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The Reconstruction Property in Banach
Spaces and a Perturbation Theorem

Peter G. Casazza and Ole Christensen

Abstract. Perturbation theory is a fundamental tool in Banach space theory. However, the applications

of the classical results are limited by the fact that they force the perturbed sequence to be equivalent to

the given sequence. We will develop a more general perturbation theory that does not force equivalence

of the sequences.

1 Introduction

Perturbation theory is a very important tool in several areas of mathematics. It be-

gan with the fundamental perturbation result by Paley and Wiener [6], stating that
a sequence that is sufficiently close to an orthonormal basis in a Hilbert space auto-
matically forms a basis, that is, the reconstruction property is preserved. Since then,
a number of variations and generalizations of this perturbation theorem have ap-

peared, e.g., to the setting of Banach spaces (see Singer [7, pp. 84–109]). All of these
generalizations have in common that a perturbation {gi}i∈I of a sequence { fi}i∈I in
a Banach space X must be equivalent to { fi}i∈I , that is, there exists a bounded and
invertible operator T on X such that T fi = gi for all i ∈ I. This puts severe re-

strictions on applications of the theory. In this paper we will present a more general
perturbaton theory for reconstruction families in Banach spaces; it is strong enough
to capture existing results, but does not force the involved sequences to be equivalent.

2 The Reconstruction Property

We first give a formal definition of the reconstruction property.

Definition 2.1 Let X be a separable Banach space. A sequence { f ∗i }i∈I ⊂ X∗ has

the reconstruction property for X with respect to a sequence { fi}i∈I ⊂ X if

(2.1) f =

∑

i∈I

f ∗i ( f ) fi , for all f ∈ X.

In short, we will also say that the pair { fi , f ∗i }i∈I has the reconstruction property
for X.

It is important for our applications that { fi}i∈I and { f ∗i }i∈I come from X and X∗

in Definition 2.1. For example, if f ∗i ∈ ℓ∞ and { f ∗i }i∈I is unitarily equivalent to the
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unit vector basis of ℓ2, then this sequence clearly has a “reconstruction” property with
respect to its own predual (i.e., expansions with respect to the orthonormal basis) but

this family cannot have the reconstruction property with respect to ℓ1, which is the
pre-dual of ℓ∞. We refer the reader to [2] for a generalization of the reconstruction
property.

Remark 2.2. If { fi, f ∗i }
∞
i=1 has the reconstruction property for a Banach space X,

then X has the bounded approximation property [1, p. 286]. In fact, the sequence
of finite rank operators Tn : X → X, Tn f =

∑n
i=1 f ∗i ( f ) fi has the property that

Tn f → f in norm for all f ∈ X. Therefore, X is isomorphic to a complemented
subspace of a Banach space with a basis [1, p. 290]. Conversely, if X has the bounded
approximation property, then there exists a Banach space X ⊂ Y with a basis { fi , f ∗i }
and a projection P of Y onto X. Now, {P fi , P f ∗i } has the reconstruction property for

X. For information on the bounded approximation property, see [1, pp. 271–316].

We observe that the reconstruction property (2.1) is stronger than the assumption
that { fi}i∈I spans the space X.

Proposition 2.3 There exists a Banach space X with the following properties:

(i) there is a sequence { fi}
∞
i=1 such that each f ∈ X has an expansion f =

∑∞
i=1 ai fi ;

(ii) X does not have the reconstruction property with respect to any pair {hi , h∗
i }i∈I .

Proof Let X be a separable Banach space failing the bounded approximation prop-
erty (see [1, Ch. 7]). Then X does not have the reconstruction property with respect
to any family {hi, h∗

i }i∈I . Let T : ℓ1 → X be a quotient map. If {ei}
∞
i=1 is the unit

vector basis of ℓ1, let fi = Tei . If f ∈ X, then there is a g ∈ ℓ1 so that Tg = f . Since
g =

∑∞
i=1 g(i)ei , we have that

f = Tg =

∞
∑

i=1

g(i)Tei =

∞
∑

i=1

g(i) fi .

Given that fi ∈ X satisfies (i) in Proposition 2.3, it would be interesting to find
further conditions which guarantee the existence of f ∗i ∈ X∗ so that { fi , f ∗i } has the
reconstruction property for X. This however is a very deep question, and we do not
know the answer even for Hilbert spaces.

3 A Perturbation Theorem

For our main perturbation result we will need several standard results from Banach

space theory, and we state them in the following lemma. For notation, if X is a Banach
space we write BX for the unit ball of X.

Lemma 3.1 Let X,Y be Banach spaces and T : X → Y be a bounded linear operator.

(i) If T is an isomorphism onto Y , then ‖T f ‖ ≥ A‖ f ‖ for all f ∈ X if and only if

ABY ⊂ T(BX).

(ii) If T is an isomorphism onto Y which satisfies estimates of the form

A‖ f ‖ ≤ ‖T f ‖ ≤ C‖ f ‖

https://doi.org/10.4153/CMB-2008-035-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-035-3


350 P. G. Casazza and O. Christensen

for all f ∈ X, then for all g ∈ Y ∗ we have

A‖g‖ ≤ ‖T∗g‖ ≤ C‖g‖.

(iii) If T is bounded, linear, and surjective, and ABY ⊂ T(BX), then T∗ is an isomor-

phism (but not necessarily surjective), satisfying for all g ∈ Y ∗ that

A‖g‖ ≤ ‖T∗g‖ ≤ ||T|| ‖g‖.

The result below is a Banach space version of the Paley–Wiener theorem for frames
in Hilbert space [3].

Theorem 3.2 Suppose that { fi , f ∗i }
∞
i=1 has the reconstruction property for X. Let Xd

be a sequence space which has the unit vectors {ei}
∞
i=1 as a basis. Assume that

T{ci}
∞
i=1 :=

∞
∑

i=1

ci fi

defines a bounded linear operator from Xd into X. Assume further that the operator

R : X → Xd given by R f = { f ∗i ( f )}∞i=1 is a bounded operator. Let {gi} be a sequence

in X for which there exist constants λ, µ > 0 such that λ + µ‖R‖ < 1 and

(3.1)
∥

∥

∥

∞
∑

i=1

ci( fi − gi)
∥

∥

∥
≤ λ

∥

∥

∥

∞
∑

i=1

ci fi

∥

∥

∥
+ µ‖{ci}

∞
i=1‖Xd

,

for all finitely non-zero scalar sequences {ci}
∞
i=1. Then there are functionals {g∗i }

∞
i=1 ⊂

X∗ so that {gi , g∗i }
∞
i=1 has the reconstruction property for X.

Moreover, U : Xd → X given by U{ci}
∞
i=1 =

∑∞
i=1 cigi is a bounded, linear, and

surjective operator, and

(3.2)
1

‖R‖

(

1 − (λ + µ‖R‖)
)

‖ f ‖ ≤ ‖U ∗ f ‖ ≤ ‖T‖
(

1 + λ +
µ

‖T‖

)

‖ f ‖

for all f ∈ X∗. Finally, if the unit vectors form an unconditional basis for Xd, then the

series
∑∞

i=1 cigi converges unconditionally for all {ci}
∞
i=1 ∈ Xd.

Proof For all finite sequences {ci}
n
i=1 we have

∥

∥

∥

n
∑

i=1

cigi

∥

∥

∥
≤

∥

∥

∥

n
∑

i=1

ci( fi − gi)
∥

∥

∥
+

∥

∥

∥

n
∑

i=1

ci fi

∥

∥

∥
≤ (1 + λ)

∥

∥

∥

n
∑

i=1

ci fi

∥

∥

∥
+ µ‖{ci}

n
i=1‖Xd

.

It follows that for all {ci}
∞
i=1 ∈ Xd and all n > m in N,

(3.3)
∥

∥

∥

n
∑

i=1

cigi −

m
∑

i=1

cigi

∥

∥

∥
=

∥

∥

∥

n
∑

i=m+1

cigi

∥

∥

∥
≤ (1+λ)

∥

∥

∥

n
∑

i=m+1

ci fi

∥

∥

∥
+µ

∥

∥

∥

n
∑

i=m+1

ciei

∥

∥

∥

Xd

.
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Since
∑∞

i=1 ciei converges by the fact that {ci}
∞
i=1 ∈ Xd and the unit vectors form a

basis for Xd, it follows that
∑∞

i=1 ci fi converges by our assumption that T is a bounded

operator. Now it follows from (3.3) that
∑∞

i=1 cigi converges in X (unconditionally
if the unit vectors form an unconditional basis for Xd). If we define U : Xd → X by
U{ci}

∞
i=1 =

∑∞
i=1 cigi , we have

‖U{ci}
∞
i=1‖ ≤ (1 + λ)‖T{ci}

∞
i=1‖ + µ‖{ci}

∞
i=1‖Xd

≤ ((1 + λ)‖T‖ + µ)‖{ci}
∞
i=1‖Xd

.

Hence, ‖U‖ = ‖U ∗‖ ≤ ((1 + λ)‖T‖+ µ), which verifies the right-hand side of (3.2).
Next, define an operator L : X → X by L f =

∑∞
i=1 f ∗i ( f )gi . For any f ∈ X we have

‖(I − L) f ‖ = ‖ f − L f ‖ =

∥

∥

∥

∞
∑

i=1

f ∗i ( f ) fi −

∞
∑

i=1

f ∗i ( f )gi

∥

∥

∥
=

∥

∥

∥

∞
∑

i=1

f ∗i ( f )( fi − gi)
∥

∥

∥

≤ λ
∥

∥

∥

∞
∑

i=1

f ∗i ( f ) fi

∥

∥

∥
+ µ‖{ f ∗i ( f )}∞i=1‖Xd

= λ‖ f ‖ + µ‖R f ‖Xd

≤ λ‖ f ‖ + µ‖R‖‖ f ‖ = (λ + µ‖R‖)‖ f ‖.

Since λ + µ‖R‖ < 1, it follows that L is an invertible operator on X. Now let g∗i =

(L−1)∗ f ∗i for all i ∈ N. If f ∈ X, we have

∞
∑

i=1

g∗i ( f )gi =

∞
∑

i=1

[(L−1)∗ f ∗i ]( f )gi =

∞
∑

i=1

f ∗i (L−1 f )gi = LL−1 f = f .

So {gi, g∗i }
∞
i=1 has the reconstruction property for X.

In order to prove the left-hand side of (3.2), we note that for f ∈ X

‖L f ‖ ≥ ‖ f ‖ − ‖(I − L)( f )‖

≥ ‖ f ‖ − (λ + µ‖R‖)‖ f ‖ = (1 − (λ + µ‖R‖))‖ f ‖.

Now consider U : R(X) → X as defined above. If f ∈ BX , then

∥

∥

∥

{ 1

‖R‖
f ∗i ( f )

}∞

i=1

∥

∥

∥

Xd

=

1

‖R‖
‖R( f )‖Xd

≤
1

‖R‖
‖R‖‖ f ‖ = 1.

So,
{

1
‖R‖ f ∗i ( f )

}∞

i=1
∈ BXd

. Also,

∥

∥

∥
U

{ 1

‖R‖
f ∗i ( f )

}∞

i=1

∥

∥

∥
=

1

‖R‖
‖L f ‖ ≥

1

‖R‖

(

1 − (λ + µ‖R‖)
)

‖ f ‖.

By Lemma 3.1(i), U (BXd
) ⊃ U (BR(X)) ⊃

1
‖R‖ (1− (λ + µ‖R‖))BX . By Lemma 3.1(iii),

we have ‖U ∗ f ‖ ≥ 1
‖R‖ (1 − (λ + µ‖R‖))‖ f ‖.
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We now consider some applications of Theorem 3.2.

Example 3.3 Choose λ, µ > 0 so that λ + µ‖R‖ < 1, (T, R as in Theorem 3.2).

Choose any bounded linear operator L : Xd → X with ‖L‖ ≤ ‖R‖. For i ∈ N let

gi = (1 − λ) fi + µLei ,

where {ei}
∞
i=1 is a basis of Xd. Then for all {ci}

∞
i=1 ∈ Xd we have

∥

∥

∥

∞
∑

i=1

ci( fi − gi)
∥

∥

∥
=

∥

∥

∥
λ

∞
∑

i=1

ci fi + µ
∞
∑

i=1

ciLei

∥

∥

∥

≤ λ
∥

∥

∥

∞
∑

i=1

ci fi

∥

∥

∥
+ µ

∥

∥

∥

∞
∑

i=1

ciLei

∥

∥

∥

≤ λ
∥

∥

∥

∞
∑

i=1

ci fi

∥

∥

∥
+ µ‖L‖‖{ci}

∞
i=1‖Xd

≤ λ
∥

∥

∥

∞
∑

i=1

ci fi

∥

∥

∥
+ µ‖R‖‖{ci}

∞
i=1‖Xd

So the hypotheses of Theorem 3.2 are satisfied.

Another natural application of Theorem 3.2 is to take a Banach space Xd with
a basis {gi, g∗i } and let P be a projection on Xd. Letting X = P(Xd), fi = P(gi),

f ∗i = P(g∗i ), T = P, and with R the injection of X into Xd, we can apply the theorem.
An important aspect of Theorem 3.2 is that it does not require the perturbed fam-

ily {gi} to be equivalent to the original reconstruction sequence { fi}. We will give an
example of this below. Recall that two sequences { fi}i∈I , {gi}i∈I in a Banach space

are equivalent if the mapping T : fi 7→ gi can be extended to a well-defined bounded
linear map of span{ fi} onto span{gi}.

Proposition 3.4 There is a Banach space X and a pair { fi , f ∗i }
∞
i=1 having the recon-

struction property for X, a sequence space Xd with an unconditional basis {ei}
∞
i=1 so that

the operators T, R in Theorem 3.2 exist and there is a sequence {gi}
∞
i=1 in X satisfying

the perturbation criterion (3.1), but {gi}
∞
i=1 is not equivalent to { fi}

∞
i=1.

Proof Let P be a non-trivial projection on ℓp onto a subspace for any 1 ≤ p < ∞.
Let Xd = ℓp, X = P(Xd). With the notation in Theorem 3.2, let T = P and R be the
injection of X into Xd. Since X is isomorphic to ℓp (see [5]), there is an isomorphism
L : Xd → X. Now choose λ, µ > 0 so that λ + µ max{‖L‖, ‖R‖} < 1. Let {ei}

∞
i=1 be

the unit vector basis of ℓp, let fi = Pei for all i = 1, 2, . . . , and let gi = (1−λ) fi +µLei .
For all finitely non-zero sequences {ci}

∞
i=1 we have

∥

∥

∥

∞
∑

i=1

ci( fi − gi)
∥

∥

∥
≤ λ

∥

∥

∥

∞
∑

i=1

ci fi

∥

∥

∥
+ µ

∥

∥

∥

∞
∑

i=1

ciLei

∥

∥

∥

≤ λ
∥

∥

∥

∞
∑

i=1

ci fi

∥

∥

∥
+ µ‖L‖‖{ci}

∞
i=1‖Xd

.
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So {gi}
∞
i=1 is a perturbation of { fi}

∞
i=1. If we choose any {0} 6= {ci}

∞
i=1 ∈ Xd so that

∑∞
i=1 ciPei =

∑∞
i=1 ci fi = 0, then

∞
∑

i=1

cigi = (1 − λ)
∑

ci fi + µ
∞
∑

i=1

ciLei = µ
∞
∑

i=1

ciLei .

Since {Lei}
∞
i=1 is a basis for X, it follows that

∑∞
i=1 ciLei 6= 0, and so { fi}

∞
i=1 is not

equivalent to {gi}
∞
i=1.

We will now show that the conclusion in Theorem 3.2 can be obtained under

weaker assumptions. Let us discuss why this is important. In Theorem 3.2, it is easily
checked that the operator RT is a projection of Xd onto R(X). This is a rather strong
restriction on the application of the result. As we saw earlier, the very existence of a
reconstruction family implies that X is isomorphic to a complemented subspace of a

Banach space with a basis. However, the space with a basis may not be the space Xd

above. The next result has the advantage that it does not require that X be isomorphic
to a complemented subspace of Xd, but just that it embed into Xd. The proof follows
line by line the proof of Theorem 3.2 using R−1 in place of T.

Theorem 3.5 Suppose { fi , f ∗i }
∞
i=1has the reconstruction property for a Banach

space X. Let Xd be a sequence space which has the unit vectors as a basis. Assume the

operator R : X → Xd given by R f = { f ∗i ( f )}∞i=1 is a (not necessarily surjective) isomor-

phism. Let {gi}
∞
i=1 be a sequence in X for which there exist constants λ, µ > 0 such that

λ + µ‖R‖ < 1 and

∥

∥

∥

∞
∑

i=1

ci( fi − gi)
∥

∥

∥
≤ λ

∥

∥

∥

∞
∑

i=1

ci fi

∥

∥

∥
+ µ‖{ci}

∞
i=1‖Xd

,

for all finitely non-zero scalar sequences {ci}
∞
i=1 taken from { f ∗i ( f )}∞i=1 for any f ∈ X.

Then there are functionals {g∗i }
∞
i=1 ⊂ X∗ so that {gi, g∗i }

∞
i=1 has the reconstruction

property for X.

Moreover, U : R(X) → X given by U{ci}
∞
i=1 =

∑∞
i=1 cigi is an isomorphism satisfy-

ing for all f ∈ X∗,

1

‖R‖
(1 − (λ + µ‖R‖))‖ f ‖ ≤ ‖U ∗ f ‖ ≤ ‖T‖

(

(1 + λ)‖R−1‖ + µ
)

‖ f ‖.

4 The Reconstruction Property Revisited

We will now consider some theoretical consequences of the reconstruction property
and related examples.

Proposition 4.1 Suppose that { fi , f ∗i }
∞
i=1 has the reconstruction property for X. Then

for all g ∈ X∗ we have that the sequence

{

n
∑

i=1

g( fi) f ∗i

}∞

n=1

converges to g ∈ X∗ in the ω∗-topology.
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Proof For any f ∈ X we have

lim
n→∞

[(

n
∑

i=1

g( fi) f ∗i

)

( f )
]

= lim
n→∞

n
∑

i=1

g( fi) f ∗i ( f ) = lim
n→∞

g
(

n
∑

i=1

f ∗i ( f ) fi

)

= g
(

lim
n→∞

n
∑

i=1

f ∗i ( f ) fi

)

= g( f ).

This proves the proposition.

In the case that X is reflexive, the convergence in Proposition 4.1 becomes weak
convergence. It is natural to ask whether we also obtain convergence in norm in

this case. Unfortunately, this fails. Even in a Hilbert space, having the reconstruc-
tion property with respect to { fi , f ∗i } does not imply the reconstruction property for
{ f ∗i , fi}:

Example 4.2 Let H be a separable Hilbert space. There are vectors f ∗i , fi ∈ H

so that for every f ∈ H we have f =

∑∞
i=1 f ∗i ( f ) fi but we do not have that f =

∑∞
i=1 f ( fi) f ∗i for all f ∈ H.
To see this, let {ei}

∞
i=1 be an orthonormal basis for H, and define the vectors

{ fi}
∞
i=1 and { f ∗i }

∞
i=1 by

f2i = ei, f2i−1 = e1, f ∗1 = e1, f ∗2i = ei, f ∗2i+1 = ei+1 − ei.

Now, for all f ∈ H,

∞
∑

i=1

f ∗2i ( f ) f2i = f ,

n
∑

i=1

f ∗2i+1( f ) f2i+1 = 〈e1, f 〉e1 +
(

n
∑

i=1

〈ei+1 − ei , f 〉
)

e1 = 〈en+1, f 〉e1.

Since limn→∞〈en+1, f 〉 = 0, we have that
∑∞

i=1 f ∗2i+1( f ) f2i+1 = 0. Hence, for all
f ∈ H, f =

∑∞
i=1 f ∗i ( f ) fi . On the other hand, if f = e1, then

2n+1
∑

i=1

f ( fi) f ∗i = 〈e1, f2〉 f ∗2 +

n
∑

i=0

〈e1, f2i+1〉 f ∗2i+1

= e1 +

n
∑

i=0

〈e1, e1〉(ei+1 − ei) = e1 + en+1.

It follows that
∑∞

i=1 f ( fi) f ∗i does not converge in H.

The next proposition shows that we can get the reconstruction property with re-
spect to X∗ if the reconstruction property for X holds with unconditional conver-
gence.
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Proposition 4.3 Assume that { fi , f ∗i }
∞
i=1 has the reconstruction property for X and

that the series
∑∞

i=1 f ∗i ( f ) fi (= f ) converges unconditionally for all f ∈ X. Then the

following are equivalent.

(i) For all g ∈ X∗ we have g =

∑∞
i=1 g( fi) f ∗i .

(ii) c0 does not embed into X∗.

Proof (i) ⇒ (ii): By (i), X∗ is separable and so c0 cannot embed into X∗ [5].
(ii) ⇒ (i): For E ⊂ N finite, define TE f =

∑

i∈E gi( f ) fi . The family {TE} is a
family of finite rank bounded linear operators on X which are pointwise bounded
because of the unconditional convergence of

∑∞
i=1 f ∗i ( f ) fi . By the uniform bound-

edness principle, this family is uniformly bounded, i.e.,

sup
E⊂N

‖TE‖ = K < ∞.

If E, F are finite subsets of N, then
∥

∥

∥

∑

i∈E

g( fi) f ∗i −
∑

i∈F

g( fi) f ∗i

∥

∥

∥
= sup

‖ f‖=1

∣

∣

∣

∑

i∈E

g( fi) f ∗i ( f ) −
∑

i∈F

g( fi) f ∗i ( f )
∣

∣

∣

≤ sup
‖ f‖=1

(∣

∣

∣
g(

∑

i∈E

f ∗i ( f ) fi

∣

∣

∣
+

∑

i∈F

∣

∣

∣
g(

∑

i∈F

f ∗i ( f ) fi

∣

∣

∣

)

≤ ‖g‖
(

sup
‖ f‖=1

∥

∥

∥

∑

i∈E

f ∗i ( f ) fi

∥

∥

∥
+ sup

‖ f‖=1

∥

∥

∥

∑

i∈F

f ∗i ( f ) fi

∥

∥

∥

)

≤ 2K‖g‖ ‖ f ‖.

By [4, Theorem 6, p. 44], it follows that
∑∞

i=1 g( fi) f ∗i is weakly unconditionally
Cauchy. Since c0 does not embed into X∗, by [4, Theorem 8, p. 45], we have that

∞
∑

i=1

g( fi) f ∗i

is unconditionally convergent in X∗. Since this series converges weakly to g by Propo-
sition 4.1, we have that g =

∑∞
i=1 g( fi) f ∗i and the series converges uncondition-

ally.

Recall that we say a subspace Y ⊂ X∗ norms X if there is a constant A > 0 so that
for all f ∈ X we have

A‖ f ‖ ≤ sup
‖g‖=1,g∈Y

|g( f )|.

Proposition 4.4 Assume { fi , f ∗i }
∞
i=1 has the reconstruction property for X. Then

span{ f ∗i }
∞
i=1 norms X.

Proof For all f ∈ X we have f =

∑

i f ∗i ( f ) fi . It follows that the finite rank opera-
tors Tn( f ) =

∑n
i=1 f ∗i ( f ) fi , are pointwise bounded on X. By the uniform bounded-

ness principle, there exists a constant K so that for all n and all f ∈ X,

∥

∥

∥

n
∑

i=1

f ∗i ( f ) fi

∥

∥

∥
≤ K‖ f ‖.
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Now, for every g ∈ X∗ we have,

∥

∥

∥

n
∑

i=1

g( fi) f ∗i

∥

∥

∥
= sup

‖ f‖=1

∣

∣

∣

(

n
∑

i=1

g( fi) f ∗i

)

( f )
∣

∣

∣
= sup

‖ f‖=1

∣

∣

∣

n
∑

i=1

g( fi) f ∗i ( f )
∣

∣

∣

= sup
‖ f‖=1

∣

∣

∣
g
(

n
∑

i=1

f ∗i ( f ) fi

)
∣

∣

∣

≤ ‖g‖ sup
‖ f‖=1

∥

∥

∥

n
∑

i=1

f ∗i ( f ) fi

∥

∥

∥

≤ K‖g‖ ‖ f ‖.

Now fix f ∈ X ǫ > 0 and choose g ∈ X∗ so that ‖g‖ = 1 and ‖ f ‖ ≤ (1 + ǫ)|g( f )|.
We have (for n sufficiently large),

‖ f ‖ ≤ (1 + ǫ)|g( f )| ≤ (1 + ǫ)
∣

∣

∣

∞
∑

i=1

f ∗i ( f )g( fi)
∣

∣

∣

≤ (1 + ǫ)2
∣

∣

∣

n
∑

i=1

f ∗i ( f )g( fi)
∣

∣

∣
≤ (1 + ǫ)2

∣

∣

∣

(

n
∑

i=1

g( fi) f ∗i

)

( f )
∣

∣

∣
.

Since
∑n

i=1 g( fi) f ∗i is in the closed linear span of the { f ∗i }
∞
i=1 and since the norms of

these vectors are uniformly bounded, it follows that the space span{ f ∗i }
∞
i=1 norms X.

Proposition 4.5 If { fi , f ∗i }
∞
i=1 has the reconstruction property for X and { f ∗i }

∞
i=1 is

equivalent to {g∗i }
∞
i=1 in X∗, then {g∗i }

∞
i=1 has the reconstruction property with respect

to some Banach space Y and elements {gi}
∞
i=1 in Y .

Proof Given the isomorphism Tg∗i = f ∗i , let gi = T∗ fi . Note that fi is a linear

functional on the closed linear span of the { f ∗i } in an obvious way; but, its norm as
a linear functional may not be the same as its norm as an element of X. However, by
Proposition 4.4, these norms are equivalent.

Now for f ∈ X

∞
∑

i=1

g∗i ( f )gi = T∗
∞
∑

i=1

(T−1 f ∗i )( f ) fi

= T∗
∞
∑

i=1

f ∗i ((T−1)∗ f ) fi = T∗(T−1)∗ f = f .

So {gi, g∗i }
∞
i=1 has the reconstruction property for X.

We can strengthen the results in the particular case of a reflexive Banach space.
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Theorem 4.6 Let X be reflexive. Assume { fi , f ∗i }
∞
i=1 has the reconstruction property

for X. Let {g∗i }
∞
i=1 be elements of X∗. Assume there is a 0 < λ < 1 so that for all n ∈ N

and all sequences of scalars {ai}
n
i=1 we have

∥

∥

∥

n
∑

i=1

ai( f ∗i − g∗i )
∥

∥

∥
≤ λ

∥

∥

∥

n
∑

i=1

ai f ∗i

∥

∥

∥
.

Then there are vectors {gi}
∞
i=1 ⊂ X so that for all f ∈ X f =

∑∞
i=1 g∗i ( f )gi .

Proof We first observe that span{ f ∗i }
∞
i=1 = X∗. In fact, if this were not the case,

the reflexivity of X would imply the existence of an element f ∈ X∗∗
= X so that

f (g) = 0 for all g ∈ span{ f ∗i }
∞
i=1; but then

∑∞
i=1 f ∗i ( f ) fi = 0, which contradicts

the assumption that { fi , f ∗i }
∞
i=1 has the reconstruction property for X. Now define

T : X∗ → X∗ by T( f ∗i ) = g∗i . Since {g∗i }
∞
i=1 is a perturbation of { f ∗i }

∞
i=1, this is a

well-defined operator on X∗. But the perturbation condition implies that ‖I − T‖ ≤
λ < 1. Hence, T is an invertible operator on X∗, and

∞
∑

i=1

g∗i ( f )(T∗)−1 fi = (T∗)−1
∞
∑

i=1

f ∗i (T∗ f ) fi = (T∗)−1T∗ f = f .

So {(T∗)−1 fi , g∗i }
∞
i=1 has the reconstruction property for X.

Unfortunately, besides the reflexive case, a perturbation of a family with the re-
construction property need not have the reconstruction property.

Example 4.7 Let X = c0 so X∗
= ℓ1. Let {ei} (respectively, {e∗i }) be the unit vector

basis of X (respectively, X∗). Define f ∗i = e∗i , fi = ei , for all i = 1, 2, 3, . . . . Also,
let g∗1 = e∗1 , g∗i =

1
2
e∗1 + e∗i , for all i ≥ 2. Of course, { f ∗i }

∞
i=1 has the reconstruction

property with respect to { fi}
∞
i=1. Also, for all n ∈ N and all families of scalars {ai}

n
i=1

we have

∥

∥

∥

n
∑

i=1

ai( f ∗i − g∗i )
∥

∥

∥
=

∥

∥

∥

n
∑

i=1

aie
∗
i −

(

n
∑

i=1

aie
∗
i +

1

2

n
∑

i=2

aie
∗
1

)
∥

∥

∥

=

1

2

∣

∣

∣

n
∑

i=2

ai

∣

∣

∣
≤

1

2

n
∑

i=1

|ai| =

1

2

∥

∥

∥

n
∑

i=1

ai f ∗i

∥

∥

∥
.

So {g∗i }
∞
i=1 is a perturbation of { f ∗i }

∞
i=1 and hence is a basic sequence in ℓ1 which is

equivalent to the unit vector basis of ℓ1. But also, e∗i = g∗i − 1
2
g∗1 for all i = 2, 3, . . . .

It follows that {g∗i }
∞
i=1 is actually a basis for ℓ1 equivalent to the unit vector basis.

We proceed, by way of contradiction, to show that this family {g∗i } does not have
the reconstruction property with respect to any sequence of vectors in c0. So, assume
{gi}

∞
i=1 ⊂ c0 satisfies that f =

∑∞
i=1 g∗i ( f )gi , for all f ∈ c0. Then for all j ≥ 2 we

have e j =

∑∞
i=1 g∗i (e j)gi = g j . Also,

e1 =

∞
∑

i=1

g∗i (ei)gi = g1 +

∞
∑

i=2

1

2
gi = g1 +

∞
∑

i=2

1

2
ei .
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Hence, g1 = e1 −
1
2

∑∞
i=2 ei . It follows that g1 /∈ c0, contradicting our assumption.

So {g∗i }
∞
i=1 does not have the reconstruction property with respect to any sequence

of vectors in c0.
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