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Abstract

We determine necessary and sufficient conditions for the multiplier representations of a discrete
group to be type /. This result extends the corresponding result for ordinary representation given by
Kaniuth in [4].

1980 Mathematics subject classification (Amer. Math. Soc.): 22 D 10.

1. Introduction

Multiplier representations arise in applying the Mackey analysis of ordinary
representations of a group G with a regularly embedded normal subgroup N.
Specifically, to each factor representation of G which restricts to an orbit
through A in N", there corresponds a unique a-representation of the little group
Hx/' N, with the same commutant, where Hx is the stabilizer of A in N" and the
multiplier a is the Mackey obstruction to extending X to Hx as an ordinary
representation ([1], page 62). Moreover, if G is discrete, then the induced
representation A|^ has the same commutant as the regular a-representation of
HJN ([5], Theorem 7).

Suppose, then, that w: G X G —» 7" is a normalized multiplier on the discrete
group G and let V{G) denote the von Neumann algebra generated by the
regular ^-representation of G. We say that (G, w) is type / if all w-representa-
tions of G are type /. The main result to be proved in this paper is the following.
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THEOREM 1.1. Let G be a discrete group and co a normalized multiplier on G,
then the following are equivalent.

(i) V(G) is type I,
(ii) (G, co) is type I,
(iii) G has an abelian subgroup A of finite index [G : A] in G such that

<c(x,y) = u{y, x) for all x,y £ A.

An interesting consequence of this theorem is that the central extension G" of
G (where G is discrete and G" is given any locally compact group topology) is
type / if (G, co) is type /. It should be noted that this is not a simple consequence
of the fact that the co-representations of G give rise to (ordinary) representations
of the central extension G", since not all representations of Ga are obtained this
way. However, looking at the central extension is a successful approach and we
use it in conjunction with Robertson's characterization of Moore groups [7].

In addition to Theorem 1.1, we shall give an explicit description of the
maximal type / central projection in V(G) in terms of the properties of G, and
an application to induced representations.

The results presented in this paper were achieved while the author was
working towards a Ph.D. at the University of Adelaide under the supervision of
Professor W. Moran. The author is very grateful to Professor Moran for many
helpful suggestions.

2. Notation and some elementary facts

Throughout this paper we shall be interested in pairs (G, u) where G is a
discrete group and co a normalized multiplier on G. For the definitions of
multiplier and multiplier representations see Kleppner [5]. A multiplier is nor-
malized if to(x, y)~] = u(y ~', x ~') for all x, y e G. Denote by p the left regular
co ~ '-representation of G on L2(G) given by (p(x)f)(y) = co(x~', y)f(x~~ jy),
x,y G G,f e L2{G), and by V(G) = V(G, to) the von Neumann algebra gener-
ated by p(G). If A(G) = A(G, u) denotes the twisted group algebra of (G, u)-
the algebra of complex finitely supported measures on G with multiplication
(ab)x = 2,yec ayby-ixo)(y~\ x)-then each to~'-representation it of G extends
naturally to an algebra representation a—>1,g^G agir(g) of A(G) which, when
no confusion may arise, we shall denote by the same letter. With this notation,
we see that V(G) is the weak closure of p(A(G)) in B(L2(G)), the algebra of
bounded linear operators on L2(G).

If (px denotes the characteristic function at the point x in G, then for
a e B(L\G)), x,y e G, we let axy = (a(<py), <px) and ax = axe, where (•, •)
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denotes the canonical scalar product on L2(G). Most of the following elemen-
tary facts may be found in Kleppner [5]. Let a G 2?(L2(G)), then

2.1. a G V(G) if, and only if aXJ/ = (J,x,y~x)axy^ for all x,y G G.
2.2. a G CV(G), the centre of V(G) if, and only if u(x,y)^-^ =

axw(.y, y 1*v) f°r a u x,y E. G.
2.3. For each a G V(G), the map g -> ag is in L2(G) and the map a —» ae is a

finite faithful normal trace on V(G)+-the set of positive hermitian elements in

2.4. If a G F(G), then a = 2 g e c a g p(g) in the sense of weak operator
convergence. This expression is unique, that is if a = 2 g e c a'gp(g), then a'g = ag

all g G G. We also have

2.5. Let H be & subgroup of G, then there exists a normal "-isomorphism of
V(H) = V(H, u>\HxH) onto the von Neumann algebra {a G K(G): ag = 0 if
g £ /f }: a -»~2heH ahp(h), p being the regular w~'-representation of G.

In view of 2.5, since we are interested only in the type structure of V(G), we
shall henceforth always regard V(H) as a sub von Neumann algebra of V(G)
whenever H is a subgroup of G.

3. The co-finite class group of G

Let C(x) = CG(x) denote the centralizer of x in G and Cu(x) = CaG(x) the
w-centralizer of x in G: Cw(x) = {g G C(x): co(g, x) = u{x, g)}.

LEMMA 3.1. (i) Cu(x) = {g (E G: p(x)fKg) = f*g)p(x)},
(ii) Cw(x) w a subgroup of G.

PROOF. If g G Cw(x), then

p(g)p(*Mg> x) = p(gx) = p(xg) = p(x)p(g)w(x, g)

implies p(g)p(x) = p(x)p(g). Conversely, suppose g G G satisfies p(x)p(g) =
Pig)p(x), then

G G, so by letting y = gx and simplifying,

hence <pe(g~1x~V) cannot be zero, but the only way this can occur is if
xg = y = gx. Part (i) now follows. The proof of (ii) follows easily from (i).
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Denote by A = AG the w-finite class group of (G, <o) defined by A = {x G G:

[G : Cu(x)] < oo}. To see that A is indeed a subgroup, we need only note that

[G : C ( x ) n CMO0] <[G: Cu(x)][G : C.(^)].

The group A has the property that all its conjugacy classes are finite, such
groups are called FC (finite class) groups.

The following theorem points out the significance of A.

THEOREM 3.2. Let G be a discrete group, w a normalized multiplier and A the
oi-finite class group of G. If V(G) has a non-zero type I part, then

(i) [G : A] < oo, and
(ii) |A'| < oo (A' denotes the commutator subgroup of A).

The idea of the proof of (i) comes from Smith ([9], Theorem 9.4) and the proof
of (ii) is similar to that of Smith ([10], Theorem 1). We need the following
lemma.

LEMMA 3.3. Let CV(G) denote the centre of V(G), then CV(G) C K(A).

PROOF. Let a G CV(G) and x G G such that ax ¥= 0, then by 2.5 it suffices to
show that x G A. From 2.2, <j^x,y)ay-ixy = axco(y,y~1xy), thus C(x) = Cu(x),
but by 2.3, [G : C(x)] < oo, hence x G A.

PROOF OF THEOREM 3.2(i). Let en be a non zero central projection in V(G)
such that en V{G) is type /„. From 2.3 we see that n must be finite. Since en V(G)
is a full matrix algebra over its centre Cen V(G), it is of dimemsion at most n2

over Cen V(G) C enCV(G) C CV(G) C F(A). Hence if g,, . . . , g^+l are n2 + 1
elements of G belonging to distinct right cosets of A, then there exist elements
C,, . . . , Cn2+1 e F(A) such that 2f_V C,(enP(&)) = 2f-V(C,Op(&) = 0 with
not all (C,en)p(g() = 0, but Cien e K(A), so this cannot happen because the sum
K(A)p(g,) © • • • ® F(A)p(gn2+1) is a direct sum of vector spaces. This shows
that [G : A] < n2 < oo.

LEMMA 3.4. Suppose G is FC, H a subgroup of G and e a projection in CV(G)
such that both eV(G) and eV(H) are type /„. / / C = { x £ C : p(A)p(x) =
p(x)p(h) all h G H} = ClheH CaG(h) is the u-centralizer of H in G, then
e(p(a)p(T) - p(T)p(a)) = 0 for every a G Cu, r (E G. Consequently [Cu, G] (the
subgroup generated by elements of the form ara~lr~i, a G Cu, T G G) is finite.
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This result is proved by making appropriate and obvious modifications to
Smith [10], Lemma 2.

PROOF OF THEOREM 3.2(ii). It is well known that a von Neumann algebra
contains only type Ik summands for k < « if, and only if it satisfies the standard
polynomial in 2n variables (for details see for example [11], page 213). Suppose
V(G) has a non-zero type / part, then there exists a central projection en¥

z0
such that enV(G) is type /„. By the above remark enV(G), and hence enV(A)
satisfy the symmetric polynomial of degree In; consequently enK(A) is type /.

Now let en be a non-zero central projection in F(A) such that en F(A) is type /„.
As in the proof of Smith [10],Theorem 1, we can find a finitely generated normal
subgroup H of A such that en V(H) has a non-zero type /„ summand eV(H) for
some e G Cen V(H). We wish to show that e G CF(A). Because H is normal in
A, for any a G A, the automorphism V(H) —» V{H): a —* p(o~l)ap(o) leaves the
type /„ summand eV(H) fixed, that is p(o~ l)ep(o) V(H) = eV(H) and so by the
uniqueness of e, p{o~x)ep(o) = e. It follows that e G CF(A). Since e < en, eV(A)
is clearly also type /„, and thus by Lemma 3.4, |(CJ'| < oo where Ca =
CuA(H). Since H is finitely generated, [A : CJ < oo and thus the result A' < oo
follows by [6], Lemma 4.1.

4. The type / part of V(G)

For any discrete group G, we denote by Go the von Neumann kernel of G,
that is the intersection of the kernels of all finite dimensional (ordinary)
representations of G. If H is a subgroup of finite index in G, then Go = Ho (see
[3], Satz 7.2.2).

LEMMA 4.1. Let G be a discrete group and H a subgroup of finite index in G such
that \H'\ < oo, then there exists a subgroup K of G such that [G : K] < oo and
K' = Go= D {L' : [G : L) < oo}.

PROOF. If [G : L] < oo then, since the characters of L/L' separate points, we
have Go = Lo C L', hence Go C D {L' : [G : L] < oo}. Since \H'\ < oo and
H/ Ho is maximally almost periodic, by Robertson's characterization of Moore
groups ([7], Theorem 1), H/Ho is type /, so by Kaniuth [4], Satz 2, H has a
subgroup K containing Ho, of finite index in H such that K/Ho is abelian. Since
[G : K] < oo and K' C Ho = Go, the result follows.
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Now let G be a discrete group and u> a normalized multiplier for G. We
denote by Ga the discrete group extension of T by G which is the set T X G
with multiplication (s, x)(t,y) = (stu>(x,y), xy), (s, x), (t,y) G Gu. Note that
G" is discrete, it is not, as is usual, endowed with the Weil topology. Whenever
H is a subgroup of G, we identify Hw in the obvious way with a subgroup of G".
The following facts are worth noting: (i) CG»(t, x) = (Cw(x))" for all (/, x) G
G", (ii) A" is the finite class group of Gu, (iii) [G : H] = [Gu : Ha] for all
subgroups H of G.

The next lemma is the key step to our proofs of the subsequent results.

LEMMA 4.2. If there exists a subgroup H of G such that [G : H] < oo,
\H'\ < oo and o}"\HXH is trivial for some n, then there exists a subgroup K of G
such that [G : K]< oo, Go = K' and (Gw)0 = (Ku).

PROOF. Because of Lemma 4.1 we can assume without loss of generality that
H' = Go. For some map y: i / -> T, w"(x,y) = y(x)y(y)/y(xy), all x,y G H.
An easy calculation shows that

(//<•>)' = {{w(x,y)u{x-\y-x)u{xy, x~y-'), xyx'^-1): x,y G / / } .

Since [<4x,y)w(x-\y-lMxy, *~V" ' ) ]"- Y(^*~y"V1, (#" ) '< oo. By
Lemma 4.1, G" has a subgroup M such that [Gu : M] < oo and M' = (Gw)0.
Let L be the image of the projection M ^> G: (A, JC) -» x. L is a subgroup of G
with the property M C L", hence [ & " : £ " ] < oo; furthermore (Lw)' = M' and
thus K = L n H has the desired properties.

THEOREM 4.3. Lef G be a discrete group with normalized multiplier w and let e
(resp. en, n = 1, 2, . . . , n =£ oo) be the maximal type I (resp. type /„) central
projections in V(G). By 2.3, V(G) is a finite von Neumann algebra hence
2 n < 0 O en = e. The following are equivalent.

(a) e * 0,
(b) there exists a subgroup H of G such that [G : H] < oo, \H'\ < oo and

'AHX.H 'S trivial.

Suppose e ¥= 0, then there exists a 1 dimensional w-representation y of Go such
that

(i) 7r|Go = dim(w) • y, for all finite dimensional w-representations IT of G, where
dim(7r) denotes the dimension of v, and

PROOF. Suppose e ¥= 0. Since en ¥= 0 for some integer n, an irreducible algebra
representation T of enV(G) will give rise to a finite dimensional w-representation
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it: g —» T(enp(g~'))* of G, where A* denotes the adjoint of A as an operator on
the dual space of the Hubert space on which A acts.

After taking determinants, u"(x,y) det ir(xy) = det -TT(X) det ir(y), we see that
w" is trivial, so by Theorem 3.2 and Lemma 4.2, there exists a group K such that
[G : K) < oo, Go = K' < oo and (Gu)0 = (X")'. Let ir be an irreducible finite
dimensional ^-representation of K, then w°: (A, JC) —» \ir(x) is a finite dimen-
sional representation of Kw, so

but 7T is irreducible so it is one dimensional, consequently u\K><K is trivial. This
proves (a) implies (b).

Conversely, suppose (b) is true. Since a\HxH is trivial, AT has a 1 dimensional
w-representation, hence by inducing we see that G possesses a finite dimensional
co-representation. Let w be such a representation. Lemma 4.2 is applicable, so as
in the preceding paragraph, ir(x)ir(y) = v(y)ir(x) all x, y G tf, and Go = JT',
where K is the subgroup we obtain from Lemma 4.2, consequently

ir(xyx~y'x) = u{y, x)oi{y-\ x~l)<ji{yx,y'lx~x).L

Since the left hand side of this expression is independent of the way we express
xyx ~ y ~x as a commutator, and since the right hand side depends only on the
dimension of IT, the function

y: <70-> T: xyx~y~l -+u(y, x)u(y~\ x~*)u(yx,y~'lx~'1), x,y e K,

extends to a well defined w-representation of Go that satisfies (i).
To complete the proof of this theorem, we must show that our current

assumptions lead to the statements (a) and (ii). L e t / = \G0\~
l1,gec y(g)p(g).

By 2.2,/is central in V(G) and since g -» y(g)p(g) is an ordinary representation
of Go, f2 = / . Now, using the relation -n{x)-n(y) = ir(y)ir(x) all x, y G K, and
the fact that Go = K', one can show that JV(K) is abelian. If we write fV{G) as
the module direct sum fV(K)p(gd © •• • (BjV(K)p(gk) for some set of coset
representatives gv . . . , gk modulo K, then (as in Smith [10], page 404) JV(G) is a
matrix algebra over the abelian algebra jV(K) and is thus type / ([11], page 213).
This proves (a).

By looking at the irreducible algebra representations of en V(G), whenever this
is not zero, we see that eV(G) has enough finite dimensional representations to
separate the points of eV(G). But if m is a non-zero finite dimensional represen-
tation of eV(G), g—»iripig1))* is a finite dimensional co-representation of G,
hence by (i), v(p(g)y(g)) = / all g G Go, hence < / ) = \Go\-%eGo v(p(g)y(g))
= /, from which we obtain ir(e — f) = w(e) — ir(f) = 0, and since m was
arbitrary, we conclude that e = f. This completes the proof of Theorem 4.3.
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Note that for <o trivial this theorem reduces to results due to Formanek [2] and
Schlichting [8]. As a corollary, we can now prove Theorem 1.1.

PROOF OF THEOREM 1.1. Suppose (i) is true, then by the proof of Theorem 4.3,
there exists a group K such that [G : K] < oo, K' = Go and o}\Kxfc trivial. Since
the maximal type / central projection of V(G) is the identity, by Theorem 4.3,
/ = \Go\~

llgeGo y(g)p(g), hence by uniqueness (see 2.4), Go= {e} and thus K
is abelian. From u\Ky.K trivial, we can now conclude that u(x,y) = u{y, x) all
x,y e K. This proves (i) implies (iii).

Suppose (iii) is true. Let H be a subgroup as prescribed in (iii) and IT an
w~'-representation of G. If gv . .. , gn is a set of coset representatives modulo
H, then

A(G) = A{H)gx 0 • • • ®A(H)gn

where the direct sum is a module direct sum (for a definition of A(G) see
Section 2). Hence A(G) is a matrix algebra over the abelian algebra A(H) (see
Smith [10], page 404) and thus satisfies a polynomial identity. Since the von
Neumann algebra generated by ir is the weak closure of ir(A(G)), it too satisfies
a polynomial identity and thus (see [11], page 213) the von Neumann algebra
generated by m is type /. This proves (iii) implies (ii).

The implication (ii) implies (i) is trivial.

By doing some extra calculations, one can prove that the abelian subgroup in
Theorem 1.1 may be taken to be ZU(A) = { g 6 Z(A): u(g, x) = u(x, g) all
x G A), where Z(A) denotes the centre of A.

Keeping this in mind, we have the following examples.

EXAMPLE 4.4. Let G be abelian and discrete with normalized multiplier u.
If ZU(G) = { g G G: «(*, g) = w(g, x) all x e G) has finite index in G, then

clearly (G, a>) is type /. Conversely, if (G, w) is type /, then for each x G G,
Cu(x) contains the group ZU)(A) which according to Theorem 1.1, has finite
index in G, thus A = G and [G : Za(G)] < oo.

This criterion is well known and applies to pairs such as G = Z X Z,
w((m, n), (mr, «')) = e2via{m"'-m'n) for which (G, w) is type / if, and only if a is
rational.

EXAMPLE 4.5. Let p be a prime and let G be the group with infinitely many
generators b, a,, a2, . . . and the defining relations

b» = a[ = af = . . . = a'n = . . . = 1,

a(b = bap i = 1, 2, . . . ,
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It is clear that the commutator subgroup of G coincides with the centre of G
and is equal to the finite cyclic group <6>. This implies that there is a bound on
the size of the conjugacy classes of G.

Let w be the multiplier uib^af'a? . . . a*% b^a'^'atf . . . as
n») = e2*'1*-'&-***>.

The elements of the form b^a^a^*. . . a*" form a normal subgroup H of G that
is contained in A, hence [G : A] < oo; also |A'| < |G'| = p, so by Theorem 4.3,
V{G, w) has a nonzero maximal type / part. However, because Z(A) n H C
Z{H) = (b}, the group Z(A) and consequently Za(A) has finite index in G, thus
by Theorem 1.1, V{G, u) is not type /.

5. Induced characters

The aim of this section is to prove the following theorem.

THEOREM 5.1. Let G be a discrete group and N a normal subgroup ofG.IfX is a
character of N, that is a 1 dimensional representation of N, denote by Hx = {g G
G: gng~yn~x G ker A all n G N) the stabilizer of A, then the von Neumann
algebra Vx generated by the induced representation X\% is type I if, and only if Hx

contains a subgroup A such that [Hx : A] < oo and A' C ker A.

LEMMA 5.2. (Kleppner [5], Theorem 7). Assume the notation of the above
theorem. If a is a normalized multiplier of Hx/ N obtained from an extension of\
to Hx ([5], Theorem 5), then there exists a normal *-isomorphism between Vx and
V{HJN) = V(HX/N, co).

PROOF OF THEOREM 5.1. Let P C Hx be a set of coset representatives modulo
Af (including the identity of Hx). For each x G Hx denote by ax the unique
element in P such that xN = axN. Let i|/ be the function G —» iV: x —> a~lx. The
relations \(/(n) = n, ^{xri) = yp(x)n and ip(nx) = \p(x)x~lnx, for x G H, n G N
are evident. It is clear that A: x —»A(«̂ (x)) is an extension of A to Hx and that the
multiplier o(x,y) = \(yp(xy))\(\p(x)\(/(y))~l associated with this extension can be
factored through Hx/N to yield a multiplier « on Hx/N. We may assume
without loss of generality that w is normalized. Using Theorem 1.1 and Lemma
5.2, we deduce that Vx is type / if, and only if there exists a subgroup A in Hx

such that both (i) [Hx : A] < oo and (ii) A' C # , o(x, y) = o(y, x) all x,y G A,
hold. It remains to show that (ii) is equivalent to A' C ker A. Suppose (ii) is true.
Let x,y G A. Since x'^y'^xy G W, \p(xy) = ^yxx~y ~lxy) = \p(yx)x~y~xxy,
but from a(x,y) = o(y, x) follows \(\p(yx)) = A(i//(xy)) so that \(x~y~xxy) =
1. Conversely if A' C ker X Q N, then for x,y G A, X(xy) = X(ip(yxx~ y~xy)) =
X(\p(yxy)X(x~1y~lxy) = X(tp(yx)) and thus a(x,y) = a(y, x). This completes the
proof.

https://doi.org/10.1017/S1446788700024307 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024307


11 o I Discrete groups 495

6. Concluding remarks

Given a discrete group G with a normalized multiplier w, Theorem 3.2 serves
the purpose of obtaining a subgroup of finite index in G whose commutator
subgroup is finite, provided V(G, u) has a non-zero type / part. Such a subgroup
can also be obtained by combining Kleppner ([5], page 564) with Taylor's
version ([11], Theorem 3) of Kanuith's result ([12], Satz 2).

As a consequence of Theorem 1.1, one finds that for locally compact groups G
with normalized Borel multiplier o>, Theorem 1.1 can be generalized along the
lines of Moore ([13], Theorem 1) and Taylor ([11], Theorem 2).
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