible representations of bounded dimension, our definition of $\alpha_{1} \bar{\otimes} \alpha_{2}$ via diagram (7.3) generalizes the tensor product of group actions. It would be useful to have a definition of the tensor product of actions of a Kac algebra in the general case. For example, a definition of semi-direct products of Kac algebras can be formulated using tensor products of actions. Nakagami [11] has proposed a definition of the tensor product of actions of a Kac algebra; unfortunately, his definition does not entail

$$
\alpha_{1} \bar{\otimes} \alpha_{2}\left(N_{1} \bar{\otimes} N_{2}\right) \subset N_{1} \bar{\otimes} N_{2} \bar{\otimes} M
$$

unless K is abelian (the group case), so that he does not actually get an action.

References

1. M. D. Choi, The full C^{*}-algebra of the free group on two generators, Pacific J. Math. 87 (1980), 41-48.
2. A. Connes, Une classification des facteurs de type III, Ann. Sci. Ecole Norm. Sup. 6 (1973), 133-252.
3. J. Dieudonné, Treatise on analysis, Vol 2 (Academic Press, New York, 1976).
4. E. G. Effros and E. C. Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), 1-34.
5. M. Enock, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac, J. Functional Anal. 26 (1977), 16-47.
6. M. Enock and J. M. Schwartz, Une dualité dans les algèbres de von Neumann, Bull. Soc. Math. France Suppl. Mem. 44 (1975), 1-144.
7. P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
8. H. E. Jensen, Scattered C^{*}-algebras, Math. Scand. 41 (1977), 308-314.
9. J. W. Kitchen, Jr., Normed modules and almost periodicity, Monatsh. Math. 70 (1966), 233-243.
10. E. C. Lance, On nuclear C^{*}-algebras, J. Functional Anal. 12 (1973), 157-176.
11. Y. Nakagami, Some remarks on crossed products of von Neumann algebras by Kac algebras, Yokohama Math. J. 27 (1979), 141-162.
12. M. Takesaki, On the conjugate space of an operator algebra, Tôhoku Math. J. 10 (1958), 194-203.
13. A. Tonge, La presque-périodicité et les coalgèbres injectives, Stud. Math. 67 (1980), 103-118.
14. L. I. Vainerman and G. I. Kac, Nonunimodular ring groups and Hopf-von Neumann algebras, Math. U.S.S.R. Sbornik 23 (1974), 185-214.

Arizona State University,
Tempe, Arizona

[^0]: Received May 10, 1983 and in revised form January 23, 1985. This research was partially supported by the Faculty Grant-In-Aid Program, Arizona State University.

