
ON TAUBERIAN THEOREMS FOR ABEL-CESARO SUMMABILITY
by C. T. RAJAGOPAL

(Received 11th January, 1958)

1. Introduction. For a series 2«n
 wi*n partial sums An=a0+ai + ... +an(n > 0),

supposed to be real in this note, we define, in a generally accepted notation ([2], pp. 7, 9,
94-98), the following transforms :

(C, a) sequence-transform, a > -1 : G'n = -j^tAJZ-l > K =

(H, k) sequence-transform (k = 0, 1, 2, ...) : HK
n = —!-r £ H^ft > 1), #£ = An,

11 + 1 0

(A ; C, a) function-transform, a > - 1 : fa(x) =fa{x ; A) =(1 -x) f] C?a;n (0 < a; < 1).
» = o

We also define as follows the corresponding summabilities of the series 2an or the sequence
An(n > 0), each to a value I understood to be always finite in this note.

(C, a) summability to I: Cn -*• I as n -*• oo,
(H, k) summability to I: Ek

n -*• I as n -> oo,
(A ; C, a) summability to I: fa(x) -> I as x -*• 1 - 0.

The summability last defined, which we shall call Abel-Cesaro summability, reduces to Abel
or (A) summability when a = 0.

(A; C, a) summability, with the restriction a =̂ 0, seems to have been considered
explicitly first by Kogbetliantz {e.g. [6], p. 37) and later by Lord ([7], §§ 1-3). The former
writer denotes our/^z) by x-*fM(x) while the latter defines fa(x) as here but refers to our
summability (A ; C, a) as summability (C, a ; A). In a recent paper [1], Amir (Jakimovski)
has studied summability (A ; C, a) for all a > - 1 , without reference to the earlier writers
mentioned above, using the less explicit notation (A, a) summability instead of (A ; C, a)
summability; and his main theorems overlap in part those of the earlier writers.* For
instance, his consistency theorem ([1], Theorem 2.1 or Theorem 2.2), that (A ; C, a) summ-
ability for an a > - 1 implies (A ; C, /}) summability for any /? > a, is given by Lord ([7],
Lemma 7) in a more general form for a ^ 0, and his inclusion theorem ([1], Theorem 2.3),
that (C, ]8) summability for a f! > - 1 implies (A ; C, a) summability for any a > - 1 , appears
in the more general form of Lemma 2 of § 2 in Lord's paper [7]. As regards his Tauberian
theorems, what appears to be new in them ([1], Theorem 3.1, Theorem 3.2 and Corollary)
may be separated from what is essentially not ([1], Theorem 2.4 and Corollary, Theorem 3.3)
and embodied in a single statement as under.

THEOREM A. / / a sequence An(n > 0) is summable (A ; C, /S) to I for some /? > - 1 and
there is an a ^ £ such that

* This fact is not [mentioned in the notices of Jakimovski's paper [1] in Math. Reviews, 13 (1952), 835,
and Zbl. fur Math., 47 (1953), 66.
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lim lim inf min (C*t - C£) > 0,
S - * + 0 n - t - o a n < ( « )

then An is summable (C, a) to I.
In the case /J = 0, we can have a satisfying either a ^ j 3 = O or 0 = jS > a > - 1 .
I t is the main object of this note to prove a result, Theorem B, which extends Theorem A

by dispensing with the restriction a > £ even when /?^0, i.e. by assuming only a > - 1 .
The proof given of Theorem B is manifestly different from and simpler than the proof of
Theorem A. It uses the symbolic operators O ' and H* for the transforms (C, a) and (H, k)
in much the same way as the latter operator has been used by me [11] to simplify the proofs
of some theorems of Jakimovski, and by Parameswaran and Jakimovski [8] to generalise
the said theorems.

2. Lemmas. The lemmas required in the proof of Theorem B are presented below,
independently of the classical case a = /J = 0 of the theorem. For the first lemma I am indebted
to the referee who, however, points out that, although the lemma does not seem to have been
explicitly stated before, it is not essentially new as its proof is exactly like that of its particular
case p=0 given by Hausdorff ([3], III) and independently by Szasz ([12], pp. 1243-5, § 3).

LEMMA 1. Let An(n ^ 0) be a sequence of which any regular Hausdorff transform is the
sequence £i[An]. Let f(z)=fo(x), g{x) be the Abel transforms of An, £j[4n] respectively. Let
p>0. Then

f(x) =o{(l -a;)-"} as x -> 1 - 0 ,
implies

g(x) =o{(l -x)-"} as x -*• 1 - 0 .

In the case p > 0, the result is true more generally for a conservative Hausdorff
transformation Ej.

Proof. It may be recalled that the proof in the case p = 0 follows readily from the
relation ([12], p. 1244, last line)

where ifi(t) is the function of bounded variation in 0 ^ t =̂  1 generating the moment sequence
ixn(n > 0) which defines the transformation Ej as usual ([2], pp. 249, 256).

To prove the more general result in the case p > 0, we note that

tx
0 < ^— < x for 0 < t < 1,

l-x + tx

whence it follows that, if f(x)=o{(\ -x)~v} with p > 0, then, corresponding to any given
e > 0 and x sufficiently near 1, we have

This gives the result.
Of the next two lemmas, the first is given by Lord ([7], Lemma 7) with a > 0 instead of

a > - 1 and the second as it stands ([7], Lemma 5).
LEMMA 1'. If p > 0, jS > a > - 1 , then

fa(x) =o{(l -z)-p} implies fax) =o{(l -a;)-"} as x-+1-0.
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Proof. We have to show that

fo(x ; Cft) = o{(l -x)-») implies/„(* ; 0?) = o{(l -«)-«•} as x - • 1 - 0 ,

and this result follows from Lemma 1 since Cn is a regular Hausdorff transform of Cn .
LEMMA 2. If p ^ 0, jS > - 1 , a > - 1 , then

Cn = o(np) as n -*• oo, implies fj^x) = o{(l -a;)""} as a; -»-1 - 0 .
LEMMA 3. Xe< C(oi) (a > -1) and H* (A; = 0, 1, 2, ...) denote the operators which when ap-

plied to the sequence An(n ^ 0) result in Cn and H\ respectively, so that we can write
CM[An]=Cl,B.k[An]=Hl

Then we have the operational identity

H*C(oi) = S ctrH
rC3("+*)

> where £ chr = 1 (1)
r=0 ' r=0 '

To prove (1), which is stated explicitly by Hardy in the case a=0 ([2], p. 107, relation
(5.11.1) of § 5.11), we use induction on k, starting from the easily verified case k = l of (1)
which is

ffO' = cx 0 O
+1> +c1 j H

1C<«+1>, where cx 0 = -^-r ,c11= - A r .
' ' a +1 ' a +1

LEMMA 4. / / a sequence An is summable (A ; C, a + k) to I, then the sequence
is summable (A) to I.

By Lemma 1, each of the sequences TS.rC^+k)[An] ( r=0, l ,2 , ...), is summable (A) to I,
and so Lemma 4 follows from (1).

LEMMA 5. If a sequence Anis summable (A) to I and satisfies the condition

(2)

then it is summable (H, 1) to I.
Lemma 5 is due to Szasz ([12], p. 560, Satz II and p. 626, Theorem II). A short proof

of the lemma, in accord with the proof of Theorem B, is as follows. The sequence
(H°-H1)[^4fl] being summable (A) to 0 by Lemma 1 and also bounded on one side, is
summable (H, 1) to 0 by a well-known theorem ([2], p. 154, Theorem 94), i.e.

ff(H« -W)[An] = (Ho -W)W[An] -> 0.

From this and the summability (A) to I of H1[^4n], the desired conclusion that H1^,,] -+l
emerges on an appeal to Tauber's second theorem ([2], p. 150, Theorem 86).

LEMMA 6. A sequence An satisfying the condition

min (Am-An)>-K, (3)
n ^ m ^ (l+8)n

for some constants 8 > 0, K > 0, also satisfies the condition (2).
Lemma 6 has been proved by Szasz for functions instead of sequences ([12], p. 586,

relation (22') of Satz a). However, a proof is inserted here for convenience. If

An=a0+a1 + ...+an,

in (3) we get, taking m =n +1, an+1 =0^(1), so that there is a constant K' such that

min {an+an+1 + ...+am)>-K'.
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Hence, by Abel's lemma,

n oo

2 rar = 2 2 rar

oo Af
*2 (1+8)-% min 2
4 = 0 * 1 *

-* = -(1+8)
o

^ 0 + ^ 1 + . . . + ^ n ^ 1+8 w

LEMMA 7. If An(n ^ 0) is summable (H, &) to £ and satisfies the condition

lim lim inf min (4 m -^4 n )>0, (4)
B 0 ( 8 )

then An converges to I.

In the present context it seems best to follow Knopp ([5], Theorem II) to prove Lemma
7, by defining the (H, k) transform for a series £«„ instead of its sequence of partial sums An,
for 4 = 1, 2, 3, ... in succession, as another series :

?a" =a° + ? ^TTj
where <$* = a0 (k > 1), aS?* = an (n > 1),

so that we have the alternative definition for

(H, k) summability to 1: 2 «n' = *. where ol,*' = aQ (k = 0, 1, 2, ...).
o

Now condition (4), in conjunction with Lemma 6, shows that na^ =0L{\) and hence
also that naj^ =0^(1) for & = 2, 3, ... successively. Since nan=0L(l) is a special form of
condition (4), we thus see that our hypothesis that the partial sums of 3>n satisfy (4) implies
that the partial sums of 2<$\k > 1) again satisfy (4). Consequently, assuming Lemma 7
in the well-known case k = l ([2], p. 125, Theorem 68), we prove the lemma for any given
k ^ 2 by noting that its two assumptions, namely Za») =£ and (4), together imply 2>nr) = I
for r = A; - 1 , k - 2, ... , 0 successively.

3. Theorems. Our main Tauberian theorem for Abel-Cesaro summability can now
be stated and proved.

THEOREM B. If a sequence An{n > 0) is summable (A ; C, /3) to I for some /3 > - 1 and
there is an a > — 1 for which

lim liminf min (C£,-C£)>0, (5)
8)

then An is summable (C, a) to {.
Proof. Let ifc be a positive integer such that a + k ^ /3 and therefore, by virtue of Lemma

1', An is summable (A ; C, a + k) to I. Then, by Lemma 4, RkC{x)[An] is summable (A) to I.
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On the other hand, by an application of Lemma 6 to (5), we have

Cn -Hi[C5]=0x(l) (6)

so that H*[0J] -W[H.k[C"n]] =OL(1).

Lemma 5, with IPfC^] instead of An, now shows that H*[C£] is summable (H, 1) to I, or Cn

is summable (H, k +1) to I; and the conclusion sought follows from an application of
Lemma 7 to 0",.

After Theorem B, the remaining Tauberian theorems for Abel-Cesaro summability may
be included in a single enunciation as follows.

THEOREM C. / / p > 0, a > - 1 , /} > - 1 and a sequence An(n^0) satisfies the
conditions

lim liminf min C m " C ' n > 0, (7)
n-*oo

MX)=O{(1-X)-P} as x-> 1-0 (8)

then Cn = o(nv) as n -*• oo. (9)

Proof. The case p = 0 is disposed of by Theorem B and the case p > 0 is separately
dealt with as briefly indicated below.

It is known (e.g. [4], p. 36, or [12], p. 617, relation (17) of Hilfssatz 1) that, when p > 0,
(7) implies

Cn =
Hence we have, for y=max (a, /?),

and we also know, by Lemma 1', that (8) holds with /S replaced by any 8 #= /? and so with
8=y. Therefore, by a well-known theorem of Hardy and Littlewood ([7], Theorem A, or
[4], SatzBwithi(a;) = l),

HTO=o(n») (10)
If y = <%, a simple Tauberian argument (e.g. [4], proof of Satz C), involving (7) and (10),
establishes our conclusion (9). On the other hand, if y =j8, (10) can be written in the form

and a classical Mercerian argument ([2], p. 104, proof of Theorem 51) shows that
C£+1 = o(nv). From this we see, by Lemma 2, that (8) holds with /? replaced by any 8 > - 1
and so with 8= a. Conclusion (9) now follows from a repetition of our previous argument
in the case y = a.

Two Tauberian theorems for Abel-Cesaro summability, proved by Lord ([7], Theorems
1, 2), can now be stated as corollaries, even with his condition /} > 0 (in the notation adopted
here) relaxed to /? > - 1 .

COROLLARY C r Theorem C can be restated with hypothesis (7) changed to C% = Oi(nv)

and conclusion (9) changed to Cn
+l = o(nv).

* Tbe distinction between the cases p > 0 and p = 0 may be explained thus. The implication of (7),
• stated above for p > 0, assumes the different form of (6) for p = 0.
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The proof is contained in that of Theorem C.
COROLLARY Ca. Theorem C can be restated with only (7) changed to

CfZ = OL{n») (7')

where C£ is the n-th (C, a) mean of the sequence A'n=nan.
To deduce Corollary C2 from Theorem C we have only to observe that (7') implies (7).

In the case <x=0, (7') becomes nan = OL(nv), i.e. an=Oz(n
p-1), from which (7) with <x=0

readily follows by summation. If a 5*0 but a > - 1 , (7') gives

and therefore (7) follows again by summation.
Corollary Cx and Corollary C2, both for p=0, a > 0, are given by Kogbetliantz in a

slightly different form ([6], pp. 39, 40, Theorems XIX, XXI). Elsewhere are functional
analogues of Corollary C2 in the case p=0, a. Js 1, involving either the Laplace transform
([9], Corollary II'.1), or more generally, a certain class of integral transforms ([10],
Theorem A).

My thanks are due to the referee for his replacement of my original condition /? ^ 0 by
the condition j3 > - 1 in Theorem C and its corollaries, by means of his Lemma 1.
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