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Integral Formula for Spectral Flow for
p-Summable Operators

Magdalena Cecilia Georgescu

Abstract. Fix a von Neumann algebraN equipped with a suitable trace τ. For a path of self-adjoint
Breuer–Fredholm operators, the spectral �ow measures the net amount of spectrum that moves
from negative to non-negative. We consider speciûcally the case of paths of bounded perturbations
of a ûxed unbounded self-adjoint Breuer–Fredholm operator aõliated with N. If the unbounded
operator is p-summable (that is, its resolvents are contained in the ideal Lp), then it is possible
to obtain an integral formula that calculates spectral �ow. _is integral formula was ûrst proved
by Carey and Phillips, building on earlier approaches of Phillips. _eir proof was based on ûrst
obtaining a formula for the larger class of θ-summable operators, and then using Laplace transforms
to obtain a p-summable formula. In this paper, we present a direct proof of the p-summable formula
that is both shorter and simpler than theirs.

1 Introduction

In this paper, we present a diòerent proof of the p-summable integral formula for
spectral �ow. Previous proofs relied on advanced machinery, which we avoid in our
presentation. Following the quote of the result below, we discuss its history.

_eorem 1.1 ([CP04, Corollary 9.4]) Let (N,D0) be an odd p-summable Breuer–
Fredholm module for the unital Banach ∗-algebra A, and let P = χ[0,∞)(D0). _en for
each u ∈ U(A) for which the domain of D0 is invariant and [D0 , u] is bounded, PuP is
a Breuer–Fredholm operator in PNP.

Deûne the constant C̃ p
2
= ∫

∞

−∞
(1 + x2)−

p
2 dx =

Γ( p−1
2 )Γ( 1

2 )

Γ(p/2) (where Γ denotes the
gamma function). _en

αD(X) =
1

C̃p/2
τ(X(1 + D2

)
−

p
2 )

is an exact one-form on the manifold D0 +Nsa.
Moreover, if {Du

t } is any piecewise C1 path in D0 + Nsa from D0 to uD0u∗ (for
example, the linear path connecting the two operators), then

ind(PuP) = sf({Du
t }) =

1
C̃p/2

∫

1

0
τ(
d
dt

(Du
t )(1 + (Du

t )
2
)
−p/2

) dt,

the integral of the above-mentioned exact one-form along the path {Du
t }.
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Carey and Phillips [CP98] gave a proof of a similar result except with p/2 replaced
by m > p/2 + 1, an integer, and only in the case when N is a semiûnite factor, and
[CP04] showed the result as stated above. We exhibit a recipe that allows us to produce
spectral �ow formulas for operators whose resolvents are contained in certain types of
ideals, which we then follow to obtain a proof of _eorem 1.1; for details, see Section
2. _e results presented here are part of the author’s Ph.D. thesis [Geo13, Chapter 3]
completed at the University of Victoria under the supervision of John Phillips.
First, a short summary of how _eorem 1.1 was proved in [CP04]. Connes intro-

duced a generalization of p-summablemodules called θ-summablemodules, whereby
the module (H,D) is θ-summable if e−tD2

is trace class for any t > 0 [Con89, §7].
A diòerent and useful description of θ-summable is that (1 + D2)−1 belongs to a cer-
tain ideal of operators, a description of which can be given via generalized s-numbers
[CP04, §2.2, Deûnition 2.4, Appendix B]. Carey and Phillips proved integral formu-
las for spectral �ow in the context of θ-summable modules and used these formulas
to derive the p-summable version stated in _eorem 1.1. _eir approach relies on the
fact that, if (H,D0) is p-summable, then it is θ-summable, and one can use a series of
steps inspired by Laplace transforms and the knowledge from the θ-summable case
to obtain the desired result.
A more general result about integrating one-forms to calculate spectral �ow can

be found in [CPS09]. While the thrust of the proof is the same (show that a desired
one-form is exact in order to be able to relate an integral formula to the integral along
a simpler path over which the value of the integral can be explicitly calculated), the
proofs are quite diòerent. _e results set out a list of conditions that can be placed on
a function in order to ensure that it calculates spectral �ow for a given path; double
operator integral techniques are used to show that the one-forms under consideration
are exact. _e p-summable formula can then be obtained by approximation of the
integral.

_e p-summable integral formula for spectral �ow is a key step of the proof of the
Local Index _eorem [CPRS06a, Lemmas 5.6 5.7]. In order to streamline the proof
of the Local Index _eorem, it was hoped that the p-summable case could be proved
directly, without having to rely on the θ-summable results. As alreadymentioned, the
proof of_eorem 1.1 required that the power of (1+D2

t )
−1 appearing in the integrand

be an integer m > p/2+1 [CP98,_eorem 2.17]. As a consequence of this assumption,
the proof has features that do not generalize to the case when the power p/2 is a real
number; nonetheless, the goal was to ûnd a proof similar to the one in [CP98], which
we feel is achieved by this approach.

Here is a quick overview of the layout of the paper. For readability and in order
to establish notation, we start with some background deûnitions, self-explained by
the subsection titles. Section 2 describes the approach to the problem, as well as the
kinds of situations to which this approach might generalize. Sections 3–5 prove the
various steps in a general setting, and Section 6 applies them to the speciûc case of
p-summable operators. Let us proceed to the mise-en-scène.
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1.1 Breuer–Fredholm Operators

_e theory of Breuer–Fredholm extends the idea of Fredholm operators to semiûnite
von Neumann algebras equipped with a trace τ; the particular approach we use is the
one outlined in [PR94, Appendix B], whereby the index associated with a projection,
used by Breuer in his introduction of the topic [Bre68], is replaced by the trace of the
projection. _e resulting theory is dependent on the choice of trace τ. _e Breuer–
Fredholm index will take values in the abelian group generated by the possible values
the trace takes on ûnite trace projections.

IfN = B(H) and τ is the usual trace, the Breuer–Fredholm operators correspond
to the Fredholm operators. _e theory describing the properties of Breuer–Fredholm
operators is very similar to that for Fredholm operators in B(H). _e role of the
compact operators is played in this context by the ideal KN.

Deûnition 1.2 Denote by KN the two-sided norm-closed ideal generated by pro-
jections of ûnite trace. _e operators in KN are called τ-compact.

_e usual results regarding the properties of the index carry over, as well as Atkin-
son’s theorem, which states that the Breuer–Fredholm operators are invertible mod
the τ-compacts [PR94, _eorem B1]. We will use π to denote the canonical projec-
tion from N onto the generalized Calkin algebraN/KN.
A generalization of Breuer–Fredholm operators is obtained by considering oper-

ators in a skew corner of N. We will encounter such operators in the deûnition of
spectral �ow. _e idea of Breuer–Fredholm operators from PH to QH (for P,Q pro-
jections in a von Neumann algebraN) was introduced in [Phi97] for P and Q inûnite
and co-inûnite projections in a factor, and developed in full generality in [CPRS06b].
In particular, if P and Q are projections such that ∥π(P) − π(Q)∥ < 1, then PQ as an
operator from QH to PH is Breuer–Fredholm, and one can calculate ind(PQ) using
the deûnition given below.

Deûnition 1.3 Suppose P,Q ∈ N are projections. Say that T ∈ PNQ is (P-Q)-
Fredholm if τ([kerT ∩QH]) < ∞, τ([kerT∗ ∩ PH]) < ∞, and there exists a projec-
tion P1 < P such that P1H ⊂ ranT and τ(P−P1) < ∞. IfT ∈ PNQ is (P-Q)-Fredholm,
deûne ind(P-Q)(T) = τ([kerT ∩ QH]) − τ([kerT∗ ∩ PH]).

A summary of the various results for Breuer–Fredholm operators in a skew corner,
with appropriate references, can be found in [BCP+06]. As already mentioned, this
kind of index will be needed when deûning the spectral �ow. Instead of using the
(P-Q)-preûx, we will simply talk about an operator T being Breuer–Fredholm from
QH to PH, or in PNQ.

If D is unbounded, we say that D is Breuer–Fredholm if the bounded operator
D(1+∣D∣2)−

1
2 is Breuer–Fredholm [CPRS06b, Proposition 3.10]. In fact, we will o�en

appeal to the Riesz transform, T ↦ T(1+ ∣T ∣2)−
1
2 , in order to reduce our unbounded

operator problems to the bounded operator setting.
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1.2 Spectral Flow Definitions

In order to talk about spectral �ow we will usually require a continuous path of self-
adjoint Breuer–Fredholm operators. We then use the trace τ onN to get a measure of
the net amount of spectrum that changes from negative to positive as we move along
the path.

1.2.1 Spectral Flow for Bounded Operators

_ere are multiple interpretations of spectral �ow; the one presented below is due
to Phillips [Phi97]. _e presentation there assumes that N is a factor; however, the
approach generalizes to semiûnite von Neumann algebras, especially once the appro-
priate Breuer–Fredholm theory is in place [CPRS06b, §3, Corollary 3.8].

Recall that π is used for the canonical map from N onto the generalized Calkin
algebra,N/KN. Denote by χ the characteristic function of the interval [0,∞). Given
a path of self-adjoint Breuer–Fredholm operators {Ft}, χ(Ft) is not continuous, but
π(χ(Ft)) is.

Deûnition 1.4 Suppose {Ft} is a continuous path of self-adjoint Breuer–Fredholm
operators. Let Pt = χ(Ft). Choose ûnitely many points 0 = r0 < r1 < ⋅ ⋅ ⋅ < rn = 1 such
that for each 0 ≤ i ≤ n and each u, v ∈ [r i , r i+1] we have ∥π(Pu) − π(Pv)∥ < 1. Deûne
the spectral �ow of the path to be sf({Ft}) ∶= ∑ ind(Pr iPr i+1), where ind(Pr iPr i+1) is
the index of Pr iPr i+1 as a Breuer–Fredholm operator in Pr iNPr i+1 .

_is deûnition is independent of the choice of partition {Pr i} [Phi97, Lemma 1.3,
Deûnition 2.2 ]. If the von Neumann algebra N is ûnite, all projections have ûnite
trace, so the spectral �ow depends only on the endpoints of the path, i.e., sf({Ft}) =

ind(χ(F0)χ(F1)). However, if N is not ûnite, then the spectral �ow depends on the
path, as can be seen from the construction of a loop whose spectral �ow is non-zero
[Phi96]. Note however that, even ifN is not ûnite, if our path {Ft} satisûes Ft − F0 ∈
KN for all t, then once again the spectral �ow only depends on the endpoints, as
π(Ft) is constant, and hence so is π(Pt).

Remark 1.5 Let us consider what happens if we join a self-adjoint Breuer–Fredholm
operator F to 2χ[0,∞)(F) − 1 via a straight line path. Intuitively, the positive part of
the operator is joined to 1, and the negative part is joined to −1; we would expect no
spectral �ow along this path. Indeed, using Deûnition 1.4, one can check that if {Ft}

is a path for which χ[0,∞)(Ft) is constant, then the spectral �ow of {Ft} is 0. Let
Pt = χ[0,∞)(Ft) =∶ P. _en π(Pt) = π(P) is constant for all t, so the spectral �ow is
equal to ind(P0P1) = ind(P) as an operator from PH to PH. As P is the identity on
PH, ind(P) = 0, i.e., the spectral �ow is 0. Since the positive operators form a convex
set, it should be clear that, by going from F to 2χ[0,∞)(F) − 1 via a straight line, the
projection onto the positive part of the spectrum remains unchanged. So the spectral
�ow along this path is 0, as expected.
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1.2.2 Spectral Flow for Unbounded Operators

In discussing paths of unbounded operators, we will restrict ourselves to bounded
perturbations of a ûxed self-adjoint operator aõliated with the von Neumann alge-
bra N. If {Dt} is a path of unbounded self-adjoint operators, where Dt = D0 + At
and {At} is a norm-continuous path of bounded operators, we can apply the Riesz
transform, D ↦ D(1 + D2)−

1
2 , to obtain a path of bounded (self-adjoint) operators.

_e resulting collection {Ft} of operators obtained by applying the Riesz transform
is continuous in t [CP98, _eorem A.8]. Moreover, if the Dt are Breuer–Fredholm,
then by deûnition so are the operators {Ft}. Under these conditions, we can in this
manner reduce the problem of calculating spectral �ow for unbounded operators to
the bounded case.

Deûnition 1.6 If {Dt} is a path of (unbounded) self-adjoint Breuer–Fredholm op-
erators such that Dt = D0 + At with {At} a (norm-continuous) path of bounded
operators, then sf({Dt}) = sf({Dt(1 + D2

t )
−

1
2 }).

Connection to Non-Commutative Geometry

Deûnition 1.7 ([CPRS08, Deûnition 3.1]) A pre-Breuer–Fredholmmodule for a uni-
tal Banach ∗-algebraA is a pair (N, F0), whereA is represented in the semiûnite von
Neumann algebra N via a ∗-homomorphism π (which can be assumed without loss
of generality to be faithful) such that, if τ is a faithful, normal, semiûnite trace on N,
then
● F0 ∈ N is self-adjoint and 1 − F2

0 ∈KN, and
● {a ∈ A ∣ [F0 , a] ∈KN} is a dense ∗-subalgebra of A.
If, in addition to the above, F2

0 = 1, we refer to (N, F0) as a Breuer–Fredholm module,
i.e., we drop the “pre-”.

Deûnition 1.8 ([CP04, Deûnition 2.4]) An unbounded Breuer–Fredholm module
for A is a pair (N,D0) where, with A and N as in the previous deûnition, D0 is an
unbounded self-adjoint operator aõliated with N such that
(i) (1 + D2

0)
−1 ∈KN, and

(ii) {a ∈ A ∣ a(DomD0) ⊂ DomD0 and [D0 , a] ∈ N} is a dense ∗-subalgebra of A.
If we can replace condition (i) by (1+D2

0)
−

1
2 ∈ Lp , we say that (N,D0) is a p-summable

unbounded Breuer–Fredholm module.

Fredholmmodules are the building blocks of K-homology, which in turn is dual to
K-theory. In the semiûnite setting, the theory is not as fully developed; nonetheless,
one can pair an oddK-homology class represented by an unboundedmodule (N,D0)

with an odd K-theory class represented by a unitary operator u. Denoting by P the
spectral projection of D0 corresponding to the interval [0,∞), the pairing is given
by ind(PuP) (as an operator in PNP). _is index is equal to the spectral �ow of
any path {Dt} from D0 to uD0u∗ with Dt ∈ D0 +Nsa, and is hence calculated by the
integral formula in_eorem 1.1 in the case when (N,D0) is p-summable and the path
is piecewiseC1. Formore details on the connection between bounded and unbounded
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Breuer–Fredholm modules, see [CP04, §2.4], and for the proof that ind(PuP) is the
aforementioned spectral �ow, see [Phi97, §3].

1.3 Ideals of Operators

We will use the generalized singular s-numbers of operators to discuss the ideals of
N in which our work will take place. Recall that the singular numbers of a com-
pact operator K are the eigenvalues of ∣K∣, with multiplicity. _e notion of singular
numbers is generalized to (τ-measurable) operators aõliated with a semiûnite von
Neumann algebra by Fack and Kosaki [FK86]; in particular, bounded operators in
N are τ-measurable. We highlight below the deûnitions and results from their paper
that are relevant to our presentation.

Deûnition 1.9 ([FK86, Deûnition 2.1]) For A ∈ N and t > 0, the t-th singular
s-number (or, brie�y, s-number) is

µt(A) = inf {∥AP∥ ∶ P is a projection in N with τ(1 − P) ≤ t}.

It should be clear that t ↦ µt(A) is a non-negative, decreasing function. _e
generalized s-numbers can be used to get a handle on certain classes of operators; for
example, T is τ-measurable if and only if µt(T) < ∞ for all t > 0. Also, it is well known
that S ∈ KN if and only if S is bounded and µt(S) → 0 as t → ∞. A consequence
of this property of τ-compact operators is that, if P is a τ-compact projection, then
τ(P) < ∞. Note that in some deûnitions of the τ-compact operators the condition
that S is bounded is dropped, but we wish to have the τ-compacts be a subset ofN.

We also make the slightly unpopular choice of restricting ourselves to bounded
operators when it comes to discussing the Lp spaces; i.e., by Lp we mean the ideal
{T ∈ N ∶ τ(∣T ∣p)1/p < ∞}. _e expression τ(∣T ∣p)1/p is used to deûne a norm on
Lp , and the following result connects this expression to the generalized s-numbers of
T ; this will allow us to tie Lp spaces to the concept of a small power invariant ideal,
which we will introduce later (Deûnition 1.15).

_eorem 1.10 ([FK86, Corollary 2.8]) If f is a continuous, increasing function on
[0,∞) with f (0) = 0 and T is a τ-measurable operator, then

τ( f (∣T ∣)) = ∫

∞

0
f (µt(T)) dt.

In particular, τ(∣T ∣p)1/p = (∫
∞

0 µt(T)p dt)1/p for 0 < p < ∞.

Remark 1.11 In [FK86], Lp is deûned as the set of all closed, densely-deûned op-
erators T aõliated with N for which τ(∣T ∣p)1/p < ∞, with ∣∣∣T ∣∣∣ = τ(∣T ∣p)1/p . Using
this deûnition, it is well known that Lp is a Banach space. If we wish our space Lp to
consist of only the bounded operators, then we need to put a diòerent norm on it if
we want it to be complete: for example, ∥T∥p = max{∥T∥, ∣∣∣T ∣∣∣} [CP04].

_e most commonly used ideal in the following will be I = Lp ; however, we do
state some theorems for more general ideals, so we wish to establish a few properties.
In a general von Neumann algebra, an ideal I need not be contained in the τ-compact
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operators ofN, even if I is essential. For example, ifN = B(H)⊕B(H), thenK(H)⊕

B(H) is an essential ideal that is not contained in the compact operators, K(H) ⊕

K(H). As we will need our ideals to consist of compact operators, we will eventually
have to explicitly assume it for the ideals under consideration (see Deûnition 1.15 for
the properties required of our ideals).
Another issue that needs to be addressed is the norm we place on our ideals. In

all cases under consideration, the norm will satisfy the properties of the following
deûnition.

Deûnition 1.12 ([CP04, Deûnition A.2]) If I is a (two-sided) ∗-ideal in N that is
complete in a norm ∥ ⋅ ∥I, then we call I an invariant operator ideal if

(i) ∥S∥I ≥ ∥S∥ for all S ∈ I,
(ii) ∥S∗∥I = ∥S∥I for all S ∈ I,
(iii) ∥ASB∥I ≤ ∥A∥∥S∥I∥B∥ for all S ∈ I, A, B ∈ N.

Note that, using polar decomposition, property (ii) follows from (iii).

One of the properties that follows from the deûnition is a comparison of norms for
positive operators. Dixmier proved the ûrst part of the following result; as he does not
concern himself with invariant operator ideals, we must refer to the proof in [Dix81]
to obtain the norm inequality with which we conclude the result.

_eorem 1.13 ([Dix81, §1.1.6, Proposition 10]) If I is an ideal in a von Neumann
algebra N, 0 ≤ S ≤ T, and T ∈ I, then S ∈ I. Moreover, if I is an invariant operator
ideal, then ∥S∥I ≤ ∥T∥I.

To start with, we note that Lp for p ≥ 1 is an invariant operator ideal, and this will
be our main concern. _ere is, however, a wealth of examples of invariant operator
ideals; we relegate the discussion thereof to Remark 1.16. We move on instead to con-
sider powers of ideals. As seen above for I = Lp , we will o�en have a norm deûned on
our ideals; so, in particular, we need to consider if a suitable norm can be deûned on
the power of an ideal, and what the relationship is between an ideal and its powers.

Deûnition 1.14 Suppose that I is an ideal of operators. Deûne for q ∈ (0,∞),

Iq = {T ∈ N ∣ ∣T ∣
1/q

∈ I} .

Dixmier discussed powers of an ideal in detail [Dix52b,Dix52a]. For example, he
showed that Iq is in turn an ideal [Dix52b, Propoition 1]. _e notation is justiûed by
the fact that (Ia)b = Iab and IaIb = Ia+b [Dix52b, Proposition 2]. It can be shown
that Iα ⊂ Iβ for 0 < β ≤ α < ∞ (see [Dix52a] for a proof); in particular we will need
this for α = 1 and β < 1.

We can deûne a norm on Iq (for q < 1) via ∥T∥Iq = (∥ ∣T ∣1/q∥I)
q . Using termi-

nology from the theory of non-commutative symmetric spaces, Iq is the (1/q)-con-
vexiûcation of I; our setup is such that Iq will be invariant operator ideals in their own
right. _is is certainly true for I = Lp ; note, moreover, that the norm ∥ ⋅ ∥Iq deûned
above corresponds to the appropriate Lp norm when I is an Lp type ideal.
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We observe that if q < 1, the inclusion I↪ Iq is continuous

∥T∥Iq = (∥ ∣T ∣∣T ∣
1
q −1

∥I)
q
≤ ∥T∥

q
I
∥ ∣T ∣

1
q −1

∥
q
≤ ∥T∥

q
I
∥T∥

1−q

≤ ∥T∥
q
I
∥T∥

1−q
I

= ∥T∥I .

Note that the above proof relies on the fact that I is an invariant operator ideal: for the
ûrst inequality, we use property (iii) of the deûnition, and in the second to last step,
property (i).
Finally, we discuss Hölder’s inequality as it applies to powers of ideals. For I = L1,

whose powers areLp for various values of p, Hölder’s inequality is a result of Dixmier
[Dix53, Corollaries 2, 3, _eorem 6], [Dix52b]; we will use it to determine whether
an operator is in Lp for some p, and to ûnd upper bounds for Lp norms. For other
ideals this theorem might need to be proved separately; again, Remark 1.16 discusses
some general conditions under which Hölder’s inequality is already known.

In the following deûnition we collect all the properties that we need to impose on
the operator ideals under consideration in order for our proofs to work. We then
follow it up with a discussion of some ideals that satisfy these properties.

Deûnition 1.15 Say that I is a small power invariant operator ideal if I ⊂ KN is an
invariant operator ideal (as deûned in Deûnition 1.12) for which the following hold:
● _e powers Iq for 0 < q < 1 are also invariant operator ideals for the usual norm

∥A∥Iq = (∥∣A∣
1
q ∥I)

q .
● I and its powers satisfy Hölder’s inequality: if s1 , s2 , q ∈ (0, 1] are such that q = s1 +

s2, and A ∈ Is1 , B ∈ Is2 , then ∥AB∥Iq ≤ ∥A∥Is1 ∥B∥Is2 .
Note that, given this setup, Iq ⊂KN must be true for all q ∈ (0, 1].

Remark 1.16 _e example in which we are particularly interested is Lp , but the
question might well arise whether there are any other small power invariant ideals.
Another example can be found in [CP04], where ideals Liq make an appearance while
proving θ-summable versions of the spectral �ow formula (see [CP04, Appendix A,
Lemma A.3] for the proof of Hölder’s theorem for these ideals).
Both of these examples are in fact symmetric operator spaces as well. By deûnition,

a symmetric operator space E onN is a linear subspace of the ∗-algebra of measurable
operators aõliated with N such that, if T ∈ E and S is any measurable operator with
µt(S) ≤ µt(T) for all t > 0, then S ∈ E and ∥S∥E ≤ ∥T∥E.

Symmetric operator spaces are connected to invariant operator ideals, as we now
describe. SupposeE is a symmetric operator space, S ∈ E, andA, B are bounded. From
the properties of s-numbers [FK86, Lemma 2.5], we have µt(ASB) ≤ ∥A∥µt(S)∥B∥ =
µt(∥A∥S∥B∥). Since ∥A∥S∥B∥ ∈ E, it follows from the deûnition of symmetric oper-
ator spaces that ASB ∈ E and ∥ASB∥E ≤ ∥A∥∥S∥E∥B∥. Finally, if we consider E ∩N

with normmax{∥ ⋅ ∥, ∥ ⋅ ∥E}, then it is easy to see that the resulting space is a two-sided
ideal that satisûes properties (i) and (iii) in Deûnition 1.12, i.e., E ∩N is an invariant
operator ideal. On the other hand, there are invariant operator ideals that cannot be
constructed from a symmetric operator space in the manner just described. For ex-
ample, I = K(H) ⊕ 0 is an invariant operator ideal of B(H) ⊕B(H) (and in fact is
contained in the ideal of compact operators). It is easy to see that for A ∈ K(H), we
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have µt(0 ⊕ A) = µt(A⊕ 0), but although A⊕ 0 ∈ I, we certainly do not have that
0⊕ A ∈ I.

Now consider an invariant operator ideal I that does arise from a symmetric opera-
tor space, as indeed all practical examples seem to. _en, using existing results about
symmetric operator spaces, one can conclude easily that I is in fact a small power
invariant ideal. To start with, we must have I ⊂ KN. Otherwise, if there exists an op-
erator A in I such that A /∈ KN, then µt(A) /→ 0, so in particular µt(A) > r for some
r > 0. Since µt(r1) = r < µt(A) for all t, this would imply that r1 ∈ I (by the deûnition
of symmetric operator space), and so I = N. _erefore, as long as I is a proper ideal
ofN, we must have I ⊂KN.

Now for 0 < q ≤ 1 a real number, recall the deûnition Iq = {T ∈ N ∶ ∣T ∣1/q ∈ I}

and that Iq is also an ideal [Dix52b, Proposition 1]. Deûne a norm on Iq via ∥T∥Iq =

(∥∣T ∣1/q∥I)
q ; results from [KS08] allow us to conclude that ∥ ⋅ ∥Iq is in fact a norm.

Moreover, it is easy to check that Iq equipped with this norm also arises from a sym-
metric operator space; for a discussion of norms on symmetric operator spaces and
p-convexiûcation, see [DDS14]. By the discussion at the beginning of the remark, we
can conclude that Iq equipped with the norm ∥ ⋅ ∥Iq is an invariant operator ideal.
Finally, [Suk16] proved that the Hölder inequality holds for symmetric operator

spaces, and so I satisûes all the conditions we require of our ideals. Many thanks
to the referee for pointing out the references regarding symmetric operator spaces,
which helped clarify this remark and give a much better idea of the context.

_e rest of the article is concerned with our new proof of the p-summable integral
formula, the steps of which are summarized in Section 2.

2 Outline of the Analytic Continuation Proof of p-summable
Formulas

_e idea is to show that the integral formula for spectral �ow works with p
2 replaced

by any large enough m; the larger power gives us extra maneouvering room, as we
can split up the (1 + D2)−m factor and still have part of it be trace class (we do this,
for example, during the proof that the one-form is closed). We then use analytic con-
tinuation of complex functions to show that the formula works for all m ≥

p
2 .

To show that the integral formula calculates the spectral �ow, the proof follows
the same main steps as for the ûnitely-summable case when the power is an inte-
ger [CP98], but changes the proof so it works for all (suõciently large) real powers.
Note that the proof is split into a bounded case and an unbounded case. One way
of showing that a formula calculates spectral �ow is to start with an integral formula
which works for special linear paths of bounded operators and build up the general
formula from there. _e bounded case and the unbounded case are connected by the
Riesz transform, D ↦ D(1 + D2)−

1
2 , which maps unbounded operators to bounded

operators. _e following two points explain how we decide what the corresponding
bounded case should be.

● Given a summability condition on D0, say (1 + D2
0)
−1 ∈ I for some operator

ideal I, the Riesz transform maps paths in D0 + Nsa to paths in F0 + S, where
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F0 = D0(1 + D2
0)
−

1
2 and S is a Banach space whose exact nature will be revealed

in Section 4.
● For appropriate choices of function k, if {Ft} ⊂ F0+S is the image of the path {Dt}

under the Riesz transform, and {Ft} is diòerentiable, then

τ(
d
dt

(Dt)k((1 + D2
t )
−1
)) = τ(

d
dt

(Ft)(1 − F2
t )
−

3
2 k(1 − F2

t )) .

Suppose k(x) is a suitable function and we want to show that the integral

∫

1

0
τ (

d
dt

(Dt)k((1 + D2
t )
−1
)) dt

can be used to calculate spectral �ow (in particular, we want to do this for k(x) = xm ,
wherem can be any large enough real number). _e course of action indicated by the
above observations is clear:
(1) Modify the desired formula, replacing (1 + D2

t )
−1 by 1 − F2

t , and add a factor of
(1−F2

t )
−

3
2 to obtain the corresponding integral formula in the bounded case, i.e.,

consider the integral ∫
1
0 τ( ddt (Ft)h(1 − F2

t )) dt, where h(x) = x−
3
2 k(x). Some

care might be required in doing this:
(a) _eoperator (1+D2

t )
−1 is always positive, but therewill be bounded operators

F ∈ F0+S for which 1−F2 is not positive. _us, in order for h(1−F2) to make
sense for all F in our manifold, we might need to replace 1− F2

t by ∣1− F2
t ∣ (so

consider h(∣x∣) instead of h(x)). _is is indeed the case for h(x) = xm−3/2

(the function in which we are ultimately interested), as the proof needs to
work for any large enough realm. Note that this is one of the reasons the proof
for general real powers p diòers from the one for integer powers presented in
[CP98].

(b) _e extra factor of ∣1 − F2
t ∣
−

3
2 might very well cause problems, as there is no

reason to suppose that 1 − F2
t is invertible. However, for suitable functions k,

say if limx→0 x−
3
2 k(x) = 0, we can still make sense of the expression

(1 − F2
t )
−

3
2 k(1 − F2

t ).

Namely, deûne

l(x) =
⎧⎪⎪
⎨
⎪⎪⎩

x−
3
2 k(x) for x /= 0,

0 for x = 0.

_en l is a continuous function on R, and whenever we write h(F) we re-
ally mean l(F). _is is, for example, the approach taken in [CP04], for the
function k(x) = e−

1
x .

(2) Show that the one-form αF ∶X ↦ τ(Xh(1 − F2
t )) is exact, so its integral is inde-

pendent of the path over which it is calculated (one way to do this is to show that
the one-form is closed, which is the approach we take).

(3) Show that the integral formula holds in the bounded case. It is during this step
that we ûnd the suitable normalizing factor for the one-form, and also where we
must introduce correction terms for a path whose endpoints are not unitarily
equivalent.
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(4) Reduce the unbounded case to the bounded case. _e vital point here is that, if
Dt = D0 + At describes a C1 path in D0 +Nsa, then its Riesz image {Ft} should
be C1 in F0 + S for an appropriately chosen Banach space S. _en the equality of
traces mentioned earlier allows us to rewrite the bounded formula into a formula
depending on {Dt}.

_e above program should explain how we arrive at the formulae we consider, and
summarize a possible approach for proving similar results. Along the way, we try
to present results in some generality. We start by presenting, in Section 3, a set of
conditions that are suõcient to prove that αT ∶X ↦ τ(Xg(T)k) is a closed one-form
on an aõne operator space T0 + S. _e choice of function g will be diòerent for
the bounded case and the unbounded case. We mention conditions under which the
integral formula

∫ τ (
d
dt

(Ft)h(1 − F2
t )) dt

can be suitably modiûed to calculate spectral �ow for paths of bounded operators
{Ft} ∈ F0 + S. As part of this process, both a constant normalization factor and
correction terms emerge. We then use this to obtain, for unbounded operators, an
integral formula of the type

const∫ τ(
d
dt

(Dt)k((1 + D2
t )
−1
)) dt + correction terms.

_is is the content of Section 4. We show in Section 5 that, with some conditions
on the function g, the complex function z ↦ ∫

1
0 τ(Ag(Dt)

z) dt is analytic, and we
explain the idea behind the analytic continuation step.
Finally, in Section 6, we put these various facts together to prove the integral for-

mula stated for p-summable operators in _eorem 1.1. _e ûrst step (getting a one-
form that we will use in the spectral �ow formula) is accomplished by Corollary 6.1.
_e second and third step (getting an initial spectral �ow formula, and using ana-
lytic continuation to improve the power used and obtain the desired ûnal formula)
are both implemented in the proof of _eorem 6.4.

3 Closed Forms of the Type τ(Xg(T)q)
In the p-summable formula proof, we will have reason to consider two one-forms of
the same type (one for the bounded case and one for the unbounded case), so the
purpose of this section is to prove that these one-forms are closed and, hence, exact
in a more general context. As always, we have a von Neumann algebra N equipped
with a faithful normal semiûnite trace τ. _e one-forms are deûned on a manifold of
the type T0 + S for a ûxed self-adjoint operator T0 and a real Banach space S ⊂ Nsa.
We will have either T0 ∈ Nsa or, if T0 is unbounded, then T0 is aõliated with N; in
practice, T0 will have additional properties dictated by the context of the spectral �ow
problem. _e one-forms are of the type αT(X) = Cτ(Xg(T)q), whereC is a constant,
q > 3 is a ûxed real number, T ∈ T0 +S, X is in the tangent space at T of the manifold
(namely S), and g∶T0 + S→ N is a suitable function.

In order to deûne the one-form and show that the one-form is closed using the
technique below, we will need to place some restrictions on the function g. In all the
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cases in which we are interested, we have that ∥X∥S ≥ ∥X∥ for X ∈ S, where ∥ ⋅ ∥

denotes the operator norm; hence, the identity function from (S, ∥ ⋅ ∥S) to (S, ∥ ⋅ ∥)
is continuous. In order to simplify the presentation, we state conditions in terms of
the operator norm instead of the norm on S, and for all practical purposes ignore the
actual norm on S.

We explain the reasoning behind the restrictions on g in Remark 3.2. _e main
result of this section, which we will prove in the sequel, is the following proposition.

Proposition 3.1 Suppose T0 is a ûxed self-adjoint operator aõliated with N, S is a
real Banach space such that S ⊂ Nsa and ∥X∥S ≥ ∥X∥ for X ∈ S, and that for some
q > 3, g is a function satisfying the following conditions:
(i) g(T) is a positive operator in N for all T ∈ T0 + S (so g(T)t is deûned and in N

for all real t ≥ q−3
2 ).

(ii) τ(g(T)t) < ∞, for t ≥ q−3
2 and for all T ∈ T0 + S.

(iii) For each ûxed t ≥ q−3
2 and T ∈ T0+S and X ∈ S, the function fromR toL1 deûned

by s ↦ g(T + sX)t is continuous. Note that it is suõcient to prove continuity at
s = 0 for each T and X, as continuity at some other r then follows by replacing T
with T + rX (which is also an element of T0 + S).

(iv) For each T ∈ T0 + S and X ∈ S, the function s ↦ g(T + sX) is diòerentiable
in the operator norm. As above, diòerentiability at s = 0 is suõcient to ensure
diòerentiability, and hence continuity, at any r ∈ R.

_e derivative of s ↦ g(T + sX) at s = 0 plays an important role, and it is useful to
introduce a notation for the diòerence quotient. Namely, deûne the function

dg ,s(T , X) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

g(T + sX) − g(T)

s
for s /= 0,

lim
s→0

g(T + sX) − g(T)

s
for s = 0.

Note that s ↦ dg ,s(T , X) is a continuous function (since s ↦ g(T + sX) is itself con-
tinuous, and diòerentiable at s = 0). Further restrictions on g are in fact placed on this
function.
(v) dg ,0(T , X) (the derivative of s ↦ g(T + sX) at s = 0) can be written as a sum,

where each term is of the following type:
● g1(T)Xg1(T) with T ↦ g1(T) continuous from T0 + S to N, or
● g1(T)Xg2(T) with T ↦ g1(T) and T ↦ g2(T) both continuous from T0 + S

toN; each such term (when g1 /= g2) can be paired up with a corresponding term
of the form g2(T)Xg1(T)

_en, for any C > 0, αT(X) = Cτ(Xg(T)q) is a closed one-form on the manifold
T0 + S, i.e., dα = 0. It follows that α is exact; that is, the integral of α is independent of
the path of integration.

Remark 3.2 Here, we explain whence the conditions on g arise. Note the repeated
appearance of q−3

2 instead of the (perhaps) expected q. _is is a consequence of the
method of proof; we will want to split g(T)q into a product g(T)a g(T)b , and we
need to ensure that at least one of these two factors is trace class (see the proof of
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Lemma 3.4). Property (v) might also look a bit strange; it is needed so that when we
use the trace property on some of the resulting expressions, we get a permutation of
the same terms (see the calculations following Lemma 3.5). Examples of spaces T0+S

and functions g that satisfy these conditions can be found in Sections 6.1 and 6.2.
From the deûnition of α and conditions on g it is easy to check that for each ûxed T ,

αT is a bounded linear functional on the tangent space at T . _ese conditions might
be insuõcient to show that α is C1 when considered as a map from the manifold
T0 + S to the cotangent space; however, this is in fact irrelevant to our purposes. Our
goal is to calculate the exterior derivative and hence conclude that the integral of α is
independent of path, for which we really only need directional derivatives.

_e rest of this section is dedicated to proving Proposition 3.1. Before we proceed,
note that if αT(X) is closed, then so is CαT(X) for any constant C, so in the following
we assume without loss of generality that C = 1.

_e deûnition of exterior derivative applied to the one-form α gives us that

dα(X ,Y) = Xα(Y) − Yα(X) − α([X ,Y]),

where [X ,Y] is the bracket product of X and Y viewed as constant vector ûelds. One
can easily check that the �ows of X and Y commute, so it follows that [X ,Y] = 0.
Hence, showing that the one-form is closed, reduces to showing that the derivatives
in the direction X of αT(Y) and in the direction Y of αT(X) are equal,

d
ds

∣
s=0

τ(Yg(T + sX)
q
) =

d
ds

∣
s=0

τ(Xg(T + sY)
q
).

We start with the le�-hand side and manipulate it until we can conclude that it is the
same as the right-hand side. By deûnition,

d
ds

∣
s=0

τ(Yg(T + sX)
q
) = lim

s→0
τ(Y

1
s
[g(T + sX)

q
− g(T)

q
]) .

Let n = ⌊q⌋ and r = q
n+1 (note that 0 < r < 1). It is easy to check (by expanding) that

(3.1) g(T + sX)
q
− g(T)

q
=

n

∑
i=0

g(T + sX)
r(n−i)

[g(T + sX)
r
− g(T)

r
]g(T)

r i .

Since 0 < r < 1 we can use an integral formula of Pedersen’s [Ped79, p. 8] for small
powers of a positive operator to write

g(T + sX)
r
=

sin(rπ)
π ∫

∞

0
λ−r

[(1 + λg(T + sX))
−1g(T + sX)] dλ,

and similarly for g(T)r . Apply the resolvent formula to get the following expression
for our derivative calculation

d
ds

∣
s=0

τ(Yg(T + sX)
q
)

= lim
s→0

τ(Y
1
s

n

∑
i=0

( g(T + sX)
r(n−i) sin(rπ)

π ∫

∞

0
Iλ dλg(T)

r i
)) ,

where the integrand Iλ = λ−r(1 + λg(T + sX))−1(g(T + sX) − g(T))(1 + λg(T))−1.
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We combine the diòerence g(T + sX)− g(T) from the integrand with the factor of
1
s appearing in the limit, thereby obtaining the diòerence quotient at 0 of the function
s ↦ g(T + sX). Recall that this diòerence quotient was denoted by dg ,s(T , X), and
the derivative at 0 by dg ,0(T , X). In order to make the formulas easier to read, we will
also use Rλ(A) for (1 + λA)−1; by design, g(T) is a positive operator for T ∈ T0 + S,
by condition (i) of Proposition 3.1, and it is with these operators that the notation Rλ
will mainly be used. In addition, we remark here that if A is a positive operator, then
∥Rλ(A)∥ ≤ 1, an inequality that will be needed o�en. We introduce these notations
into our last derivative calculation to get

d
ds

∣
s=0

τ(Yg(T + sX)
q
) = lim

s→0
τ(Y

n

∑
i=0

g(T + sX)
r(n−i)

×
sin(rπ)

π
(∫

∞

0
λ−rRλ g(T + sX)dg ,s(T , X)Rλ g(T) dλ) g(T)

r i
) .

Note that, in each term, either g(T + sX)r(n−i) or g(T)r i must be trace class (since
r(n− i)+ ri = rn = q− r > q− 1, so at least one of r(n− i) and ri must be greater than
or equal to q−3

2 ). _is will be important in the proofs below. In order to avoid having
to distinguish which of g(T + sX)r(n−i) and g(T)r i is trace class (which will not be
relevant beyond the fact that one of them is), we introduce a special notation to deal
with both cases at once. Namely, for an operator A denote by ∥At∥⋆ the L1 norm if t
is large enough that At ∈ L1, and the operator norm otherwise.

To start with, since one of g(T + sX)r(n−i) and g(T)r i is trace class, we can pull
the trace into the sum (each term is also trace class). Moreover, g(T + sX)r(n−i) and
g(T)r i are bounded operators, so we can pull them into the integral without changing
the value of the expression. We get

d
ds

∣
s=0

τ(Yg(T + sX)
q
) = lim

s→0

n

∑
i=0

sin(rπ)
π

× τ(∫
∞

0
λ−rYg(T + sX)

r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)
r i dλ) .

We would like to conclude that this limit evaluates to
n

∑
i=0

sin(rπ)
π ∫

∞

0
λ−rτ(Yg(T)

r(n−i)Rλ g(T)dg ,0(T , X)Rλ g(T)g(T)
r i) dλ,

the expression obtained by ûrst exchanging the integral and the trace and then plug-
ging in s = 0.

We consider one term at a time; that is, in most of the following (until we return to
the derivative calculation), i is ûxed, and we recall that r and n are determined by the
exponent q in the formula for α, and hence are also ûxed. For each s ∈ [−1, 1], deûne

Js(λ) = λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i .

In our last limit expression, Js(λ) is the integrand; we need to show that

lim
s→0

τ( ∫
∞

0
Js(λ) dλ) = ∫

∞

0
τ(J0(λ)) dλ.
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_is is accomplished in three steps: from Lemma 3.3 and Lemma 3.4 we conclude that
we can apply Fubini’s theorem to switch the order of the trace and the integral, and
Lemma 3.5 allows us to apply the Lebesgue Convergence _eorem and evaluate the
limit. We can then use the trace property and the restrictions on dg ,0(T , X) to show
that each term that appears in the formula for d

ds ∣s=0τ(Xg(T + sY)q), also appears in
the formula for d

ds ∣s=0τ(Yg(T + sX)q).
Step 1 of the proof is the continuity of the integrand as a function of λ. As the

result follows easily from the triangle inequality and Hölder’s inequality, along with
the conditions on g and the continuity of the spectral calculus, the proof is omitted.
Wenote, however, that in this proofweneed the fact that at least one of g(T+sX)r(n−i)

and g(T)r i is trace class, which follows from condition (ii) of Proposition 3.1 and the
fact that r(n − i) + ri = rn = q − r > q − 1.

Lemma 3.3 Fix s ∈ [−1, 1]. Recall that t is a ûxed positive real number, and we used
the notation n = ⌊t⌋ and r = t

n+1 (so 0 < r < 1); g is a function whose properties are
given in Proposition 3.1. For each ûxed integer i, 0 ≤ i ≤ n, we deûned

Js(λ) = λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i .

_e map λ ↦ Js(λ) is continuous (in L1 norm) on the interval (0,∞).

_e following lemma accomplishes step two in our proof (ûnding a function h(λ)
that can be used as a bound for Js(λ) for all s ∈ [−1, 1] simultaneously).

Lemma 3.4 Assume s ∈ [−1, 1]. Recall that t is a ûxed positive real number, and we
used the notation n = ⌊t⌋ and r = t

n+1 (so 0 < r < 1); g is a function whose properties
are given in Proposition 3.1. For each ûxed integer i, 0 ≤ i ≤ n, we deûned

Js(λ) = λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i .

_ere exists a constant k that does not depend on either s or λ such that, for each λ ∈

(0,∞), ∥Js(λ)∥1 ≤ min{λ−r , λ−r−1}k. It follows that

∫

∞

0
∥Js(λ)∥1 dλ < k∫

∞

0
min{λ−r , λ−r−1

} dλ < ∞.

Proof Recall that s ↦ dg ,s(T , X) is continuous by deûnition, so we can deûne the
constant k0 = sups∈[−1,1] ∥dg ,s(T , X)∥. As the value of min{λ−r , λ−r−1} depends on
how λ compares to 1, we will divide the proof into cases according to the value of λ.

Case 1: λ ∈ (0, 1); then λ−r < λ−r−1. We have

∥λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i
∥1

≤ λ−r(∥Y∥∥g(T + sX)
r(n−i)

∥⋆∥Rλ g(T + sX)∥∥dg ,s(T , X)∥

× ∥Rλ g(T)∥∥g(T)
r i
∥⋆) .

Using the properties of g and functional calculus, it is easy to argue that

k1 = k0∥Y∥∥g(T)
r i
∥⋆ sup

s∈[−1,1]
(∥g(T + sX)

r(n−i)
∥⋆)
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deûnes a constant (independent of s and λ) satisfying

∥λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i
∥1 ≤ λ−rk1 .

Case 2: Now consider λ ∈ [1,∞). In this case λ−r−1 ≤ λ−r , so the estimates from
the previous case are not suõcient. However, by design, either r(n − i) − 1 ≥ q−3

2 or
ri − 1 ≥ q−3

2 , enabling us to get a better upper bound. Since r(n − i) + ri = rn =

q − r > q − 1, it follows that at least one of r(n − i) and ri must be greater than or
equal to q−1

2 . Consider the two cases r(n − i) ≥ q−1
2 and r(n − i) < q−1

2 , exactly one of
which holds for our ûxed r, n, and i, and in each case deûne a constant k2 such that
∥Js(λ)∥ ≤ λ−r−1k2.

Suppose ûrst that r(n − i) ≥
q−1
2 =

q−3
2 + 1; so r(n − i) − 1 ≥

q−3
2 , whence

g(T + sX)r(n−i)−1 is still inL1 by condition (ii) of Proposition 3.1 and, using Hölder’s
inequality, we can write

∥λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i
∥1

≤ λ−r
∥Y∥∥g(T + sX)

r(n−i)−1
∥1∥g(T + sX)Rλ g(T + sX)∥∥dg ,s(T , X)∥

× ∥Rλ g(T)∥∥g(T)
r i
∥.

Recall that g(T + sX) is a positive operator; hence, by the Spectral _eorem,
∥g(T + sX)Rλ g(T+sX)∥ ≤ 1

λ . Moreover, ∥Rλ g(T)∥ ≤ 1 and ∥dg ,s(T , X)∥ is bounded
above by the constant k0 deûned at the beginning of the proof. As ∥g(T)r i∥ does not
depend on s, we only need to show that ∥g(T + sX)r(n−i)−1∥1 is uniformly bounded
for s ∈ [−1, 1]. However, this follows immediately from condition (iii) of Proposition
3.1 so deûne the constant

k2 = k0∥Y∥∥g(T)
r i
∥( sup

s∈[−1,1]
∥g(T + sX)

r(n−i)−1
∥1)

independent of s and λ for which

∥λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i
∥1 ≤ λ−r−1k2 .

_is gives us the desired inequality in the case when r(n − i) ≥ q−1
2 .

On the other hand, if r(n − i) < q−1
2 , then we must have ri ≥ q−1

2 =
q−3
2 + 1, so we

can perform a similar calculation by writing

(1 + λg(T))
−1g(T)

r i
= g(T)(1 + λg(T))

−1g(T)
r i−1 .

In this case we need to let

k2 = k0∥Y∥∥g(T)
r i−1

∥1( sup
s∈[−1,1]

∥g(T + sX)
r(n−i)

∥),

to obtain

∥λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i
∥1 ≤ λ−r−1k2 .

_erefore, for k = max{k1 , k2}, we obtain the desired result

∥Js(λ)∥1 ≤ kmin{λ−r , λ−r−1
}.
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As ∫
1
0 λ−r dλ and ∫

∞

1 λ−r−1 dλ are both ûnite (recall 0 < r < 1),

∫

∞

0
min{λ−r , λ−r−1

} dλ

converges. Using the inequality shown above, we can thus conclude that

∫

∞

0
∥Js(λ)∥1 dλ < ∞.

Finally, we need to show that Js(λ) converges pointwise to J0(λ) (step 3 of the
proof). _is is again accomplished by judicious use of the triangle inequality and
Hölder’s inequality; as the proof is quite straight forward, we omit it, noting only that
it relies on conditions (iii) and (iv) of Proposition 3.1.

Lemma 3.5 Recall that t is a ûxed positive real number, and we used the notation n =

⌊t⌋ and r = t
n+1 (so 0 < r < 1); g is a function whose properties are given in Propositon

3.1. For each ûxed integer i, 0 ≤ i ≤ n, we deûned

Js(λ) = λ−rYg(T + sX)
r(n−i)Rλ g(T + sX)dg ,s(T , X)Rλ g(T)g(T)

r i .

Fix λ ∈ (0,∞). _en τ(Js(λ)) → τ(J0(λ)) as s → 0.

By Lemmas 3.3 and 3.4, λ ↦ Js(λ) is continuous in L1 norm, and we can ûnd a
constant k such that for all s ∈ [−1, 1] we have

∫

∞

0
∥Js(λ)∥1 dλ ≤ k∫

∞

0
min{λ−r , λ−r−1

} dλ < ∞,

where k is a constant which does not depend on s. Moreover, by Lemma 3.5, τ(Js(λ))
converges pointwise to τ(J0(λ)) as s → 0. We can thus use the Lebesgue Dominated
Convergence _eorem to conclude that, for any sequence {rn} converging to 0, we
have ∫

∞

0 τ(Jrn(λ)) dλ → ∫
∞

0 τ(J0(λ)) dλ. SinceR is ûrst-countable, this is suõcient
to ensure that ∫

∞

0 τ(Js(λ)) dλ converges to ∫
∞

0 τ(J0(λ)) dλ as s → 0. _is concludes
the proof that

d
ds

∣
s=0

τ(Yg(T + sX)
q
) =

n

∑
i=0

sin(rπ)
π ∫

∞

0
λ−rτ(Yg(T)

r(n−i)Rλ g(T)dg ,0(T , X)Rλ g(T)g(T)
r i) dλ.

Since dg ,0(T , X) = lims→0
1
s (g(T + sX) − g(T)) can be written as sums of the form

g1(T)Xg2(T) (condition (v) of Proposition 3.1), we can break up each trace into a
sum of terms that look like

τ(Yg(T)
r(n−i)Rλ g(T)g1(T)Xg2(T)Rλ g(T)g(T)

r i
).

By the trace property

τ(Yg(T)
r(n−i)Rλ g(T)g1(T)Xg2(T)Rλ g(T)g(T)

r i
)

= τ(Xg2(T)Rλ g(T)g(T)
r iYg(T)

r(n−i)Rλ g(T)g1(T)).
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Since the various functions of T commute with each other, the right-hand side can be
rewritten as

τ(Xg(T)
r iRλ g(T)g2(T)Yg1(T)Rλ g(T)g(T)

r(n−i)
).

However, by symmetry, d
ds ∣s=0τ(Xg(T + sY)q) is equal to

n

∑
i=0

sin(rπ)
π ∫

∞

0
λ−rτ(Xg(T)

r(n−i)Rλ g(T)dg ,0(T ,Y)Rλ g(T)g(T)
r i
) dλ,

so it should be clear that changing the index from i to n− i and expanding dg ,0(T ,Y)

will show that the expression we obtained for the derivative in the X direction appears
in the derivative for the Y direction. Here we rely on condition (v) of Proposition 3.1
which ensures that either g1 = g2 or, if g1 /= g2, then the term g2(T)Yg1(T) also
appears in dg ,0(T ,Y). _is concludes the proof that the two limits are equal, and
hence that α is closed.

Since S is a Banach space, and the manifold under consideration is simply T0 + S,
the fact that α is exact follows as in the Poincaré Lemma [Lan62, _eorem V.4.1].
Using properties of integrals, it follows that α is independent of the path over which
it is integrated [CP98, Remark 1.4], concluding the proof of Proposition 3.1.

We will use this result for both τ(X∣1 − F2∣q) in the bounded case, which we can
re-write as τ(X((1−F2)2)

q
2 ) to get rid of the absolute value sign, giving us g(F) = (1−

F2)2, and τ(X(1 +D2)−m) in the unbounded case, giving us g(D) = (1 +D2)−1. _e
fact that these two functions satisfy the desired properties will be shown in Section 4.

3.1 A Different Restriction on the Function g

_e purpose of this section is to replace one of the requirements imposed on g in the
deûnition of our one-form by a (possibly) stronger one which will be easier to prove
for some choices of g. We will use this alternate description in the bounded case in
Section 6.1. See Proposition 3.1 for a list of the current restrictions placed on g; recall
in particular the deûnition of dg ,s :

dg ,s(T , X) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

g(T + sX) − g(T)

s
for s /= 0,

lim
s→0

g(T + sX) − g(T)

s
for s = 0,

where the limit is calculated with respect to the operator norm.

Lemma 3.6 Suppose g is a function that satisûes conditions (i), (ii), and (iv) of Propo-
sition 3.1. Consider t ∈ R+ with t ≥ q−3

2 , and ûx T ∈ T0 + S, X ∈ S; we know that
g(T + sX)t ∈ L1 by condition (ii) of Proposition 3.1. Suppose in addition that g satisûes
the following property:

(iii′) For each ûxed t ≥
q−3
2 , and s ∈ [−1, 1] we have dg ,s(T , X) ∈ Lt . Moreover,

s ↦ ∥dg ,s(T , X)∥t is uniformly bounded for s ∈ [−1, 1].
It follows that the function from R to L1 deûned by s ↦ g(T + sX)t is continuous at
s = 0, i.e., g also satisûes (iii).
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Proof By assumption (iii′), we know {∥dg ,s(T , X)∥t ∶ s ∈ [−1, 1]} is bounded, say
by M (chosen such that M /= 0). Rearrange the deûnition of dg ,s to g(T + sX) =

sdg ,s(T , X) + g(T), and note that the formula holds even for s = 0. It follows that
{∥g(T + sX)∥t ∶ s ∈ [−1, 1]} is also bounded by L ∶= M + ∥g(T)∥t .

Using (3.1), we can write

g(T + sX)
t
− g(T)

t
=

n

∑
i=0

g(T + sX)
r i
(g(T + sX)

r
− g(T)

r
)g(T)

r(n−i) ,

where n = ⌊t⌋ and r = t
n+1 . Apply the triangle and Hölder inequalities, respectively,

(with the understanding that the norm ∥ ⋅ ∥ t
u
represents the operator norm when the

denominator u is 0) to get

∥g(T + sX)
t
− g(T)

t
∥1

≤
n

∑
i=0

∥g(T + sX)
r i
(g(T + sX)

r
− g(T)

r
)g(T)

r(n−i)
∥

≤
n

∑
i=0

∥g(T + sX)
r i
∥ t

r i
∥g(T + sX)

r
− g(T)

r
∥ t

r
∥g(T)

r(n−i)
∥ t

r(n−i)
.

In order to justify the use of Hölder’s inequality, we must check that g(T + sX)r i ∈

L
t
r i and so on for the other factors, but this should be clear from the properties of g.

Algebraically manipulate the right-hand side of the last inequality and use the upper
bound on ∥g(T + sX)∥t to write

∥g(T + sX)
t
− g(T)

t
∥1

≤ ∥g(T + sX)
r
− g(T)

r
∥ t

r
(

n

∑
i=0

∥g(T + sX)
r i
∥ t

r i
∥g(T)

r(n−i)
∥ t

r(n−i)
)

≤ ∥g(T + sX)
r
− g(T)

r
∥ t

r
(

n

∑
i=0

(∥g(T + sX)∥t)
r i
(∥g(T)∥t)

r(n−i)
)

≤ ∥g(T + sX)
r
− g(T)

r
∥ t

r
(

n

∑
i=0

(Lr iLr(n−i)
))

≤ ∥g(T + sX)
r
− g(T)

r
∥ t

r
((n + 1)Lrn

).

However, note that t
r = n + 1 = ⌊t⌋ + 1 ≥ 1, since t ≥ 0, and that 0 < r < 1 by deûnition;

use the well-known inequality ∥Ar − Br∥p ≤ ∥∣A − B∣r∥p , which holds for 0 < r < 1,
p ≥ 1, and A, B positive operators in Lpr , to conclude that

∥g(T + sX)
r
− g(T)

r
∥ t

r
≤ ∥ ∣g(T + sX) − g(T)∣

r
∥ t

r
= ∥g(T + sX) − g(T)∥

r
t .

Using again g(T + sX) − g(T) = sdg ,s(T , X), for all s (even s = 0), we get

∥g(T + sX) − g(T)∥
r
t = (∥sdg ,s(T , X)∥t)

r
≤ ∣s∣rMr .

Combining this with our earlier calculations,

∥g(T + sX)
t
− g(T)

t
∥1 ≤ ((n + 1)Lrn

)∣s∣rMr .

Recall that n = ⌊t⌋ and L,M are norm bounds that do not depend on s; it follows that
g(T + sX)r → g(T)t in L1-norm as s → 0.
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_erefore, Condition (iii) of Proposition 3.1 can be replaced by (iii′). As an aside,
(iii′) is satisûed by both functions g that we will have occasion to consider, but it is
only used in the bounded case, as (iii) is easy to show in the unbounded case.

4 Integral Formulas for Spectral Flow

We now consider restrictions under which we can provide integral formulas for spec-
tral �ow. _e approach below is the same as the one used in [CP04, _eorem 4.1]
and [Phi97, _eorem 3.1] . In the unbounded case we consider paths in the mani-
fold D0 + Nsa , where D0 is self-adjoint Breuer–Fredholm, and satisûes an additional
summability condition, usually stated as (1 + D2

0)
−1 ∈ I for some operator ideal I. In

our case, D0 is p-summable, so (1+D2
0)
−1 ∈ Lp/2. As a diòerent example, the require-

ment that D0 is θ-summable implies (1+D2
0)
−1 belongs to an ideal Li0 [CP04, Corol-

lary B.6]. Once we apply the Riesz transform D ↦ D(1+D2)−
1
2 , we end up with paths

in some manifold F0 + S, where S is a real Banach space, as well as an operator ideal
related to I. _e equality that allows us to �ip between the two pictures (bounded
and unbounded) is (1 + D2)−1 = 1 − F2

D , where FD is the image of D under the Riesz
transform.

See Section 2 for an overview of how the bounded case and unbounded case for-
mulas are related. Let it suõce to reiterate that in the bounded case we consider one-
forms X ↦ 1

C τ(Xh(1 − F2)) for some suitable constant C and function h. We show
that integrating this one-form gives spectral �ow for straight-line paths whose end-
points are of the form 2P − 1 and 2Q − 1, respectively, for two projections P and Q.
_e general formula is then obtained from this case.

In the unbounded case, for (N,D0) an unbounded Breuer–Fredholm module, we
will consider paths {D0 + At}, where the At ∈ N deûne a continuous path, and
(1 + D2

0)
−1 ∈ I, for some ideal of operators I satisfying the properties laid out in

Deûnition 1.15. We need to describe ûrst the manifold F0 + S in which we can ûnd
the image of the path {Dt} under the Riesz transform. With FD = D(1 + D2)−

1
2 , the

equality (1+D2)−1 = 1−F2
D makes it obvious that (1+D2)−1 ∈ Imeans 1−F2

D ∈ I. _e
spaces that we are compelled to consider in the bounded case are F0 + SIF0 , where
F0 is self-adjoint Breuer–Fredholm, and SIF0 = {X ∈ I

1/2
sa ∶ 1 − (F0 + X)2 ∈ I}. _is

space was introduced in [CP04], where many of the properties we are going to use
were also established. With the norm ∥X∥SIF0

∶= ∥X∥
I

1
2
+ ∥XF0 + F0X∥I, SIF0 is a

Banach space; moreover, choosing any other base point instead of F0 will deûne the
same space, and an equivalent norm [CP04, Lemma B.12]. Suppose that F0 = 2P − 1
for some projection P. _en SIF0 consists of all operators in I

1
2 that, with respect to

the decomposition PH ⊕ P⊥H, have the form

[
PIP PI

1
2 P⊥

P⊥I
1
2 P P⊥IP⊥

] .

If F0 is not equal to 2P−1 for some projection P, then the above still holds, but with P =

χ[0,∞)(F0), inwhich case 2P−1 ∈ F0+SIF0 . For these properties ofSIF0 see [CP04, pp.
143–144, Appendix B]. Note that SIF0 is denoted in [CP04] by IF0 ; be warned that a
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typo on page 143 of the article suggests that IF0 denotes the space F0 + SIF0 instead,
which was clearly not intended.

We further mention that, while [CP04] introduced these spaces for general I, the
proof for the spectral �ow formula in these spaces is not veriûed there in full gener-
ality; however, our work is reduced to checking that the main steps go through. In
particular, Lemma 4.2 and Lemma 4.5 are slightly more general statements of already
existing results, culminating in the integral formulas stated in _eorem 4.3 for the
bounded case and_eorem 4.7 for the unbounded case; the proofs, which are exactly
as in [CP04], are omitted.

We will show that with J = I1−ε for some 0 < ε < 1, if {Dt} is a C1 path in D0 +Nsa
with (1 + D2

0)
−1 ∈ I, then {Ft} is C1 in F0 + SJF0 . Hence, these are the kind of spaces

we consider for the bounded case formula.
_e ûnal goal is, for a path {Dt} in D0 +Nsa, to determine conditions we can put

on the function k to ensure that we get a spectral �ow formula of the type

sf({Dt}) =
1
C ∫

1

0
τ(
d
dt

(Dt)k((1 + D2
t )
−1
)) dt + β(D1) − β(D0),

where the appropriate choices for constant C and correction terms β(D) will come
out of the proof. We have divided the proof into three steps.

Step 1. Suppose ûrst that {Ft} is a straight line path from F0 = 2P− 1 to F1 = 2Q− 1,
with {Ft} ⊂ F0 +SJF0 for some suitable operator ideal J. _en Lemma 4.2 states that,
for judiciously chosen functions h,

sf({Ft}) =
1
C ∫

1

0
τ(
d
dt

(Ft)h(1 − F2
t )) dt.

Step 2. Next, consider a general path {Ft} in F0 + SJF0 . Use concatenation and
homotopy to obtain a path of the type considered in the previous step, allowing us to
extend the formula. _e correction terms enter the proof at this step.

Step 3. If {Dt} is a path of unbounded operators, let Ft = Dt(1+D2
t )
−

1
2 . We know

sf({Dt}) = sf({Ft}), and (1 + D2
t )
−1 = 1 − F2

t . We show that {Ft} is a C1 path in
an appropriate aõne space, allowing us to use the bounded case. So it immediately
follows that, if h is suitably chosen,

sf({Dt}) =
1
C ∫

1

0
τ(
d
dt

(Ft)h((1 + D2
t )
−1
)) dt + β(D1) − β(D0).

Lemma 4.6 will allow us to get rid of the d
dt (Ft) in this formula, by showing that

τ(
d
dt

(Ft)h((1 + D2
t )
−1
)) = τ(

d
dt

(Dt)(1 + D2
t )
−

3
2 h((1 + D2

t )
−1
)) .

It is this equality that determines the relationship between h and k:

k((1 + D2
t )
−1
) = (1 + D2

t )
−

3
2 h((1 + D2

t )
−1
).

We now proceed to carry out this program.
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4.1 Integral Formulas for Straight-line Paths With Special Endpoints (Step 1)

We need to show that the integral formula calculates spectral �ow in the special case
when the endpoints of the path are of the form 2P− 1 and 2Q − 1 for P, Q projections.
Note that, if P andQ are projections for which Q−P ∈KN, then, since π(P) = π(Q),
the spectral �ow of the straight line path from 2P − 1 to 2Q − 1 is ind(PQ) (directly
from Deûnition 1.4). _e following theorem gives us a formula for calculating this
index.

_eorem 4.1 ([CP04,_eorem 3.1]) Let f ∶ [−1, 1] → R be a continuous odd function
with f (1) /= 0. Let P and Q be projections with Q − P ∈ KN and f (Q − P) trace class.
_en ind(PQ) = 1

f (1) τ( f (Q − P)), where ind(PQ) is the index of PQ as an operator
from QH to PH.

_e above result applied to a suitable family of functions allows us to get the spec-
tral �ow as an integral, but only in the case when our paths are linear and have special
endpoints. For such a path {Ft} one can calculate that

τ(
d
dt

(Ft)h(1 − F2
t )) = τ(2(Q − P)h(4t(1 − t)(Q − P)2)) ,

and use _eorem 4.1 to relate this value (for each t) to the spectral �ow. In [CP04],
this is done for the function h(x) = x−re−x

−1/q
; since the proof is essentially the same,

we omit it.

Lemma 4.2 ([CP04, _eorem 4.1]) For P and Q projections, let F0 = 2P − 1 and
F1 = 2Q − 1, and suppose F1 ∈ F0 + SJF0 , where J is a small power invariant operator
ideal (Deûnition 1.15). Denote by {Ft} the straight-line path from F0 to F1, i.e., Ft = F0+
t(F1 − F0) for t ∈ [0, 1]. Suppose, moreover, that h∶R → R is a continuous function,
non-zero on (0, 1], and for which h(T) is trace class for all T ∈ Jsa . _en

sf({Ft}) =
1
C ∫

1

0
τ(
d
dt

(Ft)h(1 − F2
t )) dt,

with C = ∫
1
−1 h(1 − s2) ds.

4.2 Integral Formulas in the Bounded Setting (Step 2)

In this step, we relate the calculation of spectral �ow for a general path in F0 + SJF0
to a straight-line path of the type for which we already have a formula; to this end, we
follow the blueprint laid out in [CP98].
Consider the function

sign(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x ≥ 0,
−1 if x < 0,

and for any F self-adjoint write F̃ for sign(F). Note that F̃ = 2χ[0,∞)(F) − 1 and that
F̃2 = 1. Suppose that additionally F ∈ F0 + SJF0 for some appropriate F0; we want
to show that F̃ ∈ F0 + SJF0 . Since F + SJF = F0 + SJF0 , it is suõcient to check that
F̃ ∈ F +SJF . Going back to the deûnition of F +SJF , it is easy to see 1− F̃2 = 0 ∈ J, but
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F0 F1

F̃0 F̃1

Figure 1: Extend the original path Ft by straight lines F0–F̃0 and F1–F̃1 (indicated by dashes
in the ûgure). Integrating our one-form along either path from F̃0 to F̃1 should give the same
value, i.e., the spectral �ow from F0 to F1 .

we also need to check that F̃ − F ∈ J1/2
sa . However, 1 − F2 = F̃2 − F2 = (F̃ − F)(F̃ + F)

(here we used the fact that F and F̃ commute); F̃ + F is invertible, so we have

F̃ − F = (1 − F2
)(F̃ + F)−1 ,

which gives us that F̃ − F ∈ J, since by assumption 1− F2 ∈ J and J is an ideal. Finally,
since J ⊂ J1/2, we have F̃−F ∈ J1/2. Hence F̃ is indeed in F+SJF ; note that the straight
line path from F to F̃ is then also necessarily contained in F + SJF .

If {Ft} is any path in F0+SJF0 , then extend the path by connecting F0 to F̃0 and F1

to F̃1 via straight lines (Figure 1). As there is no spectral �ow from F0 to F̃0 or from F1
to F̃1 (Remark 1.5), the additivity property of spectral �ow allows us to conclude that
the spectral �ow along the path F̃0 F0 F1 F̃1 is the same as the spectral
�ow of {Ft}. On the other hand, we can join F̃0 to F̃1 by a straight line (indicated
in the ûgure by a dotted line), which also lies in F0 + SJF0 . Under the assumption
that αF(X) = τ(Xh(1 − F2

t )) deûnes an exact one-form on F0 + SJF0 , integrating it
along either path from F̃0 to F̃1 will give us the same answer. Finally, we know that
integrating the one-form along the straight line path from F̃0 to F̃1 gives us the spectral
�ow from F̃0 to F̃1 (this is Lemma 4.2). Hence, in order to get the spectral �ow it is
not suõcient to integrate the one-form along the original path; we need to adjust our
formula to include correction terms, consisting of the integral of the one-form from
F̃0 to F0 and from F1 to F̃1, i.e., along the dashed lines in Figure 1. In summary, we
obtain the following result.

_eorem 4.3 Let {Ft} be a C1 path in F0 + SJF0 . Suppose that h∶R→ R is a contin-
uous function such that h is non-zero on (0, 1] and h(T) is trace-class for all T ∈ Jsa .
Moreover, suppose that αF ∶X ↦ τ(Xh(1 − F2)) is a one-form on F0 + SJF0 whose in-
tegral is independent of the path of integration. Let C = ∫

1
−1 h(1 − s2) ds, and deûne a

function γ∶ F0 + SJF0 → R by γ(F) = 1
C ∫

1
0 τ( d

dt (Gt)h(1 −G2
t )) dt, where {Gt} is the

straight line path from F to F̃ = sign(F). _en

sf({Ft}) =
1
C ∫

1

0
τ(
d
dt

(Ft)h(1 − F2
t )) dt + γ(F1) − γ(F0).

Remark 4.4 Note that, if F0 is unitarily equivalent to F1, then γ(F0) = γ(F1) (since
the expressions whose traces we are calculating are also unitarily equivalent); that is,
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the correction terms in the _eorem 4.3 formula cancel, and we are le� with

sf({Ft}) =
1
C ∫

1

0
τ(
d
dt

(Ft)h(1 − F2
t )) dt.

4.3 Integral Formulas in the Unbounded Setting (Step 3)

We would now like to reduce the unbounded case to the bounded case. Consider
(N,D0) an unbounded Breuer–Fredholm module satisfying the condition

(1 + D2
0)
−1
∈ I

for some small power invariant operator ideal I (Deûnition 1.15). Suppose that {Dt} is
a path inD0+Nsa and {Ft} is its image under the Riesz transform. Recall the notation
SIF0 = {X ∈ I

1
2 ∶ 1−(F0 +X)2 ∈ I}. Clearly, 1−F2

t ∈ I for every t; however, in order to
use_eorem 4.3, we would need {Ft} to be a C1 path in F0 + SIF0 . _e various norm
inequalities used in the proof are not strong enough to prove this (assuming it is even
true); in order for this approach to work, we will have to replace I by J = I1−ε for some
0 < ε < 1 (recall that I ⊂ I1−ε), and show {Ft} is a C1 path in F0 + SJF0 . Hence, if h
is a function that satisûes the hypotheses of _eorem 4.3 for J = I1−ε , we could easily
conclude that

sf({Dt}) =
1
C ∫

1

0
τ(
d
dt

(Ft)h((1 + D2
t )
−1
)) dt

+ γ(D1(1 + D2
1 )
−

1
2 ) − γ(D0(1 + D2

0)
−

1
2 ).

A second goal of this section is to get rid of ddt (Ft) and replace it by d
dt (Dt). _e price

we pay for this is an extra factor of (1 + D2
t )
−

3
2 in the trace argument (Lemma 4.6).

Fix 0 < ε < 1 and let J = I1−ε . We want to show that applying the Riesz transform
to a C1 path {Dt} in D0 + Nsa gives us a C1 path in F0 + SJF0 . Following the main
steps of [CP98,CP04], we produce a formula for d

dt (Ft) (in fact, we use the formula
given in the aforementioned references), and check the continuity.

Lemma 4.5 ([CP98, Proposition 2.10], [CP04, Proposition 6.5]) Suppose that
{Dt = D0 + At} is a path in D0 + Nsa, with (D2

0 + 1)−1 ∈ I, and {At} a C1 path in
Nsa . If Ft = Dt(1 + D2

t )
−

1
2 and J = I1−ε for any 0 < ε < 1, then

d
dt

(Ft) =
1
π ∫

∞

0
λ−

1
2 [(1 + λ)(1 + D2

t + λ)−1 d
dt

(At)(1 + D2
t + λ)−1

− Dt(1 + D2
t + λ)−1 d

dt
(At)Dt(1 + D2

t + λ)−1
] dλ,

where the integral converges in J
1
2 -norm. It follows that {Ft} is C1 in F0 + SJF0 .

Proof By [CP04, Lemma B.15], {Ft} ⊂ F0 + SJF0 is a C1 path if and only if {Ft} is
C1 in J

1
2 -norm and {1 − F2

t } is C1 in J-norm. Additionally, [CP04, Proposition 6.4]
gives us that {1 − F2

t } is C1 in I-norm, and hence in J-norm. _e only part we still
need to check is that {Ft} is C1 in J

1
2 norm. In order to simplify the exposition, we
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introduce notation for two of the expressions appearing in our purported formula for
d
dt (Ft). Namely, let

Lt(λ) = (1 + λ)(1 + D2
t + λ)−1 d

dt
(At)(1 + D2

t + λ)−1 ,

Rt(λ) = Dt(1 + D2
t + λ)−1 d

dt
(At)Dt(1 + D2

t + λ)−1 .

First, let us ensure that, for each ûxed t ∈ [0, 1], the integral ∫
∞

0 λ−
1
2 [Lt(λ)−Rt(λ)] dλ

converges. Let σ = 1−ε
2 ; note 0 < σ < 1

2 . Apply Lemma A.5 to show that Lt and
Rt are continuous as functions of λ from R+ to J1/2 (part v), and ∥Lt(λ)∥

J
1
2
and

∥Rt(λ)∥
J

1
2
are each bounded by a constant multiple of (1+ λ)−(1−σ) (Lemma A.5 (ii),

along with Lemma A.6 (i)). Since ∫
∞

0 λ−
1
2 (1 + λ)−(1−σ) dλ converges for 0 < σ < 1

2 ,
this is suõcient to prove that ∫

∞

0 λ−
1
2 [Lt(λ) − Rt(λ)] dλ converges in J

1
2 -norm.

We next want to show that the integral calculates d
dt (Ft). We concentrate on the

derivative at t = 0, as other values of t are similar. By Corollary A.2,

Ft − F0 = B0,t(1 + D2
t )
−σ ,

where {B0,t} is diòerentiable in norm at t = 0. Note that the expression we have
for d

dt ∣t=0(Ft) is equal to d
dt ∣t=0(B0,t)(1+D

2
0)
−σ , where the operator norm derivative

d
dt ∣t=0(B0,t) is as in Corollary A.2. _e fact that I is a small power invariant ideal gives
us (1+D2

t )
−σ ∈ J1/2 (see Corollary A.4). Since J1/2 is an invariant operator ideal, this

shows that

∥
Ft − F0

t
−
d
dt

∣
t=0

(Ft)∥
J

1
2
= ∥

B0,t
t

(1 + D2
t )
−σ
−
d
dt

∣
t=0

(B0,t)(1 + D2
t )
−σ

∥
J

1
2

≤ ∥
B0,t
t

−
d
dt

∣
t=0

(B0,t)∥∥(1 + D2
t )
−σ

∥
J

1
2
.

Finally, we must show that d
dt (Ft) is continuous in J

1
2 norm. Fix t0 ∈ [0, 1]. Using the

integral formula just established for d
dt (Ft), along with Lemma A.6 (ii) and (iii) for

s ∈ [0, 1], we get

∥
d
dt

∣
t=t0

(Ft) −
d
dt

∣
t=s

(Ft)∥
J

1
2

≤ 2∫
∞

0
λ−

1
2 (1 + λ)−(1−σ)K∥(1 + D2

0)
−σ

∥
J

1
2
vs ,t0 dλ

= 2K∥(1 + D2
0)
−σ

∥
J

1
2
vs ,t0(∫

∞

0
λ−

1
2 (1 + λ)−(1−σ) dλ) .

Since the integral is ûnite, and vs ,t0 → 0 as s → t0, continuity of d
dt (Ft) at t0 follows.

_is concludes the proof that {Ft} is C1 in J
1
2 -norm, and hence that {Ft} is C1 as

a path in F0 + SJF0 . Note that, since ∥ ⋅ ∥SJF0
≥ ∥ ⋅ ∥

J
1
2
(for those elements that are in

both spaces), and the derivative of {Ft} exists with respect to both the SJF0 norm and
the J

1
2 norm, the two derivatives must be equal.

_e key idea that allows us to rewrite the spectral �ow formula in terms of {Dt}

instead of {Ft} is the equality of traces stated in the following lemma. Proposition 2.12
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of [CP98] proves this result for h(x) = xq with q a positive integer large enough so
that (1−F2

t )
q is trace class. In spite of the result being stated in slightlymore generality

below, the proof goes through in exactly the same manner, so we omit it.

Lemma 4.6 ([CP98, Proposition 2.12]) Let {Dt} be a C1 path in D0 + Nsa, with
(1 + D2

0)
−1 ∈ I. Let J = I1−ε , for 0 < ε < 1. If {Ft} is the image of {Dt} under the Riesz

transform, then {Ft} is a C1 path in F0 + SJF0 . Moreover, if h is a continuous function
such that h(1 − F2

t ) ∈ L
1, then

τ(
d
dt

(Dt)(1 + D2
t )
−

3
2 h((1 + D2

t )
−1
)) = τ(

d
dt

(Ft)h(1 − F2
t )) .

_eorem 4.7 Suppose that {Dt} is a C1 path in D0 +Nsa such that (1+D2
0)
−1 ∈ I for

some small power invariant operator ideal I (Deûnition 1.15) and that k is a continuous
function onR∖{0} which is non-zero on (0, 1] and for which limx→0

k(x)
x3/2 = 0. We can

deûne

h(x) =
⎧⎪⎪
⎨
⎪⎪⎩

x−
3
2 k(x) for x /= 0,

0 otherwise,

which is in turn continuous onR and non-zero on (0, 1]. Suppose h satisûes the remain-
ing conditions of _eorem 4.3 for some J = I1−ε , where 0 < ε < 1, i.e., h(T) is trace class
for all T ∈ Jsa and αF ∶X ↦ τ(Xh(1 − F2)) is an exact one-form on F0 + SJF0 . _en

sf({Dt}) =
1
C̃ ∫

1

0
τ(
d
dt

(Dt)k((1 + D2
t )
−1
)) dt + β(D1) − β(D0),

where C̃ = ∫
1
−1 h(1 − s2) ds and β(D) = γ(D(1 + D2)−

1
2 ) (with γ as deûned in _eo-

rem 4.3). Note that if k is deûned on R+ ∖ {0} instead, we can replace x by ∣x∣ in
the deûnition of h in order to deûne h on all of R. _e rest of the conditions remain
unchanged.

Proof Lemma 4.5 tells us that {Ft} is C1 in F0 + SJF0 . By hypothesis, h satisûes all
the requirements of _eorem 4.3, which gives us the formula

sf({Ft}) =
1
C ∫

1

0
τ(
d
dt

(Ft)h(1 − F2
t )) dt + γ(F1) − γ(F0),

where C = ∫
1
−1 h(1− s2) ds and γ(F) is the integral of the one-form α on the straight-

line path from F to F̃.
Since (1 + D2

t )
−1 is a positive operator and for positive values of x we have h(x) =

x−
3
2 k(x), Lemma 4.6 gives us that

τ(
d
dt

(Ft)h(1 − F2
t )) = τ(

d
dt

(Dt)(1 + D2
t )
−

3
2 h(1 − F2

t ))

= τ(
d
dt

(Dt)(1 + D2
t )
−

3
2 h((1 + D2

t )
−1
))

= τ(
d
dt

(Dt)(1 + D2
t )
−

3
2 (1 + D2

t )
3
2 k((1 + D2

t )
−1
))

= τ(
d
dt

(Dt)k((1 + D2
t )
−1
)) .
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Since (1 + D2
t )

3
2 is unbounded, we stop for a second to worry about the above calcu-

lation; however, h((1 + D2
t )
−1) = (1 + D2

t )
3
2 k((1 + D2

t )
−1) is a bounded operator, so

the domain issues we might have expected do not materialize.
Finally, sf({Dt}) = sf({Ft}), so we can conclude

sf({Dt}) =
1
C ∫

1

0
τ(
d
dt

(Dt)k((1 + D2
t )
−1
)) dt

+ γ(D1(1 + D2
1 )
−

1
2 ) − γ(D0(1 + D2

0)
−

1
2 ),

as desired. Note that C̃ = ∫
1
−1 h(1 − s2) ds = ∫

1
−1(1 − s2)−

3
2 k(1 − s2) ds and β(D) =

γ(D(1 + D2)−
1
2 ).

Remark 4.8 Note that, if D1 is unitarily equivalent to D0, then D1(1 + D2
1 )
−

1
2 and

D0(1 + D2
0)
−

1
2 are likewise unitarily equivalent; so the correction terms cancel, as

observed in Remark 4.4. In this case, the spectral �ow formula simpliûes to

sf({Dt}) =
1
C ∫

1

0
τ(
d
dt

(Dt)k((1 + D2
t )
−1
)) dt.

On the other hand, for some choices of k it might be possible, following the same steps
as in [CP04], to re-write the correction terms γ(D) in terms of a path dependent on
D, i.e., γ(D) = 1

2 ∫
∞

1 t−1/2τ(Dk((1 + tD2)−1) dt − 1
2 [ker(D)] (where [ker(D)] is

the projection onto the kernel of D). As the conditions on k would get onerous, and
the proof is reasonably involved, we simply outline the main steps that would need
to be taken (see [CP04, §8]). _e current correction terms are calculated by letting
F = D(1+D2)−1/2 and integrating the bounded one-form along the straight-line path
from sign(F) to F. Instead (using the fact that the bounded one-form is exact), one
would consider the operators Fs = D(s + D2)−1/2 deûned for s > 0, and a new path
obtained by concatenating the straight line path from sign(F) to Fδ for some small
δ > 0 with the path {Fs}s∈[δ ,1]. By taking the limit as δ → 0, the integral along the
ûrst path goes to zero if D is invertible, similar to the proof of [CP04, Lemma 8.9].
_is would require the extra condition that h is increasing, which would be needed
in order to apply [FK86, Lemma 2.5] and obtain that, for each t,

µt(h(1 − F2
δ)) = h(µt(1 − F2

δ)) → 0.

In order to deal with the integral over the second path, the calculation of dds Fs should
carry over [CP04, Proposition 8.6], and the change of variables s = 1

t would give the
ûnal formula. One would also need to ensure that

∫

∞

1
t−1/2τ(Dk((1 + tD2

)
−1
)) dt

onverges [CP04, Lemma 8.3, Corollary 8.4].

5 Analytic Continuation

We brie�y outline the idea of the analytic continuation approach, as we do not try to
address it in full generality, and it might apply in other situations not covered by this
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section. For a speciûc path {Dt}, usually with unitarily equivalent endpoints, we have
a family of formulas for spectral �ow, say of the form

sf({Dt}) =
1

C(m)
∫

1

0
τ(
d
dt

(Dt)g(Dt)
m
) dt.

We know that the equality holds for all m ≥ N for some number N , but we also know
that we can calculate the integral on the right-hand side for values smaller than N .
Let q0 be the inûmum of all values m for which τ( d

dt (Dt)g(Dt)
m) is ûnite (and note

that usually τ( d
dt (Dt)g(Dt)

q0) is not ûnite). We want to conclude that the spectral
�ow equality continues to hold for the numbers between q0 and N . Rearranging the
spectral �ow formula, we get

C(m) sf({Dt}) = ∫

1

0
τ(
d
dt

(Dt)g(Dt)
m
) dt.

_e two sides of the equality can be thought of as functions in m, where m is a real
number; we would like to show that the two functions make sense if instead m is in
some subset of the complex numbers, anduse properties of complex functions to show
that the spectral �ow formula holds for all values of m for which the right-hand side
integral makes sense. For this, we need z ↦ C(z) and z ↦ ∫

1
0 τ( ddt (Dt)g(Dt)

z) dt
to be analytic on the set {z ∈ C ∶ Re(z) > q0}. In this section, we address how one
might go about proving this for the latter function. In Section 6, we apply the results
from this section to the case when D0 is p-summable, g = (1 + x2)−1, and m is much
larger than p

2 .

Remark 5.1 One can easily replace d
dt (Dt) by d

dt (Dt) f (Dt) where f (Dt) is
bounded for all t and t ↦ f (Dt) is continuous. It should be clear that the proofs
of Lemma 5.2 and Lemma 5.5 go through the same way (with Bt =

d
dt (Dt) f (Dt)

instead), allowing us to prove the result for a more complicated integrand. To gen-
eralize this scenario even further, one can replace g(Dt)

m by a function f (m,Dt).
_eorem 5.3 provides a glimmer of how to proceed in that direction; however, such a
level of abstraction seemed unnecessary for our situation.

In the beginning, we need only assume that D0 is an unbounded self-adjoint oper-
ator, though, of course, additional properties will be added when we talk about spec-
tral �ow. Let {Dt} ⊂ D0 +Nsa be a ûxed C1 path. We wish to consider the complex
function φ∶ z ↦ ∫

1
0 τ( d

dt (Dt)g(Dt)
z) dt. Suõcient restrictions on g to ensure that

φ is well deûned and analytic are covered in Lemma 5.2 and Lemma 5.5, respectively.
In the following lemma we also establish the domain of φ; as the proof follows quite
naturally from the conditions imposed on g, we omit it.

Lemma 5.2 Let {Dt} ⊂ D0 +Nsa be a ûxed C1 path. Suppose g is a bounded contin-
uous functionR→ R+ (ensuring that g(Dt) is a bounded operator for all t ∈ [0, 1]) for
which there exists a real number q0 > 0, such that for anym > q0, we have g(Dt)

m ∈ L1,
and t ↦ g(Dt)

m is continuous in ∥ ⋅ ∥1-norm. Let {Bt} ⊂ Nsa be any norm-continuous
path, such as Bt =

d
dt (Dt). _en for any ûxed z0 ∈ C with Re(z0) > q0, the function

φ∶ z ↦ ∫
1
0 τ(Bt g(Dt)

z) dt is deûned at z0.
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Ω

z0

C0

C

R
2

R

Figure 2: Setup for the proof of Lemma 5.3.

We would next like to show that φ is analytic. In the proof of this fact we will need
the derivative of the function z ↦ T z for ûxed T appropriately chosen. In Coroll-
ary 5.4, we use Taylor’s _eorem to show that for T positive and of norm at most 1,
the diòerence quotient at z0 converges to T z0 log(T) at a rate which is independent
of T .

Lemma 5.3 Consider S ⊂ R and an open set Ω ⊂ C. Suppose f ∶ S × Ω → C is such
that
(i) for each ûxed t0 ∈ S, z ↦ f (t0 , z) is analytic in Ω, in which case let l(t, z) = ∂

∂z f
for t, z ∈ S ×Ω;

(ii) for each ûxed z0 ∈ Ω, t ↦ f (t, z0) is continuous on S;
(iii) for each ûxed z0 ∈ Ω, t ↦ l(t, z0) is continuous on S;
(iv) { f (t, z) ∶ t ∈ S , z ∈ Ω} is a bounded subset of C.
Finally, suppose that T is a self-adjoint operator with σ(T) ⊂ S. _en, for each ûxed
z0 ∈ Ω and ε > 0, there exists δ > 0 (depending on z0, but not T) such that ∣z − z0∣ < δ,
z /= z0 implies z ∈ Ω, and ∥

f (T ,z)− f (T ,z0)
z−z0

− l(T , z0)∥ < ε.

Proof Given z0 in the open set Ω, we can ûnd a circle C around z0 of some radius
R such that C and its interior are contained in Ω. Let C0 be the circle around z0 of
radius R

2 , see Figure 2. Fix t0 ∈ S, and let h(z) = f (t0 , z). _en h(z) is analytic
in Ω (hypothesis (i)) and by Taylor’s _eorem for analytic functions ([Ahl79, §3.1,
_eorem 8], applied with n = 2 and a = z0), h(z) = h(z0)+h′(z0)(z−z0)+h2(z)(z−
z0)2, where h2(z) = 1

2πi ∫C h(w)(w − z0)−2(w − z)−1 dw for z in the interior of C. If
z /= z0, we can rearrange this equality to

h(z) − h(z0)
z − z0

− h′(z0) = h2(z)(z − z0).
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However,

∣h2(z)∣ = ∣
1

2πi ∫C
h(w)

(w − z0)2(w − z)
dw∣ ≤ ∣

1
2πi

∣ max
w∈C

∣
h(w)

(w − z0)2(w − z)
∣ ∫

C
∣dw∣.

Using ∣w − z0∣ = R (since w is on the circle C) and the fact that ∫C ∣dw∣ = 2πR, we can
continue from the last inequality proven to

∣h2(z)∣ ≤
1
2π

1
R2

maxw∈C ∣h(w)∣

minw∈C ∣w − z∣
(2πR) =

1
R

maxw∈C ∣h(w)∣

minw∈C ∣w − z∣
.

Going back to the notation used in the statement of the theorem, h(z) = f (t0 , z) and
h′(z0) = l(t0 , z0); so we have shown that, for all z in the interior of C,

f (t0 , z) − f (t0 , z0)
z − z0

− l(t0 , z0) = h2(z)(z − z0),

where ∣h2(z)∣ ≤ 1
Rmaxw∈C ∣ f (t0 ,w)∣/minw∈C ∣w − z∣.

By (iv), { f (t, z) ∶ t ∈ S , z ∈ Ω} is bounded, say ∣ f (t, z)∣ < M for all t ∈ S and
z ∈ Ω. If in addition we consider z in the interior of C0, so that ∣z − z0∣ < R

2 , then the
reverse triangle inequality gives us ∣w − z∣ ≥ R

2 for w on the circle C, which implies
∣h2(z)∣ ≤ 1

R
M
R/2 =

2M
R2 . Hence, for any z in the interior of C0 with z /= z0,

∣
f (t0 , z) − f (t0 , z0)

z − z0
− l(t0 , z0)∣ = ∣h2(z)∣∣z − z0∣ ≤

2M
R2 ∣z − z0∣.

So, given ε > 0, choose δ > 0 such that δ < min{ R2

2M ,
R
2 } min{ε, 1}; note that the

ball centered at z0 of radius δ is contained in Ω. If ∣z − z0∣ < δ with z /= z0, then z is in
the interior of C0 and for all t ∈ S we have

∣
f (t, z) − f (t, z0)

z − z0
− l(t, z0)∣ ≤

2M
R2 ∣z − z0∣ <

2M
R2 δ < ε.

Finally, since σ(T) ⊂ S, the functional calculus gives us that, if ∣z−z0∣ < δ with z /= z0,
then ∥

f (T ,z)− f (T ,z0)
z−z0

− l(T , z0)∥ < ε. Note in particular that δ depends on z0 (for the
choice of R) and the bound M on f , but does not depend on T .

Applying the above result with S = [0, 1], Ω = {z ∈ C ∶ Re(z) > 0} and

f (t, z) =
⎧⎪⎪
⎨
⎪⎪⎩

tz if t /= 0,
0 if t = 0,

we get immediately the following.

Corollary 5.4 For T a positive operator with ∥T∥ ≤ 1 and z0 ∈ C with Re(z0) > 0,
for any ε > 0 there exists a δ (dependent on z0, but not on T) such that if ∣z − z0∣ < δ
(but z /= z0), then ∥ T z

−T z0

z−z0
− T z0 logT∥ < ε.

Lemma 5.5 Let {Dt} ⊂ D0 + Nsa be a ûxed C1-path. Suppose g is a continuous
function R → R+ such that ∥g(Dt)∥ ≤ 1 for all t ∈ [0, 1]. Moreover, suppose that there
exists a real number q0 > 0 such that g(Dt)

m ∈ L1 for all m > q0, and t ↦ g(Dt)
m is

continuous in trace norm for m > q0. _en the function φ∶ z ↦ ∫
1
0 τ( ddt (Dt)g(Dt)

z) dt
is analytic in the open half-plane {z ∈ C ∶ Re(z) > q0}.
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Proof From Lemma 5.2, we know that φ is deûned in the half-plane {Re(z) > q0},
so we need to show that d

dz ∫
1
0 τ( d

dt (Dt)g(Dt)
z) dt exists at all z0 with Re(z0) > q.

Write Bt =
d
dt (Dt). Note that

d
dz

∣
z=z0
∫

1

0
τ(Bt g(Dt)

z
) dt

= lim
z→z0

∫
1
0 τ(Bt g(Dt)

z) dt − ∫
1
0 τ(Bt g(Dt)

z0) dt
z − z0

= lim
z→z0
∫

1

0
(z − z0)−1

(τ(Bt g(Dt)
z
) − τ(Bt g(Dt)

z0)) dt.

We claim that

lim
z→z0
∫

1

0
(z − z0)−1

(τ(Bt g(Dt)
z
) − τ(Bt g(Dt)

z0)) dt

= ∫

1

0
τ(Bt g(Dt)

z0 log(g(Dt))) dt.

Since the interval over which we are integrating has ûnite measure, it is suõcient to
show that the diòerence quotient converges uniformly to its limit; that is, given ε > 0,
ûnd a δ > 0 such that ∣z − z0∣ < δ implies that

∣
τ(Bt g(Dt)

z) − τ(Bt g(Dt)
z0)

z − z0
− τ(Bt g(Dt)

z0 log(g(Dt))∣ < ε for all t ∈ [0, 1].

To this end, use Corollary 5.4. Fix t; by assumption, g(Dt) is positive and has norm
less than or equal to 1. Also ûx q ∈ R such that q0 < q < Re(z0). _en

∣
τ(Bt g(Dt)

z − τ(Bt g(Dt)
z0)

z − z0
− τ(Bt g(Dt)

z0 log(g(Dt)))∣

= ∣ τ(Bt
(g(Dt)

z − g(Dt)
z0)

z − z0
− Bt g(Dt)

z0 log(g(Dt))) ∣

= ∣ τ(Bt g(Dt)
q
[
g(Dt)

z−q − g(Dt)
z0−q

z − z0
− g(Dt)

z0−q log(g(Dt))] ∣

≤ ∥Bt∥∥g(Dt)
q
∥1∥

g(Dt)
z−q − g(Dt)

z0−q

z − z0
− g(Dt)

z0−q log(g(Dt))∥ .

Use Corollary 5.4 with z0 − q instead of z0 (recall that Re(z0) > q by choice of q) to
conclude that there exists δ > 0 (independent of t) such that if

∣z − z0∣ = ∣(z − q) − (z0 − q)∣ < δ,

then

∥
g(Dt)

z−q − g(Dt)
z0−q

z − z0
− g(Dt)

z0−q log(g(Dt))∥ < ε.

Since t ↦ Bt is operator-norm continuous (recall that {Dt} is a C1-path) and
t ↦ g(Dt)

q is trace-norm continuous, we know that ∥Bt∥ and ∥g(Dt)
q∥1 are both

uniformly bounded; hence, the diòerence quotient of the function z ↦ τ(Bt g(Dt)
z)
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at z0 converges uniformly for t ∈ [0, 1] to τ(Bt g(Dt)
z0 log(g(Dt))). _erefore,

d
dz ∫

1

0
τ(Bt g(Dt)

z
) dt = ∫

1

0
τ(Bt g(Dt)

z log(g(Dt))) dt.

_is concludes the proof that φ(z) is analytic.

Finally, we use these results to extend a family of spectral �ow formulas by analytic
continuation.

_eorem 5.6 Suppose {Dt} is a C1 path in D0 +Nsa for which the equality

C(m) sf({Dt}) = ∫

1

0
τ(
d
dt

(Dt)g(Dt)
m
) dt

holds for all m ≥ N, where N ∈ R+ is ûxed. Let q0 = inf{m ∶ τ(g(Dt)
m) < ∞}.

Suppose that C(m) extends to a complex function C(z) that is analytic in the half-
plane {Re(z) > q0}. Suppose further that g∶R → R+ is continuous, that ∥g(Dt)∥ ≤ 1
for all t, and that t ↦ g(Dt)

m is continuous in trace norm for all m > q0. _en for any
m between q0 and N (not including q0) we also have

C(m) sf({Dt}) = ∫

1

0
τ(
d
dt

(Dt)g(Dt)
m
) dt.

Proof By Lemma 5.5, z ↦ ∫
1
0 τ( ddt (Dt)g(Dt)

z) dt is analytic in the half-plane
{Re(z) > q0}. _e desired result follows immediately since the complex functions
z ↦ C(z) sf({Dt}) and z ↦ ∫

1
0 τ( ddt (Dt)g(Dt)

z) dt are both analytic on the open
connected set {Re(z) > q0} (see Lemma 5.5) and agree on the set {Re(z) ≥ N}, so
they must be equal on the whole half-plane {z ∈ C ∶ Re(z) > q0}. It follows that the
desired formula holds for any m > q0.

6 Proof of the Integral Formula for p-summable Unbounded
Operators

Our ûnal goal (namely, the proof of _eorem 1.1) is to show that, if (N,D0) is a
p-summable unbounded Breuer–Fredholm module, then we can use the integral

∫ τ(
d
dt

(Dt)(1 + D2
t )
−

p
2 ) dt

(appropriately modiûed) to calculate the spectral �ow of a suitable path {Dt} ⊂

D0 + Nsa. We follow the program set out in Section 2: for each formula we want
to reframe the problem in terms of bounded operators and show that one can calcu-
late the spectral �ow in the bounded setting. At various points in the proof we will
need extra maneouvering room, so we replace p

2 by an m suõciently larger than p
2 ,

and use analytic continuation to eventually get the result with p
2 .

_e formula for the corresponding bounded operator is

∫ τ(
d
dt

(Ft)∣1 − F2
t ∣

q
) dt.
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To start with, we prove that our one-forms are closed. _en we go through the pro-
cess of modifying them, so they calculate spectral �ow. And, ûnally, we use analytic
continuation to prove_eorem 1.1.

6.1 Bounded Case Manifold and One-form

As this is the bounded setting we arrive at when D0 satisûes (1+D2
0)
−1 ∈ L

p
2 , we need

to consider ideals J = (L
p
2 )1−ε for some 0 < ε < 1, and the corresponding manifolds

F0 +SJF0 , where D0(1+D2
0)
−1/2 will determine our choice of F0. As J is also an ideal

of ûnitely summable operators, we suppose J = L
p
2 and worry about the relation

between the p used in this case and the p used in the unbounded case when it is time
to put the various results together. At the beginning of Section 4 we described the
Banach space SJF0 and its properties (the corresponding speciûc results about SL

p
2 F0

can also be found in [CP98]); we recall that SL
p
2 F0 = {X ∈ L

p
sa ∣ 1− (F0 + X)2 ∈ L

p
2 },

and the norm on SL
p
2 F0 is given by ∥X∥

SL
p
2 F0

= ∥X∥p + ∥F0X + XF0∥ p
2
.

We now tackle the task of deûning a one-form on SL
p
2 F0 . Choose r ∈ R+ such that

r
2 − 3 ≥ p, and deûne the one-form αF(X) = 1

C τ(X∣1 − F2∣r) for X ∈ SL
p
2 F0 and C a

constant. Let g(F) = (1 − F2)2; then ∣1 − F2∣r = g(F)r/2, and we can write the one-
form as αF(X) = 1

C τ(Xg(F)r/2). We need to check that g satisûes the hypotheses
of Proposition 3.1 (with q = r

2 ) in order to conclude that αF is a closed one-form on
F0 + SL

p
2 F0 .

● For every F self-adjoint, (1 − F2)2 is positive and bounded, so g(F) is positive
and bounded for all F ∈ F0 + SL

p
2 F0 .

● By deûnition of SL
p
2 F0 , 1 − F

2 ∈ L
p
2 for any F ∈ F0 + SL

p
2 F0 . For t ≥ q−3

2 , we
have t ≥ p

2 , so it follows that τ(∣1 − F2∣2t) < ∞. Since g(F)t = ∣1 − F2∣2t , the desired
property is satisûed.

● Fix F ∈ F0 + SL
p
2 F0 and X ∈ SL

p
2 F0 . To show that s ↦ g(F + sX)t is continuous

fromR toL1 for large enough t, show that g satisûes the alternate requirement set out
in Lemma 3.6. Fix t ≥ q−3

2 (which implies t ≥ p
2 ). Straightforward calculation gives

us

dg ,s(F , X) =
1
s
(g(F + sX) − g(F)) = −

1
2
{{X , F} + sX2 , 2 − (F + sX)

2
− F2

},

where { ⋅ , ⋅ } denotes the anti-commutator. We need to show that, for F and X ûxed,
{∥dg ,s(F , X)∥t ∶ s ∈ [−1, 1]} is bounded. Consider ûrst t = p

2 . From the deûnition of
SL

p
2 F0 (which guarantees that X ∈ Lp and 1 − (F + X)2 ∈ L

p
2 ) it follows easily that

X2, {X , F}, 1 − (F + sX)2, and 1 − F2 are all in L
p
2 , so certainly dg ,s(F , X) ∈ L

p
2 as

well. Moreover, if we assume s ∈ [−1, 1], the triangle inequality yields an upper bound
on ∥dg ,s(F , X)∥ p

2
that depends on the norms of 1 − F2, X2, and {X , F}, but not on s.

_is gives us that {∥dg ,s(F , X)∥ p
2
∶ s ∈ [−1, 1]} is uniformly bounded. Finally, since

L
p
2 ↪ Lt for t > p

2 , the same conclusion can be reached for t > p
2 .
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● Using our earlier calculation we get dg ,0 = lims→0 dg ,s = (−1){{X , F}, 1 − F2},
where the limit is calculated with respect to the operator norm. Hence s ↦ g(T + sX)

is diòerentiable at 0.
● Expanding the expression obtained for dg ,0, we get

dg ,0 = (−1)XF(1 − F2
) + F(1 − F2

)X(−1)

+ (−F)X(1 − F2
) + (1 − F2

)X(−F).

Recall that we need to be able to pair up terms of the form g1(F)Xg2(F) with terms
of the form g2(F)Xg1(F); but it is clear we can achieve this by pairing up the ûrst two
terms and the last two terms. Moreover, F ↦ F, F ↦ 1 − F2, and F ↦ F(1 − F2) are
easily seen to be continuous as functions from SL

p
2 F0 to Nsa.

So, with g as above, as a consequence of Proposition 3.1 we get the following.

Corollary 6.1 Let J = L
p
2 , and F0 a self-adjoint Breuer–Fredholm operator such that

1 − F2
0 ∈ J. Consider r ∈ R+ such that r ≥ 2p + 6, and let C be a non-zero constant.

_e one-form αF(X) = 1
C τ(X∣1 − F2∣r) is a closed one-form on F0 + SJF0 ; hence, α is

independent of the path over which it is integrated.

6.2 Unbounded Case Manifold and One-form

Assume that (N,D0) is a p-summable unbounded Breuer–Fredholm module, so
(1 + D2

0)
−1 ∈ L

p
2 . In this case, our manifold is D0 + Nsa . For any ûxed m ≥ p + 3,

consider the one-form αD ∶X ↦ 1
C τ(X(1 + D2)−m); we want to show this is closed

and exact. To this end, we need to show that the function g(D) = (1 + D2)−1 deûned
on D0 +Nsa satisûes the hypotheses of Proposition 3.1 (note that in this case we are
using q = m, so by choice of m we get q−3

2 ≥
p
2 ):

● (1 + D2)−1 is a positive operator of norm at most one for any self-adjoint un-
bounded operator D, so certainly g(D) is positive and bounded for all D ∈ D0 +Nsa .

● By assumption, D0 is an operator for which τ((1 + D2
0)
−t) < ∞ for t ≥ q−3

2 . By
[CP98, Corollary B.8], τ((1 + D2)−t) < ∞, for all D ∈ D0 +Nsa

● Fix D ∈ D0 +Nsa and A ∈ Nsa. _e continuity of s ↦ g(D + sA)−t for t ≥ q−3
2 at

s = 0, as a map from Nsa to L1, follows immediately from [CP98, Proposition B.11].
● Fix D ∈ D0 + Nsa and A ∈ Nsa, and start out by calculating the directional

derivative dg ,s(D,A). Using the resolvent formula [CP98, Lemma 2.9], we have

dg ,s(D,A) =
(1 + (D + sA)2)−1 − (1 + D2)−1

s
= −D(1 + D2

)
−1A(1 + (D + sA)2

)
−1

− (1 + D2
)
−1A(D + sA)(1 + (D + sA)2

)
−1 .

By Lemma A.1 (v), (1 + (D + sA)2)−1 → (1 + D2)−1 and

(D + sA)(1 + (D + sA)2
)
−1
→ D(1 + D2

)
−1
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in operator norm as s → 0. _is allows us to conclude

dg ,0(D,A) = lim
s→0

dg ,s(D,A)

= −D(1 + D2
)
−1A(1 + D2

)
−1
− (1 + D2

)
−1AD(1 + D2

)
−1 .

● With g1(x) = −x(1+x2)−1 and g2(x) = (1+x2)−1, the derivative dg ,0 (calculated
above) has the form g1(D)Ag2(D) + g2(D)Ag1(D), as desired (the continuity of g1
and g2 are given by Lemma A.1, (v)).
_erefore, g satisûes the desired conditions and, by Proposition 3.1, α is a closed form.
Again, we state the result for future reference.

Corollary 6.2 Let I = L
p
2 . Let D0 be a self-adjoint unbounded operator such that

(1+D2
0)
−1 ∈ I, and ûx m ≥ p+ 3. For any constant C, αD(X) = 1

C τ(X(1+D2)
−m) is a

closed one-form on D0+Nsa. In this context, it means that α is also exact, so integrating
α is independent of path.

6.3 Spectral Flow Formula for p-summable Operators

If (N,D0) is a p-summable unbounded Breuer–Fredholm module, then we have
(1 + D2

0)
−1 ∈ L

p
2 . Hence, we want to consider the invariant operator ideal I = L

p
2

with the function k(x) = xq/2 for some q (the end goal is to have q = p, but our
method of proof will require us to start with much larger values of q). For the corre-
sponding bounded operator’s picture, pick any 0 < ε < 1 and let J = I1−ε (so J is still
an ideal of ûnitely summable operators); the function that we need to use to calculate
spectral �ow for paths in F0 + SJF0 is then h(x) = ∣x∣

q−3
2 (recall that the connection

between the functions h and k was explained in Section 2).
We obtain the following as an immediate consequence of_eorem 4.3 and Corol-

lary 6.1. Note that here, in order for our proof that the one-form is closed to go
through, we must ensure that the power used in the integral formula is large enough.
_is explains why the power is not optimal in this result.

Corollary 6.3 Let J = Lq/2 for some q > 0. If {Ft} is a C1 path in F0 + SJF0 and
r
2 ≥ q + 3,

sf({Ft}) =
1
Cr/2
∫

1

0
τ(
d
dt

(Ft)∣1 − F2
t ∣

r
2 ) dt + γr(F1) − γr(F0).

Here Cr/2 = ∫
1
−1(1− s2)

r
2 ds and γ(F) = 1

Cr/2 ∫
1
0 τ( d

dt (Gt)∣1−G2
t ∣

r
2 ) dt, where {Gt} is

the straight-line path from F to sign(F).

We can similarly use _eorem 4.7 to obtain an unbounded formula. If, addition-
ally, the endpoints are unitarily equivalent, we can use analytic continuation to im-
prove our formula, which we will proceed to do in the following.

_eorem 6.4 Suppose {Dt} is a C1 path in D0 +Nsa. Deûne

q0 = inf {p ∈ R+ ∶ D0 is p-summable}.
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If there exists u a unitary operator such that uD0 − D0u is bounded and D1 = uD0u∗,
then, for any p > q0,

sf({Dt}) =
1
C̃ p

2

∫

1

0
τ(
d
dt

(Dt)(1 + D2
t )
−

p
2 ) dt.

_e constant C̃p/2 is equal to ∫
∞

−∞
(1+x2)−

p
2 dx. Note that the formula works regardless

of the path {Dt} chosen from D0 to D1.
If the endpoints of {Dt} are not unitarily equivalent, the formula is weaker. If m >

2p + 15
2 , then

sf({Dt}) =
1
C̃m
∫

1

0
τ(
d
dt

(Dt)(1 + Dt)
−m

) dt + β(D1) − β(D0).

Here β(D) = 1
C ∫

1
0 τ( d

dt (Gt)(1 − G2
t )

m− 3
2 ) dt with {Gt} the straight line path from

F = D(1 + D2)−
1
2 to sign(F).

Proof We will start by proving the formula when the endpoints are not necessarily
unitarily equivalent, and use analytic continuation in the casewhen the β terms cancel
to obtain the formula with the better choice of exponent. Denote by I the ideal L

p
2 .

For our given m > 2p+ 15
2 , choose a q such that m > 2q + 15

2 > 2p+ 15
2 . _en p

q < 1, so
we can let ε = 1 − p

q ; we will need J = I1−ε , which is really Lq/2.
Let k(x) = xm for x ∈ R+, which is continuous on R+ and non-zero on (0, 1], and

let h(x) = ∣x∣m−
3
2 . Note that if T ∈ Jsa , then h(T) = ∣T ∣m−

3
2 ∈ L1, since

m −
3
2
> 2q + 6 >

q
2
.

On the other hand, since m − 3
2 ≥ 2q + 6, by Corollary 6.1, X ↦ τ(Xh(1 − F2)) is

a closed one-form on F0 + SJF0 . _is gives us (as a consequence of _eorem 4.7) an
integral formula with exponent m; namely,

sf({Dt}) =
1
C̃m
∫

1

0
τ(
d
dt

(Dt)(1 + D2
t )
−m

) dt + β(D1) − β(D0),

where C̃m = ∫
1
−1(1 − t2)m− 3

2 dt.
We are now interested in upgrading the exponent to p

2 . Let us examine C̃m . _e
change of variables t = x(1 + x2)−

1
2 gives us C̃m = ∫

∞

−∞
(1 + x2)−m dx, as stated in

the theorem statement. With the further change of variables u = 1
1+x2 , we get C̃m =

∫
1
0 um− 3

2 (1 − u)−
1
2 du, which is now recognizable as an instance of the beta function

[Rud53, _eorem 8.20]:

C̃m = B(m −
1
2
,
1
2
) =

Γ(m − 1
2 )Γ(

1
2 )

Γ(m)

(note that m − 1
2 > 0). It is known [Rud53] that Γ( 1

2 ) =
√

π. Using properties of
the Γ function [BN82, §8.2], the function m ↦ Cm can be extended to a complex
function z ↦ C(z), i.e., C(z) = Γ(z− 1

2 )Γ(
1
2 )

Γ(z) , which is in particular analytic for all z in
the half-plane Re(z) > q0

2 .
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Now suppose that the endpoints are unitarily equivalent. _en, the β correction
terms cancel (see Remark 4.8). We want to use analytic continuation with g(Dt) =

(1 + D2
t )
−1 and N = 2p + 8. We have shown above that, for all m > 2p + 15

2 ,

sf({Dt}) =
1
C̃m
∫

1

0
τ(
d
dt

(Dt)(1 + D2
t )
−m

) dt,

so the formula holds for m ≥ N . _e function g(x) = (1 + x2)−1 is continuous from
R to R+, and ∥g(Dt)∥ ≤ 1 for all t. _e fact that g(Dt)

m is trace norm continuous
for any m >

q0
2 is exactly the content of [CP98, Proposition B.11]. _erefore, all the

conditions of _eorem 5.6 are satisûed, and we can conclude that

sf({Dt}) =
1
C̃m
∫

1

0
τ(
d
dt

(Dt)(1 + D2
t )
−m

) dt

for any m > q0, and in particular for m =
p
2 .

_e ûrst part of the above theorem was our ûnal goal for this article: the p-sum-
mable formula from _eorem 1.1, proved using the steps outlined in Section 2.

A Continuity and Bounds in a Small Power Invariant Ideal

_epurpose of this appendix is to collect some of themore tedious details in the proof
of the integral formula for d

dt (B0,t) (Corollary A.2) and d
dt (Ft) (Lemma 4.5). Namely,

since we are dealing with integrals converging to other integrals, wemust prove conti-
nuity and ûnd bounds on the rate of convergence for the various expressions involved.

Most of the norm bounds that we use in the proof below are results from [CP98].
_e bounds in the following lemma that do not have a reference quoted are easily
provable from the Spectral _eorem.

Lemma A.1 Let D be a self-adjoint unbounded operator.
(i) For 0 < r ≤ 1 (with r ∈ R), and λ ∈ [0,∞), ∥(1 + D2 + λ)−r∥ < (1 + λ)−r .
(ii) For r ∈ R such that 1

2 < r ≤ 1, and λ ∈ [0,∞), ∥D(1 + D2 + λ)−r∥ ≤ (1 + λ)
1
2−r .

(iii) λ ↦ (1 + D2 + λ)−1 is a continuous function from [0,∞) into N [CP98, Remark
A.5].

(iv) λ ↦ D(1+D2 + λ)−1 is a continuous function from [0,∞) intoN[CP98, Remark
A.5].

(v) If D = D0 + A for some self-adjoint bounded operator A and λ ∈ [0,∞) is ûxed,
then ∥(1+D2 + λ)−1 − (1+D2

0 + λ)−1∥ ≤ (1+ λ)−
3
2 ∥A∥, and ∥D(1+D2 + λ)−1 −

D0(1 + D2
0 + λ)−1∥ ≤ (1 + λ)−1∥A∥. [CP98, Lemma A.6]

(vi) For λ ≥ 0 and 0 ≤ σ ≤ 1
2 , ∥(1 + D

2)σ(1 + D2 + λ)−1∥ ≤ (1 + λ)σ−1 [CP98,
Lemma 2.6].

(vii) For λ ≥ 0 and 0 ≤ σ ≤ 1
2 , ∥D(1 + D2)σ(1 + D2 + λ)−1∥ ≤ (1 + λ)σ− 1

2 [CP98,
Lemma 2.6].

Corollary A.2 ([CP98, Proposition 2.10]) Suppose D0 is an unbounded self-adjoint
operator aõliated with a von Neumann algebraN, and {Dt = D0 +At} is a C1 path in
D0 +Nsa. Denote by {Ft} the image of this path under the Riesz transform, i.e., Ft =
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Dt(1+D2
t )
−

1
2 for each t ∈ [0, 1]. Fix σ ∈ (0, 1

2 ). We can write Ft −F0 = B0,t(1+D2
0)
−σ ,

where B0,t ∈ N. Moreover, {B0,t} is diòerentiable at 0 in operator norm; writing A′0 for
d
dt ∣t=0At we have

d
dt

∣
t=0

(B0,t) =
1
π ∫

∞

0
λ−

1
2 [(1 + λ)(1 + D2

0 + λ)−1A′0(1 + D
2
0)

σ
(1 + D2

0 + λ)−1

− D0(1 + D2
0 + λ)−1A′0(1 + D

2
0)

σD0(1 + D2
0 + λ)−1

] dλ.

Note We use B0,t to remind ourselves of the dependence of the formula on D0.
Indeed, using Ft −Fs = Bs ,t(1+D2

s )
−σ , we could get a similar formula for d

dt Bs ,t . Note
that we do not go to the extent of writing A0,t since d

dtAt is the only related expression
appearing in the formula, and it is the same regardless of whether At = Dt − D0 or
At = Dt − Ds for some other ûxed s ∈ [0, 1].

Proof _is is indirectly shown as part of the proof of [CP98, Proposition 2.10 ], but
we collect some of the details here. Note that, for 0 ≤ σ < 1

2 , the integral

∫

∞

0
λ−

1
2 (1 + λ)σ−1 dλ ≤ ∫

1

0
λ−

1
2 dλ + ∫

∞

1
λ−(

3
2−σ) dλ

converges. We use the formula for B0,t [CP98, Lemma 2.7]:

B0,t =
1
π ∫

∞

0
λ−

1
2 [(1 + λ)(1 + D2

+ λ)−1A(1 + D2
0)

σ
(1 + D2

0 + λ)−1

− D(1 + D2
+ λ)−1A(1 + D2

0)
σD0(1 + D2

0 + λ)−1
] dλ,

with the integral converging in operator norm. Using the norm bounds from Lemma
A.1 and the triangle inequality, it is straightforward to show that the integrand in the
formula for d

dt ∣t=0B0,t is continuous, that the integral converges, and ûnally that the
integral for B0,t−B0,0

t converges to the integral formula given above for d
dt ∣t=0B0,t . We

only show part of the proof that limt→0
B0,t−B0,0

t = d
dt ∣t=0B0,t . Splitting up the formula

into two terms, if we consider the ûrst term without the λ−
1
2 (1 + λ) factor, we have

that

∥(1 + D2
t + λ)−1At(1 + D2

0)
σ
(1 + D2

0 + λ)−1

− (1 + D2
0 + λ)−1A′0(1 + D

2
0)

σ
(1 + D2

0 + λ)−1
∥

≤ ∥(1 + D2
t + λ)−1At − (1 + D2

0 + λ)−1A′0∥∥(1 + D
2
0)

σ
(1 + D2

0 + λ)−1
∥

≤ (∥(1 + D2
t + λ)−1

− (1 + D2
0 + λ)−1

∥∥At∥

+ ∥(1 + D2
0 + λ)−1

∥∥At − A′0∥)(1 + λ)σ−1

≤ ((1 + λ)−
3
2 ∥At∥∥At∥ + (1 + λ)−1

∥At − A′0∥)(1 + λ)σ−1

≤ (1 + λ)−1
(1∥At∥

2
+ ∥At − A′0∥)(1 + λ)σ−1

Multiplying by λ−
1
2 (1 + λ), we get an upper bound of λ−

1
2 (1 + λ)σ−1 multiplied by

(∥At∥
2 + ∥At − A′0∥), which is enough to prove the desired convergence for the ûrst
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term (since ∫
∞

0 λ−
1
2 (1 + λ)σ−1 dλ converges). _e remaining calculations proceed

similarly, and we omit them.

Recall that our ideals I are small power invariant ideals (Deûnition 1.15), and hence
have the property that, if A ∈ I is a positive operator and B ≤ A, then B ∈ I and
moreover ∥B∥I ≤ ∥A∥I. We will need this in order to conclude that (1 + D2)−1 is in
I whenever D is a bounded perturbation of D0. To that end, we make note of the
following result.

Lemma A.3 ([CP04, Lemma 6.1]) For D0 an unbounded self-adjoint operator and
A bounded and self-adjoint, let D = D0 + A. _en

−( f (∥A∥) − 1)(1 + D2
0)
−1
≤ (1 + D2

)
−1
− (1 + D2

0)
−1
≤ ( f (∥A∥) − 1)(1 + D2

0)
−1 ,

where f (a) = 1 + 1
2 (a

2 + a
√
a2 + 4).

In particular, since for A and B unbounded and self-adjoint operators with com-
mon domain 0 < c1 ≤ A ≤ B implies 0 ≤ B−1 ≤ A−1 ≤ 1

c 1 on all ofH [CP98, Lemma
B.1], we easily get the following.

Corollary A.4 Suppose that D0 is an unbounded self-adjoint operator, and I is a
small power invariant operator ideal for which (1 + D2

0)
−1 ∈ I. For any 0 ≤ ε < 1, let

J = I1−ε and σ = 1
2 −

ε
2 . If A is any self-adjoint bounded operator and D = D0 +A, then

for any λ ∈ R+, (1+D2 + λ)−σ ∈ J
1
2 . Moreover, ∥(1+D2 + λ)−σ∥

J
1
2
≤ ∥(1+D2)−σ∥

J
1
2
.

Lemma A.5 Suppose {Dt} ⊂ D0 +Nsa is continuous, with (1+D2
0)
−1 ∈ I, and {Et}

is a path of bounded operators. Fix 0 < ε < 1; let J ∶= I1−ε and σ = 1
2 −

ε
2 (note that

0 < σ < 1
2 ).

(i) Fix t ∈ [0, 1]. _en ∥(1 + D2
t + λ)−1∥

J
1
2
≤ (1 + λ)−(1−σ)∥(1 + D2

t )
−σ∥

J
1
2
, and

∥Dt(1 + D2
t + λ)−1∥

J
1
2
≤ (1 + λ)σ− 1

2 ∥(1 + D2
t )
−σ∥

J
1
2
.

(ii) For ûxed s, t ∈ [0, 1],

∥(1+λ)(1 + D2
t + λ)−1Et(1 + D2

s + λ)−1
∥
J

1
2
≤ (1 + λ)−(1−σ)

∥Et∥∥(1 + D2
s )
−σ

∥
J

1
2
,

∥Dt(1 + D2
t + λ)−1EtDs(1 + D2

s + λ)−1
∥
J

1
2
≤ (1 + λ)−(1−σ)

∥Et∥∥(1 + D2
s )
−σ

∥
J

1
2
.

(iii) Fix t ∈ [0, 1]. _e function λ ↦ (1 + D2
t + λ)−1 is uniformly continuous as a

function from R+ to J
1
2 .

(iv) Fix t ∈ [0, 1]. _e function λ ↦ Dt(1 + D2
t + λ)−1 is uniformly continuous as a

function from R+ to J
1
2 .

(v) Fix t ∈ [0, 1]. _e functions from R+ to J
1
2 given by

λ z→ (1 + λ)(1 + D2
t + λ)−1Et(1 + D2

t + λ)−1 ,

and

λ z→ Dt(1 + D2
t + λ)−1EtDt(1 + D2

t + λ)−1

are both continuous.
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Proof _e idea formost of the proofswill be to split up (1+D2
t+λ)−1 into the product

of (1 + D2
t + λ)−(1−σ) and (1 + D2

t + λ)−σ , the second of which is in J
1
2 by Corollary

A.4, and the ûrst of which can be handled using operator norms (see Lemma A.1). By
the above discussion, (1 + D2

t + λ)−σ ∈ J
1
2 , so we can write

∥(1 + D2
t + λ)−1

∥
J

1
2
≤ ∥(1 + D2

t + λ)−(1−σ)
∥∥(1 + D2

t + λ)−σ
∥
J

1
2

≤ (1 + λ)−(1−σ)
∥(1 + D2

t )
−σ

∥
J

1
2
,

and similarly

∥Dt(1 + D2
t + λ)−1

∥
J

1
2
≤ ⋅ ⋅ ⋅ ≤ (1 + λ)σ− 1

2 ∥(1 + D2
t )
−σ

∥
J

1
2
.

(ii)–(v) are shown in the same straightforwardmanner, so the proofs are omitted.

We now tackle the continuity of the same type of expressions as in the previous
lemma, except from the point of view of continuity as functions in t rather than func-
tions in λ. As we will be using these expressions to prove convergence of various
integral expressions, it is not suõcient to prove continuity, but we must additionally
get λ-dependent bounds for the diòerences.

Lemma A.6 Suppose {Dt = D0 +At} ⊂ D0 +Nsa is continuous with (1+D2
0)
−1 ∈ I,

and {Et} is a path of bounded operators. Fix 0 < ε < 1; let J ∶= I1−ε and σ = 1
2 −

ε
2 .

(i) _ere exists a K ∈ R such that ∥(1 + D2
t + λ)−σ∥

J
1
2
≤ K∥(1 + D2

0)
−σ∥

J
1
2
, for all

t ∈ [0, 1] and λ ∈ R+. Here K depends on maxt ∥At∥ and σ, but not on D0.
(ii) _e map from [0, 1] to J

1
2 given by t ↦ (1 + λ)(1 + D2

t + λ)−1Et(1 + D2
t + λ)−1 is

continuous. In fact, for t, s ∈ [0, 1], we have

∥(1+ λ)(1+D2
t + λ)−1Et(1+D2

t + λ)−1
− (1+ λ)(1+D2

s + λ)−1Es(1+D2
s + λ)−1

∥
J

1
2

≤ K∥(1 + D2
0)
−σ

∥
J

1
2
(1 + λ)−(1−σ)vs ,t ,

where K is the same constant as in (i), vs ,t do not depend on λ, and vs ,t → 0 as
t → s.

(iii) _e map from [0, 1] to J
1
2 given by t ↦ Dt(1 + D2

t + λ)−1EtDt(1 + D2
t + λ)−1 is

continuous. In fact, for t, s ∈ [0, 1], we have

∥Dt(1 + D2
t + λ)−1EtDt(1 + D2

t + λ)−1
− Ds(1 + D2

s + λ)−1EsDs(1 + D2
s + λ)−1

∥
J

1
2

≤ K∥(1 + D2
0)
−σ

∥
J

1
2
(1 + λ)−(1−σ)vs ,t ,

where K and vs ,t are as in (ii).

Proof (i) By Corollary A.4, for any λ ∈ R+ we have

∥(1 + D2
t + λ)−σ

∥
J

1
2
≤ ∥(1 + D2

t )
−σ

∥
J

1
2
.

So we just need to relate this latter norm to ∥(1 + D2
0)
−σ∥

J
1
2
. By Lemma A.3, we have

(1 + D2
t )
−1 ≤ f (∥At∥)(1 + D2

0)
−1 for each t ∈ [0, 1], where

f (x) = 1 +
1
2
x2
+

1
2
x
√
x2 + 4.
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Since {At} is continuous on [0, 1], there exists an M ≥ 0 such that ∥At∥ ≤ M for all
t, and since f is increasing on [0,M], it follows that f (∥At∥) ≤ f (M) for all t. So we
have (1 + D2

t )
−1 ≤ f (M)(1 + D2

0)
−1. Since the function x ↦ x r is operator monotone

for r ≤ 1, (1 + D2
t )
−σ ≤ f (M)σ(1 + D2

0)
−σ . From _eorem 1.13 it follows that

∥(1 + D2
t )
−σ

∥
J

1
2
≤ f (M)

σ
∥(1 + D2

0)
−σ

∥
J

1
2
.

Hence K = f (M)σ satisûes the requirements; in particular, note that the value of K
depends on the path {Dt} and on σ (and hence on ε), but does not depend on either
λ or t.

(ii) From Lemma A.1 we will need the operator norm bounds

∥(1 + D2
t + λ)−1

∥ ≤ (1 + λ)−1 , and ∥Dt(1 + D2
t + λ)−1

∥ ≤ (1 + λ)−
1
2 .

We also refer to Lemma A.1 (v) for the additional norm inequalities

∥(1 + D2
t + λ)−1

− (1 + D2
s + λ)−1

∥ ≤ (1 + λ)−
3
2 ∥At − As∥,

and

∥Dt(1 + D2
t + λ)−1

− Ds(1 + D2
s + λ)−1

∥ ≤ (1 + λ)−1
∥At − As∥.

For s, t ∈ [0, 1], using these bounds, the triangle inequality, Lemma A.5 (i), and
Lemma A.6 (i), we have

∥(1+ λ)(1+D2
t + λ)−1Et(1+D2

t + λ)−1
− (1+ λ)(1+D2

s + λ)−1Es(1+D2
s + λ)−1

∥
J

1
2

≤ (1 + λ)−(1−σ)K∥(1 + D2
0)
−σ

∥
J

1
2

× (∥As − At∥∥Et∥ + ∥Et − Es∥ + ∥Es∥∥As − At∥).

Let vs ,t = ∥As − At∥∥Et∥ + ∥Et − Es∥ + ∥Es∥∥As − At∥. Fix s ∈ [0, 1]. Since {Et}t∈[0,1]
and {As − At}t∈[0,1] are both continuous,

{∥Et∥ ∶ t ∈ [0, 1]} and {∥As − At∥ ∶ t ∈ [0, 1]}

are bounded sets; so As − At → 0 and Et − Es → 0 as t → s is suõcient to ensure
vs ,t → 0 as t → s. Hence

∥(1+ λ)(1+D2
t + λ)−1Et(1+D2

t + λ)−1
− (1+ λ)(1+D2

s + λ)−1Es(1+D2
s + λ)−1

∥
J

1
2

≤ K∥(1 + D2
0)
−σ

∥
J

1
2
(1 + λ)−(1−σ)vs ,t ,

where vs ,t → 0 as s → t and vs ,t does not depend on λ.
(iii) Use the triangle inequality and the various norm estimates established. We

must be careful how we break up the expressions involved, as we did not establish a
bound that depends on λ for ∥Dt(1+D2

t + λ)−1 −Ds(1+D2
s + λ)−1∥

J
1
2
. For s, t ∈ [0, 1]
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we have

∥Dt(1 + D2
t + λ)−1EtDt(1 + D2

t + λ)−1
− Ds(1 + D2

s + λ)−1EsDs(1 + D2
s + λ)−1

∥
J

1
2

≤ ∥Dt(1 + D2
t + λ)−1

− Ds(1 + D2
s + λ)−1

∥∥Et∥∥Dt(1 + D2
t + λ)−1

∥
J

1
2

+ ∥Ds(1 + D2
s + λ)−1

∥∥Et − Es∥∥Dt(1 + D2
t + λ)−1

∥
J

1
2

+ ∥Ds(1 + D2
s + λ)−1

∥
J

1
2
∥Es∥∥Dt(1 + D2

t + λ)−1
− Ds(1 + D2

s + λ)−1
∥

≤ (1 + λ)−1
∥As − At∥∥Et∥(1 + λ)σ− 1

2 ∥(1 + D2
t )
−σ

∥
J

1
2

+ (1 + λ)−
1
2 ∥Et − Es∥(1 + λ)σ− 1

2 ∥(1 + D2
t )
−σ

∥
J

1
2

+ (1 + λ)σ− 1
2 ∥(1 + D2

s )
−σ

∥
J

1
2
∥Es∥(1 + λ)−1

∥As − At∥.

Use the bound in (i) and simplify, keeping in mind that (1 + λ)−
1
2 ≤ 1, to get

∥Dt(1 + D2
t + λ)−1EtDt(1 + D2

t + λ)−1
− Ds(1 + D2

s + λ)−1EsDs(1 + D2
s + λ)−1

∥
J

1
2

≤ (1 + λ)−(1−σ)K∥(1 + D2
0)
−σ

∥
J

1
2

× (∥As − At∥∥Et∥ + ∥Et − Es∥ + ∥Es∥∥As − At∥).

_is is the same expression as obtained in (ii), giving us

∥Dt(1 + D2
t + λ)−1EtDt(1 + D2

t + λ)−1
− Ds(1 + D2

s + λ)−1EsDs(1 + D2
s + λ)−1

∥
J

1
2

≤ K∥(1 + D2
0)
−σ

∥
J

1
2
(1 + λ)−(1−σ)vs ,t ,

as desired.

_e above bounds and continuity results are all that is needed to ûll out the details
in the proof of Lemma 4.5.

Acknowledgement _e author wishes to acknowledge in particular her supervisor,
John Phillips, for his helpful advice in the process of this research.

References

[Ahl79] Lars V. Ahlfors, Complex analysis. _ird edition. McGraw-Hill, New York, 1978.
[BCP+06] Moulay-Tahar Benameur, Alan L. Carey, John Phillips, Adam Rennie, Fyodor A.

Sukochev, and Krzysztof P. Wojciechowski, An analytic approach to spectral �ow in von
Neumann algebras. In: Analysis, geometry and topology of elliptic operators. World Sci.
Publ., Hackensack, NJ, 2006.

[BN82] Joseph Bak and Donald J. Newman, Complex analysis. Springer-Verlag, New York, 1982.
[Bre68] Manfred Breuer, Fredholm theories in von Neumann algebras. I. Math. Ann. 178(1968),

243–254. http://dx.doi.org/10.1007/BF01350663
[Con89] Alain Connes, Compact metric spaces, Fredholm modules, and hyperûniteness. Ergodic

_eory Dynam. Systems 9(1989), 207–220. http://dx.doi.org/10.1017/S0143385700004934
[CP98] Alan Carey and John Phillips, Unbounded Fredholm modules and spectral �ow. Canad. J.

Math. 50(1998), 673–718. http://dx.doi.org/10.4153/CJM-1998-038-x
[CP04] , Spectral �ow in Fredholm modules, eta invariants and the JLO cocycle. K-_eory

31(2004), 135–194. http://dx.doi.org/10.1023/B:KTHE.0000022922.68170.61
[CPRS06a] Alan Carey, John Phillips, Adam Rennie, and Fyodor Sukochev,_e local index formula in

semiûnite von Neumann algebras I: spectral �ow. Adv. Math. 202(2006), 451–516.
http://dx.doi.org/10.1016/j.aim.2005.03.011

378

https://doi.org/10.4153/CJM-2017-030-2 Published online by Cambridge University Press

http://dx.doi.org/10.1007/BF01350663
http://dx.doi.org/10.1017/S0143385700004934
http://dx.doi.org/10.4153/CJM-1998-038-x
http://dx.doi.org/10.1023/B:KTHE.0000022922.68170.61
http://dx.doi.org/10.1016/j.aim.2005.03.011
https://doi.org/10.4153/CJM-2017-030-2


Integral Formula for Spectral Flow for p-Summable Operators

[CPRS06b] ,_e local index formula in semiûnite von Neumann algebras II: the even case. Adv.
Math. 202(2006), 517–554. http://dx.doi.org/10.1016/j.aim.2005.03.010

[CPRS08] ,_e Chern character of semiûnite spectral triples. J. Noncommut. Geom. 2(2008),
141–193. http://dx.doi.org/10.4171/JNCG/18

[CPS09] Alan Carey, Denis Potapov, and Fedor Sukochev, Spectral �ow is the integral of one-forms
on the Banach manifold of self-adjoint Fredholm operators. Adv. Math. 222(2009),
1809–1849. http://dx.doi.org/10.1016/j.aim.2009.06.020

[DDS14] P. G. Dodds, T. K. Dodds, and F. A. Sukochev, On p-convexity and q-concavity in
non-commutative symmetric spaces. Integral Equations Operator _eory 78(2014), 91–114.
http://dx.doi.org/10.1007/s00020-013-2082-0

[Dix52a] Jacques Dixmier, Applications ♮ dans les anneaux d’opérateurs. Compositio Math.
10(1952), 1–55.

[Dix52b] , Remarques sur les applications ♮. Archiv. Math. 3(1952), 290–297.
http://dx.doi.org/10.1007/BF01899229

[Dix53] , Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math. France 81(1953),
9–39 http://dx.doi.org/10.24033/bsmf.1436

[Dix81] , Von Neumann algebras. North-Holland Mathematical Library, 27.
North-Holland, Amsterdam, 1981.

[FK86] _ierry Fack and Hideki Kosaki, Generalized s-numbers of τ-measurable operators. Paciûc
J. Math. 123(1986), 269–300. http://dx.doi.org/10.2140/pjm.1986.123.269

[Geo13] Magdalena C. Georgescu, Spectral �ow in semiûnite von Neumann algebras. Ph.D. thesis,
University of Victoria, 2013.

[KS08] N. J. Kalton and F. A. Sukochev, Symmetric norms and spaces of operators. J. Reine Angew.
Math. 621(2008), 81–121. http://dx.doi.org/10.1515/CRELLE.2008.059

[Lan62] Serge Lang, Diòerential and Riemannian manifolds. _ird edition. Springer-Verlag, New
York, 1995. http://dx.doi.org/10.1007/978-1-4612-4182-9

[Ped79] Gert K. Pedersen, C∗-algebras and their automorphism groups. London Mathematical
Society Monographs, 14. Academic Press, London, 1979.

[Phi96] John Phillips, Self-adjoint Fredholm operators and spectral �ow. Canad. Math Bull.
39(1996), 460–467. http://dx.doi.org/10.4153/CMB-1996-054-4

[Phi97] , Spectral �ow in type I and II factors—a new approach. Fields Inst. Commun., 17.
Amer. Math. Soc., Providence, RI, 1997, pp. 137–153.

[PR94] John Phillips and Iain Raeburn, An index theorem for Toeplitz operators with
noncommutative symbol space. J. Funct. Anal. 120(1994), 239–263.
http://dx.doi.org/10.1006/jfan.1994.1032

[Rud53] Walter Rudin, Principles of mathematical analysis. McGraw-Hill, New York, 1953.
[Suk16] F. Sukochev, Hölder inequality for symmetric operator spaces and trace property of

K-cycles. Bull. Lond. Math. Soc. 48(2016), 637–647. http://dx.doi.org/10.1112/blms/bdw022

Department of Mathematics, Ben Gurion University, 8410501 Be’er Sheva, Israel
e-mail: magda@uvic.ca

379

https://doi.org/10.4153/CJM-2017-030-2 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.aim.2005.03.010
http://dx.doi.org/10.4171/JNCG/18
http://dx.doi.org/10.1016/j.aim.2009.06.020
http://dx.doi.org/10.1007/s00020-013-2082-0
http://dx.doi.org/10.1007/BF01899229
http://dx.doi.org/10.24033/bsmf.1436
http://dx.doi.org/10.2140/pjm.1986.123.269
http://dx.doi.org/10.1515/CRELLE.2008.059
http://dx.doi.org/10.1007/978-1-4612-4182-9
http://dx.doi.org/10.4153/CMB-1996-054-4
http://dx.doi.org/10.1006/jfan.1994.1032
http://dx.doi.org/10.1112/blms/bdw022
mailto:magda@uvic.ca
https://doi.org/10.4153/CJM-2017-030-2



