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Invariant maps are a useful tool for turbulence modelling, and the rapid growth of
machine learning-based turbulence modelling research has led to renewed interest in them.
They allow different turbulent states to be visualised in an interpretable manner and
provide a mathematical framework to analyse or enforce realisability. Current invariant
maps, however, are limited in machine learning models by the need for costly coordinate
transformations and eigendecomposition at each point in the flow field. This paper
introduces a new polar invariant map based on an angle that parametrises the relationship
of the principal anisotropic stresses, and a scalar that describes the anisotropy magnitude
relative to a maximum value. The polar invariant map reframes realisability in terms of
a limiting anisotropy magnitude, allowing for new and simplified approaches to enforcing
realisability that do not require coordinate transformations or explicit eigendecomposition.
Potential applications to machine learning-based turbulence modelling include post-
processing corrections for realisability, realisability-informed training, turbulence models
with adaptive coefficients and general tensor basis models. The relationships to other
invariant maps are illustrated through examples of plane channel flow and square duct
flow. Sample calculations are provided for a comparison with a typical barycentric map-
based method for enforcing realisability, showing an average 62 % reduction in calculation
time using the equivalent polar formulation. The results provide a foundation for new ap-
proaches to enforcing realisability constraints in Reynolds-averaged turbulence modelling.
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1. Introduction

The Reynolds stress is an important tensor in the Reynolds-averaged Navier—Stokes
(RANS) equations, critical to the computational modelling of many practical aerodynamic
flows. In recent years, machine learning (ML) has risen to prominence as a potential
avenue to improve turbulence models using large amounts of experimental and
computational data (Duraisamy, laccarino & Xiao 2019).

Although a great advantage of machine learning approaches is the lack of assumptions
about the proper form of the model, it is well known that enforcing physical principles is
an effective way to improve accuracy and generalisation capability when training data are
limited. For example, Ling et al. (2016a) showed that embedding rotational invariance in
the model architecture required a thousandth of the data needed to teach the model rota-
tional invariance, by eliminating the need to augment the training data with rotations along
each axis. Similarly, Franceschini, Sipp & Marquet (2020) found that on small training
datasets, a turbulence model source term correction outperformed a momentum source
term correction, but the latter surpassed the former with larger training datasets. They
attributed this to the greater constraints on the turbulence model correction term, which
limited the impact of poor predictions at the cost of a lower ceiling on the performance.

For turbulence modelling, realisability is an important guiding physical principle. In
this context, realisability refers to a set of constraints on the Reynolds stress tensor that
are necessary for a state of turbulence to be physically possible. Schumann (1977) showed
that the Reynolds stress tensor must be positive semi-definite or, equivalently, that the
eigenvalues are non-negative. The realisability constraints may be physically interpreted
as requiring the non-negativity of energy.

The black-box nature of machine learning models makes realisability constraints
relatively difficult to enforce compared with traditional modelling approaches with explicit
formulations. Invariant maps have often been the preferred framework for enforcing
realisability in ML turbulence modelling due to convenient mathematical properties
and excellent interpretability (Tracey, Duraisamy & Alonso 2013). They are a way of
representing tensors by creating a coordinate system of invariants, or quantities that do not
change under rotations of the coordinate system (Irgens 2019). By using invariant maps,
all states of turbulence can be mapped to a finite region, providing a unified framework for
visualisation, analysis and enforcement of realisability constraints.

The earliest invariant map used in the field of turbulence was introduced by Lumley &
Newman (1977) using the second and third invariants of the normalised Reynolds stress
anisotropy tensor. It was later improved by Choi & Lumley (2001) by using the square
and cube roots of the second and third invariants, so that a linear return to isotropy would
form a straight line on the map. Both remain highly nonlinear, however, which can lead to
misleading visualisations of the proximity to limiting states of turbulence.

Alternatively, linear invariant maps can be constructed from the eigenvalues. Lumley
(1978) introduced the first of this type using the maximum and middle eigenvalues of the
normalised anisotropy tensor. Banerjee ef al. (2007) generalised the eigenvalue approach
by constructing a barycentric coordinate system of the eigenvalues. The barycentric
mapping improved on previous invariant maps in several ways. First, it equally weighted
all the limiting states to provide an undistorted view of the anisotropy. Second, the
linearity of the mapping allowed for direct, consistent interpolation between turbulent
states (Banerjee et al. 2007). Finally, barycentric coordinates have the same form and
properties as the red, green, blue (RGB) triplets used to define pixel colours, allowing the
coordinates to be directly used as colour values in field visualisations of the anisotropy
(Emory & Iaccarino 2014).
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Invariant maps are frequently used in ML turbulence modelling applications due to
their interpretability and mathematical properties. The barycentric map has been favoured
due to the linearity and the simple form of the realisability constraints in barycentric
coordinates. For example, Emory, Larsson & Iaccarino (2013) introduced perturbations
in the barycentric mapping to investigate uncertainty in RANS models while maintaining
realisability of the perturbed tensors. Tracey et al. (2013) developed a model that corrects
discrepancies between RANS and DNS predictions of the anisotropy by shifting the
turbulent state in barycentric coordinates. Wang, Wu & Xiao (2017) and Wu, Xiao &
Paterson (2018) built on that approach by also predicting discrepancies in the eigenvectors
and turbulent kinetic energy.

Although current invariant maps have been useful in the study of turbulence and
the development of new ML-based models, the requirement of converting to and from
invariant coordinates limits the range of models to which they can be applied. Furthermore,
methods using barycentric coordinates require performing an eigendecomposition at every
point in the flow field, which can be costly to compute. Alternative mappings like the £—n
map are rarely, if ever, directly used in ML models due to their highly nonlinear nature
(Banerjee et al. 2007). It would therefore be advantageous to ML turbulence modelling
if an invariant map could be developed that bypasses the need for eigendecomposition
without introducing strong nonlinearities.

The current work proposes a novel polar invariant map representation that represents
the Reynolds stress anisotropy in terms of an angle and a fraction of the maximum
realisable anisotropy magnitude. We will show that this new vector-like representation
reframes realisability as a limit on the anisotropy magnitude, reframing the problem
of imposing realisability constraints as a scaling problem. It will be demonstrated by
comparison with direct numerical simulation (DNS) data that the new invariant map
retains the interpretability of previous maps, as well as highlighting different aspects of
the flow physics. We will show that the reframing of realisability as a limiting magnitude
removes the need for eigendecomposition and transformation matrices, allowing for
new and more efficient approaches to realisability in machine learning turbulence
modelling.

The rest of this paper is divided into four sections. Section 2 discusses the derivation
of the polar invariant map. Section 3 discusses the relationship between the new invariant
map and previous invariant maps, both mathematically and by comparison with DNS data.
Section 4 discusses the potential applications to ML turbulence modelling. Finally, § 5
discusses the implications and directions for future research.

2. Background
2.1. Reynolds stress and realisability

The Reynolds stress tensor can be decomposed into isotropic and anisotropic components
according to

2
Here, 7;j =uju; is the Reynolds stress tensor, where u; and u; represent the fluctuating

velocity components. The tensor a;; is the anisotropy tensor, k is the turbulent kinetic
energy and (2/3)k$; is the isotropic stress (Lumley 1978). The operator, §;, is the
Kronecker delta.
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The anisotropy tensor is a second-order symmetric tensor with five independent
components and zero trace. It can be normalised by 2k to obtain the normalised anisotropy
tensor,

poo G0 YL
Y7ok T 2k 3

The normalised anisotropy tensor, bj;, is constrained by the requirement that the Reynolds
stress tensor is positive semi-definite or, equivalently, that the eigenvalues are non-
negative (Schumann 1977). The realisability constraints may be physically interpreted as
a condition that the turbulent kinetic energy be non-negative.

The non-negativity of the eigenvalues implies that the minimum eigenvalue of the
Reynolds stress tensor is 0. The maximum occurs when only one eigenvalue is non-zero, as
that eigenvalue will be equal to 2k by definition of the turbulent kinetic energy. Substituting
the maximum and minimum eigenvalues into (2.2) allows realisability to be written in
terms of the eigenvalues of the normalised anisotropy tensor (Lumley 1978),

2.2)

—z<AB<HL <A< (2.3)

Here, A3 < A2 < 4y are the eigenvalues of b;. Note that it is unnecessary to consider A
when determining realisability because it will always be between A; and A3 (Banerjee
et al. 2007). Additionally, as a consequence of b;; being traceless, the eigenvalues cannot
all have the same sign. From this, it is clear that 1 > 0 and A3 < 0.

Because of the bounds on by, it is possible to represent all turbulent states in a
finite region using a coordinate system constructed from the invariants of the normalised
anisotropy tensor.

2.2. Current invariant maps
Invariants are quantities associated with a tensor that do not change when the coordinate
system is rotated. The principal invariants for an arbitrary second-order symmetric tensor,
ojj, are

h=0i, L=}(ok—oyoy), I =det(oy). (2.4)

These three invariants are referred to as the first, second and third invariants (Irgens 2019).
For the anisotropic part of a second-order symmetric tensor, the first invariant is zero and
the other two principal invariants become (Chakrabarty 2006)

210 -9 L+ 2715

> (2.5)

1 1
h=30ftal =21~ 1, Js=det(of")

Here, J> and J3 are the principal invariants of aij”.lev, which is the deviatoric part of o;.
Three invariant maps have been commonly used in the study of turbulence and
turbulence modelling. The first was introduced by Lumley & Newman (1977) using the

second and third invariants of the anisotropy tensor,
Jop = 3biby,  J3p = det (by). (2.6)

The subscript b indicates that these invariants are associated with b;;. Lumley used these
invariants to form a region with two curved sides and one straight side that contained all
realisable states of turbulence.
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The second invariant map was introduced by Choi & Lumley (2001) by defining two
new invariants derived from the principal invariants,

3 =0p/2, n*=J2p/3. (2.7)

The invariants, £ and n, form a mapping with two straight sides and one curved side.
This modification was motivated by the study of the return to isotropy of homogeneous
turbulence. By using & and 7, a linear return to isotropy as proposed by Rotta (1951)
would show as a straight line through the origin, allowing any nonlinearities to be clearly
visualised. Both invariant maps have been used in the development of return-to-isotropy
models for Reynolds Stress Transport Models (Lumley & Newman 1977; Choi & Lumley
2001).

While these mappings were highly nonlinear, which can result in misleading
visualisations of the turbulent state (Banerjee et al. 2007). For example, in an early DNS
study of fully developed turbulent channel flow, the nonlinear mapping made it appear that
the turbulence was nearly isotropic at the centreline, when in fact, it was far from isotropic
(Antonia, Kim & Browne 1991). A similar conclusion was made in a different study of
turbulent pipe flow (Krogstad & Torbergsen 2000).

The most recent invariant map was proposed by Banerjee et al. (2007) to provide
unbiased visualisations of the turbulent state and as a formulation for exact interpolation
between states. Banerjee et al. used the eigenvalues to construct a barycentric coordinate
system where the turbulent states were convex combinations of the limiting states of
turbulence, defined by

X X X2e X Ci

VB Yie Y2¢ Y3c Cs
Here, x1., y1c and so on are the Cartesian coordinates of the corners of the map.
Additionally, C1, C> and Cs are the barycentric coordinates for the first, second and

third corners, respectively. The coordinates xp and yp are the Cartesian coordinates of
the barycentric map. The barycentric coordinates are defined by

Ci=4 -4, C=212—413), C3=1+343,

(2.9)
where Ci+Cr+C3=1, C,Cr, C3=0.

All of these invariant maps are depicted in figure 1. In any invariant map, the corners
represent the three limiting states of turbulence: one-component (1C), two-component
axisymmetric (2C) and isotropic (3C). The 1C-2C line indicates states of two-component
turbulence, but not necessarily axisymmetric. The 1C-3C line indicates axisymmetric
expansion (AE), and the 2C-3C line indicates axisymmetric contraction (AC) (Banerjee
et al. 2007). It is important to note that early researchers have used these terms to
refer to both the magnitude of the principal stresses and the physical shape of the
eddies. This was a source of confusion as the identification of the sides corresponding
to axisymmetric expansion and contraction would flip depending on which interpretation
was used (Simonsen & Krogstad 2005).

Here, we use the convention used by Lumley & Newman (1977), Choi & Lumley (2001)
and Banerjee et al. (2007), which refer to the relative magnitudes of principal Reynolds
stresses. One-component means one principal stress is non-zero; two-component,
axisymmetric means two principal stresses are non-zero and equal in magnitude; and
isotropic means all principal stresses are non-zero and equal. The terms axisymmetric
expansion and contraction in this context refer to the behaviour of the principal Reynolds
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Figure 1. A comparison of the J> ,—J3 5, £-1 and barycentric maps. 1C indicates one-component turbulence,
2C-axi indicates two-component axisymmetric turbulence, and 3C indicates isotropic turbulence. The dashed
line indicates the plane-strain limit.

stresses as the anisotropy magnitude shrinks. If the two equal principal stresses grow, it is
in a state of expansion, and if they shrink, it is in a state of contraction.

3. Polar invariant map construction
3.1. Analytical form of eigenvalues

It is informative to begin from the eigenvalues of the normalised anisotropy tensor, b;;.
The eigenvalues of the arbitrary second-order, symmetric tensor, o;;, are the solutions to
the cubic equation (Pope 2000),

B[22+ bhai-1=0. (3.1)

Here, Iy, I and I5 are the principal invariants of oj; (Irgens 2019). The solution to this
equation can be obtained through Vieta’s trigonometric formula for the roots of a cubic
polynomial. This gives the following solution for the eigenvalues in terms of the invariants

(Zucker 2008):
I 4, 2r(n—1)
S T i Rl L ] (20

1 33 T
6 = — arccos i—3 . (3.2b)
3 2 123/ 2

In (3.2), 6 is an invariant that exists for all non-zero, symmetric, 3 x 3 tensors (Chakrabarty
2006). Although we are unaware of any examples of its usage in turbulence modelling, it
is an established invariant in solid mechanics that is used in the Haigh—Westergaard coor-
dinate system for modelling material behaviour and visualising stress states (Kassir 2017).

Substituting in the definitions of /1, J, and J3, (3.2a) may be rewritten in terms of o;
and 6 as

Ojj 2 d d 2 (I’l - 1)
/ln = ? gO’ijevO'ijev COS |:9 — T y n= 1, 2, 3. (33)
An additional simplification can be made by recognising Ugevoi;lev as the square of
Frobenius norm, ||al§.iev| |2. The general solution simplifies to
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Oii \/6 dev

. P 2w (n—1)
Ay = +T||oij [|cos | — ——=

T3 3
Using the same simplification for (3.2b) yields

1 33 det(@f)) 1 odev
6 = — arccos ( V3 v = — arccos | 3+/6 det 12 . 3.5)

3 21/ Yol )3 oIl

i|, n=1,2,3. (3.4)

In (3.5), bringing the norm of ai;.i"v into the determinant follows from the property that

det(cA) = ¢" det(A) for any scalar ¢ and matrix A of rank n (Baker & Porteous 1990).
Equations (3.4) and (3.5) can now be applied to the normalised anisotropy tensor by

substituting b;; for o;;. Because bj; has zero trace, the first term on the right-hand side of

(3.4) is eliminated and b;; = oi;’ev. Making these substitutions gives

NG

2r(n—1)
An =511yl cos | 6 — =

3
0= ! arccos (3«/6 det ( i )) € [0 z] (3.6b)
3 1bil| T30 .

The bounds on 6 are a result of the limited range of the arccosine function. Neglecting
cases in which |[|b;|| =0, the restrictions on the domain of arccosine are satisfied by
all symmetric, deviatoric tensors (Chakrabarty 2006). A proof of this may be found in
Appendix A.

Evaluating (3.6a) for 41, A2 and A3 finally gives explicit forms for the eigenvalues of b;;,

:|, n=1,2,3. (3.6a)

6
A = %Hbg“ cos 6, (3.7a)
6 2
Az=‘/—_||b[j||cos o— | (3.7b)
3 3
«/6 2
2 =L lbl cos [9 + ?}, (3.7¢)

It should be noted that 6 is undefined when |[|b;||=0 due to b;/||b;|| becoming
indeterminate. The coefficient ||b;|| in (3.7a)—~(3.7c) drives the eigenvalues to zero, so
the value of 6 does not affect the output. This occurs for purely isotropic flow, where
the normalised anisotropy tensor becomes a zero matrix. Such a case can be handled
numerically by explicitly setting the eigenvalues to zero when ||b;|| =0

3.2. Normalisation of anisotropy magnitude

In (3.7), ||bjj|| and 6 form a set of polar coordinates where ||b;;|| describes the anisotropy
magnitude and 6 describes the relationship of the eigenvalues or principal stresses. This
is most easily interpreted by viewing the eigenvalues as forming a vector in the principal
axes, where 6 parametrises the direction of the vector. Figure 2 depicts this scenario with
the unit vector, A Infi gure 2, the axes are the eigenvectors e1, > and e3, associated with the
principle stresses, 41, 4> and A3. The circle represents the plane where A1 + A3 + A3 =0,
and its edge is defined by the unit vectors of the principal anisotropic stresses, denoted
as A. Equation (3.7a) constrains the possible combinations of the principal stresses to the
sector bounded by the blue lines.
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€

A= (2/6/6,~/6/6,~/6/6) A=(6/6,/6/6,~2/6/6)

A= (A1, A2, 43)

Figure 2. A geometric interpretation of 6. The axes are the eigenvectors of b;, the blue lines indicate the
bounds on 6 and the red line is a unit vector.

Converting from standard Cartesian invariant maps to a polar invariant map provides an
alternative perspective on the realisability bounds as a limit on the normalised anisotropy
magnitude. Using this concept of realisability as a limit on the normalised anisotropy
magnitude, we can normalise ||b;|| according to its maximum realisable magnitude at the
same 6 as

o= il

(3.8)

||bi/'||max'

Here, « is the fraction of the maximum anisotropy. It can be interpreted as a normalised
distance from isotropy in that a value of zero implies perfectly isotropic turbulence, while
a value of one implies maximally anisotropic turbulence. In this context, 6 takes on the
role of determining the limiting anisotropy magnitude.

The maximum value of ||b;;|| can be determined as a function of 6 by substituting (3.7a)
and (3.7¢) into the inequality in (2.3). This gives the set of inequalities,

J6

A= —=lIbjll cos 6 <2/3, (3.9a)
6 2
ﬂ3=%_||by||cos [9+Tn] =—1/3. (3.90)

A negative can be factored out of A3 by introducing a phase shift of & radians. Then, the
constraints on ||b;;|| may be expressed as

V6
3cosf’
V6

bil| < — ———.
163 6cos [0 — ]

(3.10a)

IZAIES
(3.10b)

It is simple to verify that the first expression always exceeds or equals the second for
0 € [0, 7 /3]. Thus, the limiting anisotropy magnitude is determined by the more restrictive
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Figure 3. An annotated diagram of the polar «—6 invariant map.
inequality, (3.100), to be
NG
bijllmax = ——F—F5- (3.11)
6 cos [9 — —]
3
Using ||bjj||max, an explicit form for  may be obtained as
bjj b4
:M:\/Ellbijﬂcos (9— —). (3.12)
| |bl]| Imax 3
3.3. Polar invariant map properties
With o and 8 known, the polar invariant map can be plotted as
Xp=acosf, y,=asinf, (3.13)

where x,, and y, are the Cartesian x and y coordinates, respectively. An annotated diagram
of the polar invariant map is depicted in figure 3. Like all invariant maps, the three corners
correspond to the limiting states of turbulence: one-component; two-component, axisym-
metric; and isotropic. The line & = 0 represents states of axisymmetric expansion and the
line 6 = 7 /3 represents states of axisymmetric contraction. Here, the terms axisymmetric
expansion and contraction refer to the behaviour of the principal Reynolds stresses as the
anisotropy magnitude shrinks. If the two equal principal stresses grow, it is in a state of
expansion, and if they shrink, it is in a state of contraction (Banerjee et al. 2007).
Splitting the invariant map into two halves is the plane-strain line at 8 = /6. Below
the plane-strain line, A is less than 0, implying A; has a greater magnitude than A3.
Conversely, above the plane-strain line, Ay is greater than 0, implying 4; has a smaller
magnitude than A3. At the plane-strain line, A =0, so 41 and A3 have equal magnitude.
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Lines of constant 6 on the map imply a fixed ratio of the principal stresses, while lines
of constant o imply a fixed ratio of the actual and maximum anisotropy magnitudes.
Additional insight can be gained by substituting the definition of « into (3.7) to obtain
eigenvalue formulae in terms of « and 9,

o T
A1 =7 cos B sec [9 _ 5], (3.14a)
2
A = ¢ cos |6 — mild sec [0 - Z], (3.14b)
3 3 3
A3 = —%. (3.14¢)

Two important observations may be made from (3.14). First, A3 depends solely on «.
Additionally, when o =1, A3 reaches its minimum value of —1/3. Thus, the maximum
anisotropy magnitude always occurs when A3 = —1/3. This corresponds to the two-
component turbulence arc on the polar invariant map.

Second, because « is positive by definition and 6 is defined on [0, /3] for all
symmetric, deviatoric tensors, all non-realisable states must have « > 1. Consequently,
knowing «, or equivalently Az, is sufficient to determine whether a point in the flow
field violates realisability. Furthermore, all combinations of « € [0, 1] and 6 € [0, /3]
are realisable states.

The preceding observations lead to two convenient properties. First, the nearest
realisable point to any non-realisable point is one with the same 6, but at o =1.
Second, because of the form of the eigenvalues, any non-realisable state, @ > 1, can be
brought to the nearest realisable state, @ = 1, by simply scaling the original tensor by the
multiplicative inverse, 1/a«. More generally, a tensor can be shifted in the polar invariant
map along a line of constant 6 using a scaling factor of

g=2 (3.15)

Qo

where g is the original o value and « is the target «. This provides a direct link to
turbulence models that can be written as a nonlinear eddy viscosity model by representing
realisability limits in terms of a scaling factor analogous to the eddy viscosity. Such an
approach would be especially useful for the myriad of machine learning-based turbulence
modelling concepts, which are generally challenging to enforce realizability with. The
potential applications will be elaborated upon in § 4.

4. Comparison with other invariant maps

An initial comparison between the polar invariant map and other invariant maps can be
made by using the barycentric coordinates as pixel values for each point in the maps.
This is accomplished by converting each invariant map’s coordinates to the equivalent
barycentric coordinates, then forming a list of triplets of the barycentric coordinates at
each point of an invariant map. The list of triplets may then be used as a list of red,
green and blue colour values (RGB triplets) to directly define the colours of the pixels in
the plot (Emory & laccarino 2014). The polar invariant map will be compared with the
Lumley triangle and barycentric map using red for one-component turbulence, green for
axisymmetric two-component turbulence and blue for isotropic turbulence. The results are
displayed in figure 4. Algorithm 1 in Appendix B gives pseudocode for how the list of
RGB triplets is generated.
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Figure 4. A comparison of the £, barycentric and polar invariant maps using barycentric coordinates as
pixel values. The plane-strain limit is overlaid as a dashed line.

Figure 4 shows that two-component turbulence takes up a larger region of the polar
invariant map compared with the barycentric map, causing the one-component corner to
become compressed. In comparison, there is little effect on the isotropic turbulence corner.
Thus, in terms of turbulence as a combination of the limiting states, the polar map tends
to give greater weight to two-component turbulence. Despite the unequal weighting, it
remains far less distorted than the one-component corner on the £—n invariant map.

4.1. Mathematical relationship
To more precisely show the relationship between the polar invariant map and the other
invariant maps, the equations for their coordinates can be rewritten in terms of « and 6.
As a first step, (2.6) may be rewritten in terms of A; and A3 as
hp=B+ 0+ 3, Jip=-A3— 105 (4.1)

Next, define ¢ = cos (0) sec (6 — r/3). Substituting (3.14a) and (3.14¢) into (4.1) allows
the invariants to be written in terms of « and 6,

a2 a3
Ba=(5) 12—+, hp=(5) 12-2 (42)
3 3
Note that ¢ is equivalent to A1 /43. Using the invariants as given in (4.2), £ and 1 become
_afeoce1]” a2 ws)
=3 3 C S TE 2 ‘ '

It is clear from (4.3) that the nonlinearity in the £—n invariant map comes exclusively from
the 6 dependence. This indicates that the £— invariant map represents the relationship
between eigenvalues in a nonlinear manner, and the relationship between the actual and
maximum anisotropy magnitude in a linear manner.

To develop mathematical relationships between the polar and barycentric maps, it is
helpful to begin by using the property of the normalised anisotropy tensor having zero
trace to eliminate A, from the barycentric coordinates. This gives

Ci=24+ A3, Cor=-2(41+243), C3=3413+1. 4.4)

Equations (3.14a) and (3.14c) can be substituted into (4.4) to obtain the barycentric
coordinates in terms of « and 6,

o 200
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Figure 5. The & —n map and barycentric map overlaid with lines of & and 6. Red lines indicate constant « and
blue lines indicate constant . The black dashed line indicates the plane-strain limit.

Note that C3 is a linear function of only «. This is unsurprising as the C3 axis in the
barycentric map describes the level of isotropy. In contrast, C; and C, depend on both
o and 6. This also makes sense as the C; and C, axes have both vertical and horizontal
components.

Banerjee et al. (2007) defined the turbulence triangle’s Cartesian coordinates
using (xic, y1e) = (1, 0), (x2c, y2c) = (0, 0) and (x3¢, y3c) = (1/2, +/3/2). Using these
coordinates for the corners of the barycentric map in (2.8) simplifies the transformation of
barycentric to Cartesian coordinates to

1 V3
XB=C1+EC3, yB=7C3- (4.6)
Substituting (4.5) into (4.6) gives the Cartesian coordinates in terms of « and 6,
1l « 5 J3
=——4 (20 == =—(—0). 4.7
B 2+3<§ 2>, VB 2( o) 4.7)

In (4.7), similar to the barycentric coordinates, the Cartesian coordinates show that the
vertical axis is solely dependent on o, while the horizontal axes are dependent on both.
The dependence on « and 6 is necessary because the range of xp contracts as yp increases.

Using (4.3) and (4.7), 6 and « isolines can be plotted on the barycentric and &—n
invariant maps to visualise the distortion relative to the polar map. This is depicted in
figure 5.

The most significant difference between both the £—n and barycentric maps compared
with the polar invariant map is the spacing of the 6 isolines. In the barycentric map, the
0 isolines tend to compress when moving from the one-component to two-component
corners. This is consistent with the bias towards the two-component corner observed for
the polar invariant map in figure 4. In comparison, the £—n map shows almost the opposite
distortion in the 6 isolines as the barycentric map. Here, the isolines are strongly pushed
apart near the plane-strain limit at & = 7r/6 and are strongly compressed near the straight
edges.
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10°

Figure 6. A comparison of fully developed channel flow at Re; = 2003 in each invariant map. The data are
coloured by y*. Lines interpolated from the DNS data are underlaid for clarity.

Interestingly, despite the differences in the shape of the « isolines, both maps preserve
the linearity of « as the normalised distance from the isotropic corner. In the barycentric
map, this manifests as o consisting of equally spaced straight lines. The £€—n map instead
displays « isolines that are equally spaced along any given 6 isoline, but with a different
spacing for each isoline.

Additionally, the polar invariant map sheds light on a disagreement between Mandler &
Weigand (2022) and Blauw (2019) over whether all non-realisable points fall below the
1C-2C line on the barycentric map. The polar invariant map clarifies that any point with
a valid 6 can only be non-realisable by exceeding o = 1, corresponding to points that fall
below the 1C-2C line on the barycentric map. Points that fall outside the 1C-3C and
2C=3C lines correspond to points outside of 6§ = [0, 7 /3]. This would require a violation
of the range of (3.6b), which is valid for all symmetric, deviatoric tensors. It is clear then
that the points Mandler & Weigand (2022) noted to fall outside the 1C-3C and 2C-3C
lines during the solution convergence process must occur due to the violation of either
the zero-trace or symmetric properties of the anisotropy tensor. This is unsurprising for a
solution in the process of converging, as intermediate iterations frequently show violations
of continuity, which result in a non-deviatoric anisotropy tensor.

4.2. Comparison with sample data

To illustrate the differences in the invariant maps on real data, we will compare DNS data
of a fully developed channel flow and a cross-section of a square duct in each mapping.

4.2.1. Fully developed channel flow

First, consider a fully developed plane channel flow. A time-averaged DNS dataset was
obtained from Hoyas & Jiménez (2006). The flow field is statistically two-dimensional,
and the velocity and Reynolds stress profiles are self-similar (Pope 2000). Figure 6 depicts
the DNS Reynolds stress profile for Re; = 2003 visualised in each invariant map.

All three invariant maps show that the turbulence starts near the wall close to the plane-
strain limit on the 1C-2C line, migrates towards the one-component corner and then moves
closer to the centreline, before following a straight path to terminate near the 1C-3C side.
Both the polar and barycentric maps show that the turbulence consistently moves closer
to isotropy, though it remains significantly anisotropic throughout the entire profile. In
contrast, the £—n map obscures this trend. Due to the expansion of the near plane-strain
region, the profile appears significantly closer to the axisymmetric expansion line than it
truly is. Similarly, the trajectory in the near-wall region appears to start much closer to the
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Figure 7. A diagram of the square duct flow. The flow field is symmetric across the dashed diagonals.

one-component corner in the §—» map than in any other mapping. It also shows a kink
in the profile at approximately y*© = 250750, which causes it to appear to be moving
away from the isotropic corner, even though the barycentric and polar maps clearly show
the profile continually moves towards that corner. These observations demonstrate how
strongly nonlinear mappings like the £€—n map can produce misleading visualisations and
that the polar invariant map avoids this disadvantage.

While all of the maps provide information about the componentiality, the polar
invariant map complements this interpretation by also making clear the relationship
between eigenvalues and their relative magnitudes. The polar invariant map shows that
the observation that the anisotropy approaches the isotropic corner is mathematically
equivalent to stating the anisotropy magnitude is decreasing relative to its maximum
value. Furthermore, the radial axis quantifies this change, indicating that the anisotropy
magnitude at the centre of the channel is approximately 20 % of its maximum value for
the given 6. It can also be seen that the relationship of the eigenvalues changes much
more slowly past approximately y+ = 250 based on the low variation in 6. Even the
barycentric map, which provides very similar visualisations to the polar invariant map,
appears to show a much greater rate of change in the relationship of the eigenvalues due to
the expanded spacing of 8 noted in figure 5. Thus, although the information is contained in
other invariant maps, it is not readily accessible or quantifiable like in the polar invariant
map.

4.2.2. Square duct flow

Next, we will compare the invariant maps for fully developed square duct flow. The DNS
dataset was obtained from the turbulence modelling database of McConkey, Yee & Lien
(2021), using the DNS dataset generated by Pinelli ef al. (2010). A diagram of the square
duct is displayed in figure 7. The flow domain has a height and width of 2H, and a length
of L. All of the square duct data are provided as time-averaged quantities.

Square ducts are one of the simplest geometries that exhibit secondary flows. Here, the
secondary flows are pairs of counter-rotating vortices located in each corner of the duct.
The DNS data from Pinelli et al. (2010) were collected for sixteen different Reynolds
numbers; however, only the maximum Reynolds number, Re = 3500, will be shown here.

Figure 8 compares the Reynolds stress in a cross-stream plane in the £ —n, barycentric
and polar invariant maps. The points are coloured by the distance to the nearest wall,
d/H. Note that d/H = 1 corresponds to the centreline of the duct. Similar to the channel
flow case, each invariant map shows that the turbulence starts out on the 1C-2C line
near the wall, then moves towards the centre before terminating near the isotropic-one-
component line. The movement towards the plane-strain limit, as well as the distance
between the turbulent trajectories and the axisymmetric expansion line, are clearly shown
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Figure 8. A comparison of the square duct Reynolds stress visualised in each invariant map. The points are
coloured by the wall distance, d/H.

in the barycentric and polar maps but are nearly imperceptible in the £—n mapping. This
again shows the limitations of the £&—n invariant map for visualisation purposes.

In contrast to the channel flow case, all of the turbulent trajectories start considerably
closer to the one-component corner. This is highlighted in the polar invariant map
where the channel flow turbulent trajectory initiates near the wall at approximately 6 =
/7, whereas most points in the square duct never exceed 6 = 7 /12. Additionally, the
trajectories fan out in the range of approximately 0.1 to 0.4d/H, likely due to the profiles
passing through different areas of the counter-rotating vortices.

To better visualise how figure 8 relates to physical space, contour maps of the invariant
coordinates can be plotted. This is displayed in figure 9, overlaid with streamlines. Here,
C1 and C3 from the barycentric map were plotted separately to make a fair comparison.

As expected from (4.5), the @ and C3 contours are mirror images of each other, the
only difference being the reversal of the colour map. The Cy, n and & contours also show
several similarities to the o contours. In each case, the variable is largest near the wall
and decreases towards the centre. In addition, at any given distance from the wall, the
points near the diagonal axes of symmetry show a lower magnitude. The invariants n and
& display nearly identical contours as expected from the points forming a nearly straight
line of unit slope in figure 8.

The area of lowest magnitude at the centre corresponds to the core flow, which is
expected to be the region closest to isotropy, although the polar invariant map indicates
the anisotropy magnitude remains approximately 15 % of the maximum value. The region
of low magnitude along the symmetry planes is associated with the space between the
corner vortices. This is an indication that the corner vortices are increasing the relative
anisotropy magnitude.

The only variable that shows a significantly different distribution than the others is
6. In contrast to the cross-shape observed in the other contour maps, 6 is only smaller
along the axes of symmetry near the wall. Beyond the near-wall region, it increases nearly
uniformly in a circular pattern, then decreases again in the core flow region. This reflects
the movement of the anisotropy towards the plane strain line and then back towards the
axisymmetric expansion line as seen in figure 8.

The reason for the difference between the contours of 6 and the other invariant map
coordinates is due to the interdependence of the bounds on the coordinates in other
invariant maps. For example, as 1 decreases, the range of £ also decreases. Likewise,
as Cz increases, the upper limit on C; and C, decreases to satisfy the additivity property.
Consequently, a correlation between the contours of each invariant coordinate is expected.
In contrast, the range of acceptable values of « and 8 never change, as any combination
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Figure 9. Contour maps of invariant coordinates overlaid with streamlines for the square duct case. The scales
for 6 and & have been reduced to half-range for clarity. (a) Polar map. left: «, right: 6, (b) Barycentric map.
left: C3, right: C1, (¢) £—n map. Left: n, Right: &.
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of ¢ €[0, 1] and 0 € [0, 7 /3] is allowed. As a result, the 8 contours show the similarity of
the anisotropy along the symmetry lines, which is lost in the other representations.

5. Applications to machine learning-based turbulence modelling

This section will discuss the potential applications of the polar invariant map to turbulence
modelling for realisability enforcement in comparison to other methods. It is divided
into subsections discussing current approaches, the general strategy for usage of the
polar invariant map, sample calculations with the polar invariant map and an example
calculation using the k—e model with a quadratic constitutive relation.

5.1. Current approaches to realisability

Most current approaches to realisability in ML turbulence modelling rely on the
barycentric map, which is useful for interpolation between turbulent states due to its
linearity (Banerjee et al. 2007). The most direct usage of the barycentric map is
by applying a correction to a baseline RANS model in barycentric coordinates, then
transforming the new normalised anisotropy tensor back to the original coordinate system,
as done by Tracey et al. (2013) and Wang et al. (2017).

A comprehensive discussion of the workflow for constructing and implementing models
based on the barycentric map was given by Wang et al. (2017) and Wu et al. (2018). The
prediction process can be divided into several steps:

(i) run a baseline RANS simulation to convergence;
(i1) calculate eigenvalues and eigenvectors of the baseline solution;
(iii) convert eigenvalues to the Cartesian coordinates on the barycentric mapping;
(iv) use an ML model to predict the discrepancies in the eigenvalues, eigenvectors and
turbulent kinetic energy, then add the discrepancies to the baseline solution;
(v) apply the eigenvectors as transformation matrices to revert to standard coordinates.

Outside of running the baseline simulation, steps (ii) and (v) are the most expensive. The
cost in step (ii) comes from performing the eigendecomposition of the flow field, while
the cost in step (v) comes from the use of transformation matrices.

As a method for ensuring an ML model makes realisable predictions, the barycentric
map is highly effective, but it has limited applicability to realisability enforcement outside
of eigendecomposition-based ML turbulence modelling approaches. Another common
approach to ML turbulence modelling is based on Pope’s tensor basis formulation (Pope
1975). Using the Cayley—Hamilton theorem, it can be shown that all eddy viscosity and
algebraic Reynolds stress models can be represented as the weighted sum of a finite
number of tensors. The tensor basis is given by

10
bj=Y_ GWT", (5.1
i=1

where 7™ are basis tensors formed from the strain-rate and rotation-rate tensors, S;j and
Wi;, defined respectively as

S — 1 aui n 8uj Wi — 1 au,' auj (5 2)
T2 \ox; o oax )7 P2 \ox; ax ) '
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Here, G are scalar coefficients formed from the invariants of the basis tensors. The full
list of definitions of tensors and invariants can be found from Pope (1975). Ling et al.
(2016b) was the first to propose using machine learning to predict the coefficients of the
tensor basis as a way to embed invariance properties. The approach, which they refer
to as the tensor basis neural network (TBNN), and variants using other ML algorithms
have been widely used in ML turbulence modelling research (Kaandorp & Dwight 2020;
Mandler & Weigand 2022; Cai et al. 2024). In this case, there is no existing framework
for creating models that inherently satisfy the realisability constraints, as purely invariant
map-based approaches can. For tensor basis models, the need for baseline eigenvalues and
eigenvectors limits current invariant maps to being used in post-processing corrections and
training.

Blauw (2019) and Mandler & Weigand (2022) used the barycentric map to shift non-
realisable predictions to the boundaries of the barycentric map in post-processing. Both
works used the same process for points below the 1C-2C line:

(i) calculate the eigendecomposition and convert to barycentric coordinates;
(i1) if the point is non-realisable, shift it to the 1C-2C boundary;
(iii) convert the new barycentric coordinates to eigenvalues.
(iv) transform back to standard coordinates using the eigenvectors.

Mandler & Weigand (2022) also included additional corrections for points above
the 1C-2C line on the barycentric map, which they found were necessary during the
convergence process. As discussed in § 3.1, this only occurs when the predicted normalised
anisotropy tensor is not traceless.

Blauw (2019) gives the new Cartesian coordinates on the barycentric map as

X3¢ —XB
XB,c=Xp+ C—(ylc — ¥B),
Y3c — VB

YB,c = Ylc- (53)

Here, xp . and yp . are the corrected Cartesian coordinates on the barycentric map, and the
original coordinates are xp and yp. The quantities xi., x3., y1- and y3. are the Cartesian
coordinates of the corners of the barycentric map. This correction shifts the turbulent state
along a line passing through the isotropic corner of the barycentric map.

Once the corrected coordinates are available, they are transformed to the corrected
eigenvalues, A1 . = A2 = 43¢, by solving the system of equations,

Xie (=x1c+2x2:) (—2x20 4+ 3x3¢) /ll,c XB,c — X3¢
Yie (=Yie +2y2¢) (=22 +3y3c) e |=1|YBe— Y3 |- (5.4)
1 1 1 A3.¢ 0

Finally, the matrix of eigenvalues is transformed back to standard coordinates using
bije=VAV~", (5.5)

where b;; . is the corrected anisotropy tensor, V' is the matrix of eigenvectors and A is the
diagonal matrix of eigenvalues. This approach guarantees realisability, but does not affect
the underlying model.

More recently, Riccius, Agrawal & Koutsourelakis (2023) and McConkey, Yee & Lien
(2024) have proposed realisability-informed training, inspired by PINNs. Both added
an additional term in the loss function based on realisability constraints to penalise
non-realisable predictions. This approach explicitly ‘teaches’ the model realisability
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constraints. As a representative example, McConkey et al. (2024) used the equations,
fi=max [(by —2/3), —(b +1/3), 0], i=],
fo=max [(bj — 1/2), —(bj +1/2),0], i# ],
f3=max [(3|42] — 22)/2 — 41, 0],
fa=max [(4 — (1/3 — 1)), 0]. (5.6)

The first two equations give the violation of the realisability conditions on each
component, while the second two give the violation of the eigenvalue conditions described
by Schumann (1977). If a point is realisable, then the value is zero. These are combined in
the penalty function,

£M=y{é[2ff+2f§}+%[f§+ff]}- (5.7)
i=j i#j

Here, Ly is the penalty function and y is a tuning parameter controlling the strength of
the penalty. Although it does not guarantee realisable predictions, McConkey et al. (2024)
reported a substantial reduction in the number of non-realisable predictions. For example,
they found that including the realisability-informed loss function reduced the number of
non-realisable predictions in the square duct case from 9.2 % to only 0.4 %.

5.2. Polar invariant map strategies

The polar invariant map provides a framework that can simplify post-processing and
realisability-informed training methods. Moreover, it can potentially enable the embedding
of realisability constraints in tensor basis models. It allows realisability to be enforced
through the use of « as a scaling factor, opening the door to new approaches. This is
possible because of the representation of realisability as a limiting magnitude, which does
not require an explicit eigendecomposition to calculate.

The simplest application for the polar invariant map is to shift non-realisable predictions
to the nearest realisable state. In terms of the polar invariant map, the current method of
shifting points to the 1C-2C boundary along a line connecting the isotropic corner is
simply scaling along a line of constant 6. This is exactly the transformation described by

1
bij.c = —bj, 5.8
ij,c @0 ij (5.8)

where o is the o value of b;. The only matrix operations required are a norm and
a determinant for calculating «p. Removing the need for a cumbersome process of
eigendecomposition, solving a linear system and applying rotation matrices can be
expected to yield a substantial reduction in computation time. A comparison of the
calculation time for the two methods is described in the following subsection.

The application of the polar invariant map for realisability-informed training is
also straightforward. In current approaches, the penalty term is formulated using the
component-wise constraints and the boundaries on the eigenvalues. The eigenvalue
constraints require two equations to account for the upper and lower bounds. Using the
polar invariant map, the eigenvalue constraints can be simplified to a single equation
penalising o > 1. Removing the need for an explicit eigenvalue calculation may yield
substantial savings in training time over the thousands of iterations needed to train an
ML model.

A more complex application is in turbulence models with adaptive coefficients. This
avenue of research focuses on improving current turbulence models by using machine
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learning to tune the coefficients based on the local flow physics. Most of these are based
on a linear eddy viscosity model using the Boussinesq hypothesis, which posits a linear
relationship to the velocity gradients of the form (Pope 2000)

2 2

Tij = —2v; Sij + §k8ij =aj+ §k8ij. 5.9)
In this case, the anisotropy is simply a scaling of the strain-rate tensor by the eddy
viscosity, v;. Because 6 is independent of magnitude, the maximum anisotropy magnitude
can be determined from the strain-rate tensor alone at every point in the flow field. Then,
the limit on v; can be easily determined as the value that produces o = 1,

1

=— (5.10)

_aS,

V¢t max

k

Here, oy is the value of  when §;; is substituted for b;; in (3.12). Having an inexpensive
way to calculate the local maximum v; may be useful for actively constraining the model
coefficients of adaptive turbulence models.

The knowledge of the local maximum v; and model definition could enable the
development of adaptive models that can actively constrain the predicted coefficients
based on local conditions.

The polar invariant map’s potential applications are not limited to just simplifying
existing approaches, but may also allow for incorporating realisability constraints into
the structure of ML turbulence models. To see this, consider the output of an arbitrary
turbulence model, M (x). Using the polar invariant map, the output can be separated into

a tensor, M (x), with arbitrary magnitude, and a scaling in terms of «,

bj = M(x) = Z—;M(x). (5.11)

Here, aq is the o value of M(x) and «; is the a value of b;;. Equation (5.11) can be

expanded to
o1

b — ) M(x)
/. ~ T T ~ .
_ = _Z)\ M
V6||IM(x)]| cos (9 3) V6 cos (9 3) [|M(x)]]

Finally, (5.12) may be simplified by recognising the denominator as 1/|b;j||mqx from (3.11)
to the form

M(x) = (5.12)

./\;l(x)
M)

Equation (5.13) shows that the output is guaranteed to be realisable if and only if o €
[0, 1]. The practical consequence is that realisability can theoretically be incorporated into
the structure of an arbitrary model by predicting o1 € [0, 1] in a second prediction step.

A general way to accomplish this is to extract the coefficient of (5.12) as a scaling factor
of the form

bij=a1||bij||max (5.13)

ai(y)

Vol M)l cos (6 - 5 )

Here, F(M(x), y) is a function of the initial prediction M (x) and additional input
variables y. The inputs, y, are used to predict 1, and M (x) is required to calculate 6
and [[M (x)]].
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Hypothetically, the above-mentioned strategy could be applied to any model architecture
that can provide an initial prediction of the normalised anisotropy tensor with the correct
6. The resulting output will be realisable as long as «j(y) remains between O and 1.
Enforcing that range for o (y) can be easily accomplished by mapping the output to a
sigmoid function — a common technique used in machine learning to predict classification
probabilities. The usefulness of this approach would depend on the properties of M (x);
for example, there would be no benefit to barycentric map-based models, which already
enforce realisability. In contrast, it could be highly useful as a way to incorporate
realisability constraints in the structure of a broad range of tensor basis models. The full
range of benefits, drawbacks and details of implementation for such an approach remains
a subject for further research.

5.2.1. Numerical considerations
All of the previously discussed potential applications for the invariant map are based on
the assumption that 6 is calculated from a symmetric, traceless tensor. These assumptions
are based on the properties of the normalised anisotropy tensor, which, by definition, is
symmetric and traceless. However, in practice, the traceless property of b; may not be
satisfied while a CFD solution is converging, leading to violations of the domain of the
arccosine in calculating 6. It is therefore important to consider how to handle these cases.
The reason for the violation of the traceless property of b; can be easily seen by
considering a linear eddy viscosity model,
aji V¢
e j === S (5.15)
It is clear from (5.15) that an eddy viscosity model will only predict a traceless by if
S;j is also traceless. Physically, this is guaranteed in an incompressible flow because the
trace of S is identically zero as a consequence of the conservation of mass (White &
Majdalani 2021). In a solver, however, there is no guarantee that this will be the case
before a solution converges. In fact, violations of the conservation of mass are frequently
used as a convergence criterion for this reason. If conservation of mass is not satisfied at a
point, then b;; will incorrectly have a trace. This reasoning also extends to the full tensor
basis, which includes S;; as the first basis tensor.
The simplest method of handling non-traceless input tensors with the polar invariant
map is to use a modified strain-rate tensor formed by removing the trace,

1
= Skkbij. (5.16)
3
Equation (5.16) only impacts the solution when a converging solution violates the
conservation of mass. As the solution converges, S* converges to §;. By using S* to
calculate the basis tensors, the zero trace property of bjj can be ensured throughout the
entire convergence process.

It is interesting to note that S?jf is mathematically identical to the traceless strain-rate

S; =8 —

tensor used by eddy viscosity models in compressible flows (Wilcox 2006). Although Sjjf is
motivated by numerical artefacts, unlike the compressible flow case, where it is necessary
for physical reasons, the same constitutive relation is successfully used by general-purpose
CFD codes throughout both regimes (Pletcher, Tannehill & Anderson 2016). This may
be taken as an indication that S;’jf is a numerically feasible solution to the problem of

non-traceless input tensors.
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5.3. Post-processing corrections: sample calculations

We will now demonstrate the potential of the polar invariant for simplifying and reducing
the time for calculations by making a comparison between the correction method of
(5.8) and the formulation of Blauw (2019). The comparison was conducted in Python
on randomly generated, non-realisable, normalised anisotropy tensors. The methodology
can be divided into four steps:

(i) randomly generate a set of N symmetric, deviatoric matrices;
(i1) apply both correction methods sequentially to each point;
(ii1) record the total calculation time;
(iv) repeat the calculations on the same set M times and average the calculation times.

To calculate the percent reduction in calculation time, the following formula was used:

(5.17)

Thary — T,
Percent Reduction in Time = 100 - (M) ’

bary

where Tpqry is the time to correct N tensors using the barycentric formulation and Tpoar
is the time to correct N tensors using the polar formulation.

For the first step, the Numpy default_rng and random functions were used to generate
random 3 x 3 matrices. These matrices were made symmetric by adding the transpose and
dividing by two. They were then made deviatoric by subtracting 1/3 of the trace from each
element on the diagonal. This is depicted in Algorithm 2 in Appendix B.

To implement the barycentric corrections, the Numpy eigh function was used. The eigh
function uses the LAPACK _syevd routine to calculate the eigenvalues and eigenvectors
of a real, symmetric matrix. The eigenvalues were converted to barycentric coordinates
according to (2.9). The barycentric coordinates were converted to Cartesian form via (4.6).
Once the Cartesian coordinates on the barycentric map were obtained, the correction was
calculated with (5.3), converted to eigenvalues through (5.4) and transformed back to
standard coordinates via (5.5). All of these steps were combined into a single function.
The pseudo-code for the barycentric correction is shown in Algorithm 3 in Appendix B.

The polar invariant corrections were implemented using (3.6b) and (3.12) to calculate
ao. The norm of b;; was calculated using the Numpy norm function. Once o was obtained,
the correction was applied with (5.8). These steps were combined into a single function.
The pseudo-code for the polar correction is shown in Algorithm 4 in Appendix B.

For the test, N = 10 000 random matrices were generated with a random seed of 0. The
corrections were applied sequentially using separate for loops. The time required for each
function evaluation was recorded using the Python time function in the time module. The
percent difference in the total time relative to the barycentric formulation was calculated
according to (5.17). To reduce the effect of random variations in the performance of the
processor, an outer for loop was used to repeat these calculations M = 1000 times. The
percent differences for each run were recorded and averaged to produce the final time
estimate. All calculations were performed on an Intel 1I9-13980HX processor.

Figure 10 shows the distribution of percent reduction in calculation time over the 1000
runs, and compares the initial and corrected points in the polar invariant map for a sample
run. The histogram in figure 10(a) shows that the reduction in calculation time across the
runs forms an approximately normal distribution. This is the expected result if there are no
systemic biases in the variation of processor performance over time. Figure 10(b) confirms
that the polar formulation correctly shifts all points to the 1C-2C line. Overall, the results
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Figure 10. (a) A histogram of the percent reduction in computation time of the polar invariant formulation
compared with the barycentric map formulation. The mean is 62 %. (b) A comparison of the initial and
corrected points in the polar invariant map for one set of 10 000 random matrices.

of the test show the polar formulation is equivalent to the barycentric formulation, but with
an average reduction in calculation time of 62 %.

5.4. Coefficient constraints: sample calculations

To illustrate how «—6 coordinates can be used to find the limiting magnitude of
turbulence model coefficients, consider the simple case of the quadratic constitutive
relation (QCR2000) proposed by Spalart (2000),

Tij,0cR = 2V Sjj — Cer1( Ok thj — Tik Ok;j), (5.18a)

2Wi

[0ty Ott

0x, 0x,
Here, Wjy is the rate of rotation tensor, v; is the linear eddy viscosity and C,1 is a constant
equal to 0.3. The term /(du,, /0x,) (0u,, /0x,) is the velocity gradient magnitude, where
u,, is the mean velocity. For brevity, it will be represented as ||VU]|| from this point
forward. As an example of how the polar invariant map can be applied to tensor basis
models, we will demonstrate how it may be used to derive a limit on the eddy viscosity
and C, in the k—¢ turbulence model.

In the case of QCR2000, the definition of O;; can be substituted back into (5.18a) to
convert it to the form

Oik = (5.18b)

4v,Cer1
i =20 Sii + ———— (Six Wi; — Wik Sij). 5.19
ajj Ve S+ VUl (Sik kj ik k]) ( )
Note that the contribution to 7;; from the turbulent kinetic energy can be added afterwards
due to the anti-symmetric tensor in the equation (Spalart 2000). Normalising by 2k and
factoring out v,/ k yields

Vy 2Cer1
bi=—|Si+—— (SixWrj — Wi Sii) | . 5.20
ij X |: 1]+ ||VU|| ( ik Ykj ik k]):| ( )
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The terms in parentheses correspond to 7 from (5.1). Specifically, Sij= T and
(SikWij — Wik Skj) = T are the first two basis tensors of Pope’s general eddy viscosity
formulation (Pope 1975).

Comparing (5.20) to (5.11), we can identify v,/ k with o1 /g and the term in brackets

with M (x). Setting these equal yields

1% ol

K /618 cos (0-%)

(5.21)

The maximum realisable eddy viscosity occurs when o1 =1, so the limit on the eddy
viscosity is

1

S 2C TN
VBITD + =L 1@))| cos (9 - —)
VU] 3

1%

k

(5.22)

This is an equation that can be solved inexpensively and analytically for any 7! and 7.
With the local maximum v, available, it becomes possible to use a model that predicts v,
relative to the maximum realisable magnitude.

Next, consider an eddy viscosity as prescribed by the k—e model (White & Majdalani
2021),

k2
v =Cu—. (5.23)

Here, C,, is a proportionality constant. Substituting (5.23) into (5.22) allows a limit to be
placed on C,, according to

ICl < Vo : (5.24)

2C.qr1 T
6(k T 4 2= 72 9 ——
(/)T + oo lleos (6 - %)

Equation (5.24) relates the local maximum realisable magnitude to the proportionality
coefficient in the k—e model. This form of the limiting magnitude would be useful to a
turbulence model with adaptive coefficients. Additional research would be necessary to
determine how other coefficients could be related to the limiting magnitude.

Consider the case of a high-Reynolds-number turbulent round jet as an example of
the limitation on C,. The flow is axisymmetric and non-swirling, so the only non-
zero mean velocity components are the axial velocity, u, and the radial velocity, v. By
order of magnitude arguments, v << u and d/dx << d/dr (Pope 2000). Then, for (5.19),
S;; and W;; can be approximated as having only the components Si» = 821 =u,/2 and

Wiy = =Wy = u, /2. In this case, TW and 7@ are

0 u/2 0 —u?/2 0 0
T™W=u/2 0 0|, TP=| 0o 422 0]. (5.25)
0 0 0 0 0 0

The velocity gradient magnitude is |u,|, so T;; becomes
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- — (u7/1ur]) Cert iy /2 0
Tij=<T(1)+ |ucr|1T(2))= u,/2 (u%/lurl) Co1 Of. (5.26)
r
0 0 0

Two simplifications can be made to (5.26). First, uf /lu,| is strictly non-negative and can
simply be replaced with |u,|. Additionally, it is well known that u, is strictly non-positive
away from the edge of a round jet, so in this specific case, —u, is strictly positive, so

|u,| = —u,. Making these simplifications yields
urCer1 u-/2 0 3/10 1/2 0
W , 2Cer1 1)
Ti=\T"+ | |T =| u/2 —u;Ceri O|=u, | 1/2 =3/10 0
u
' 0 0 0 0 0 0

(5.27)

The single zero-column indicates this is a case of plane-strain, so 6 = /6 and

cos (0 — 7r/3) = +/3/2. The magnitude of Tj is V17/5. Substituting these values into
(5.22) gives a limit on the eddy viscosity of

534 0572
Y« ~ . (5.28)
k S1uy| |uy|

For the k—e& model, this implies the limit on C, in a round jet using the quadratic
constitutive relation is

5V34 0572
Sturl(k/e)  lurl(k/e)
In general, (5.21) must be solved at each point in the flow field due to differences in the

relative weights, G, of (5.1). The above-mentioned example demonstrates the type of
analysis involved in applying the polar invariant map to non-linear eddy viscosity models.

|Cpul < (5.29)

6. Conclusion

This paper introduces a new polar turbulent invariant map based on an angle, 6, which
characterises the relative values of principal anisotropic stresses, and a scalar describing
the distance from isotropy, «. The polar invariant map complements prior works by
reframing realisability as a limit on the anisotropy magnitude. It is shown that the new
mapping has the properties that all non-realisable states have o > 1 and that the nearest
realisable point has the same 6 but with « = 1. These properties allow 1/« to be applied
directly to a predicted Reynolds stress tensor as a scaling factor. Consequently, non-
realisable predictions can be brought to the nearest realisable state without the need for
explicit calculation of eigenvalues or coordinate transformations.

Mathematical relationships between the polar invariant map, the £&—» invariant map and
the barycentric map are developed. It is shown that the barycentric map compresses the 6
isolines as the two-component corner is approached, while the &7 invariant map expands
the 6 isolines near the plain-strain limit and compresses them everywhere else. The
polar invariant map is found to provide an undistorted representation of the relationship
between eigenvalues, while mildly compressing the one-component corner relative to the
barycentric map.

Comparisons between the polar invariant map and other invariant maps are made for a
fully developed channel flow profile and a square duct cross-section. It is shown that the
barycentric and polar invariants generally provide similar visualisations of the turbulent
state, while the £—» invariant map tends to obscure the trends in comparison. The polar
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invariant map is seen to quantify differences in the principal stresses and anisotropy
relative to its limiting magnitude that are not easily obtained from the barycentric and
&—n maps. Contour maps of each invariant coordinate are displayed for the square duct
case. The distribution of # demonstrates that the reduction in &, n, C; and the increase in
C3 are primarily due to scaling of the anisotropy tensor instead of a change in the ratio
of principal anisotropic stresses. This is an observation not readily apparent in the other
invariant maps due to the interdependence of the bounds on each coordinate.

The applications of the polar invariant map to machine learning-based turbulence
modelling are discussed. Potential applications include simplifying post-processing
realisability corrections and realisability-informed training of ML models. More complex
applications are constraining the coefficients of adaptive turbulence models and general
nonlinear eddy viscosity models. An analytical example is shown for how the polar
invariant map can be used to constrain model coefficients using the k—¢ model in a free
shear flow with Spalart’s quadratic constitutive relation. A comparison of the barycentric
and equivalent polar formulation of realisability corrections showed an average 62 %
decrease in calculation time. This serves as a representative example of the advantages
of removing the need for explicit eigendecomposition and transformation matrices for
enforcing realisability in ML turbulence modelling.

In conclusion, the polar invariant map can serve as a foundation for new approaches to
realisable machine learning-based turbulence modelling. The reframing of realisability in
terms of a scaling factor provides a flexible framework for diverse machine-learning mod-
els. Future work can build off of this research by investigating the challenges in application
to specific methodologies. For example, there is clearly a strong relationship between wall
distance and «; however, it remains to be seen what other variables may be useful to
its prediction. Work is also needed to determine the specific modifications necessary to
integrate it with different approaches, say, for adaptive turbulence models versus tensor
basis expansion approaches. The authors are currently investigating modifications to the
tensor basis neural network using the polar invariant map as a foundation.

Acknowledgements. The authors would like to thank the reviewers, whose insightful comments greatly
improved the quality of this article. This work was sponsored by the Air Force Office of Scientific Research
Computational Mathematics Program under Program Officer Dr. Fariba Fahroo. This is a work of the US
Government and is not subject to copyright protection in the United States.

Funding. This material is based on research sponsored by AFRL under agreement number FA8650-24-2-
9350. The U.S. Government is authorised to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

The opinions, findings, views, conclusions or recommendations contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the DAF, AFRL or the U.S. Government.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. Distribution Statement A: Approved for public release; distribution is
unlimited. PA# AFRL-2024-5752.

Appendix A.

A proof that (3.6b) has a solution for all symmetric, deviatoric tensors is described here.
The domain of the arccosine is [-1,1], so it must be shown that for any symmetric,
deviatoric tensor, bjj,

b..
‘3\/8det( A )‘gl. (A1)
[1Dy1
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Because the determinant is a tensor invariant, (A1) may be rewritten in terms of the
eigenvalues of b;; as (Pope 2000)

<. (A2)

A1 243
(A3 + 23 4 23)3/?

The trace of a deviatoric tensor is zero, so A3 = —A; — Ap. Making this substitution and
simplifying yields

<L (A3)

: B+ 4143
(223 422142 + 223)3/2

Equation (A3) can be further simplified by factoring out the two and replacing the absolute
value with the square of both sides,

2
33 A+ 42
V3 2 T <12, (A4)
2 (/ll+/ll/12+/12)3/2
2
27 (P + 1,22
_(12 12)3<1. (AS5)

(B a0+ 1)

This is valid provided that the argument of the absolute value is a real number. This
is guaranteed to be satisfied for b;; because a symmetric tensor has all real eigenvalues
(Chong & Zak 2013). Then to prove the inequality holds, it is sufficient to show that it
holds for the maximum value of

2
(A2 + 415)

(2 + 00+ 23)

[, )= (A6)

Finding the global maximum of (A6) can be accomplished more easily by rewriting
(A6) in polar coordinates where A1 =pcos¢, Alr =psing, p= ,//l% + /l% and ¢ =
arctan (1o /A41). Making these substitutions gives

(p3 cos® ¢ sin ¢ + p3 cos ¢ sin’ ¢)2

fo. ®) = . (A7)
(0% cos? ¢ + p? cos ¢ sin ¢ + p? sin” ¢)
In (A7), p cancels out, so it becomes a single variable function of ¢,
2 . ) 2
COs~ ¢ sin ¢ 4 cos @ sin” ¢
Fr = ) . (A8)

(cos2 ¢ +cosgsing + sin? d))

Equation (A8) can be simplified using the trigonometric identities sin® ¢ + cos®> ¢ = 1 and
sin 2¢p = 2 sin ¢ cos ¢. This yields

2
(% sin 2¢(cos ¢ + sin ¢)>

1 3
1+ = sin2

(A9)

f(P)=
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Factoring out the constants then gives

2 (sin 2¢(cos ¢ + sin ¢))?
= . A10
1@ (2 + sin 2¢)* (A10)
Finally, expanding the numerator results in
. -2
Flo) = 2(1 + sin 2¢) sin 2(]5. (ALD)

(2 4 sin 2¢))3

Equation (A11) is periodic with a period of & radians. Consequently, the global maximum
of f (A1, A2) can be determined by finding the maximum of f(¢) over the closed interval
[—(/2), (r/2)] (Chong & Zak 2013). This can be accomplished by setting the derivative
of f(0) equal to zero and evaluating each critical point.

The derivative of f(¢) is

ﬂ __4cos2¢sin2¢p (5sin2¢p +4)
do (sin 2¢) + 2)* '

The unique roots of this equation are solutions to cos 2¢ =0, sin2¢ =0 or (5 sin 2¢ +
4) = 0 over the interval [—(;r/2), (5t /2)]. These solutions are

T T 1 . 4 1 . 4 T
f=+—, O0==+—, O=——arcsin|-), O=-arcsin|-)— —. (A13)
4 2 2 5 2 5 2

Evaluating each critical point gives the local extrema as
4 T T
1(=5)=1(=3)=r(3)=0
7 (5) (= Laresin (2)) = £ (Laresin (2)-Z) =2 (Al
4) 2 5)) " \2 5) 2) 271

Therefore, the maximum value of f(0) is 4/27. Substituting the maximum value of f(6)
into (AS) completes the proof:

(A12)

27 4

— X — =

4 27
Thus, it is proven that (3.6b) has a solution for all symmetric, deviatoric tensors.

1<1. (A15)

Appendix B.

Algorithm 1 Colouring invariant maps using barycentric coordinates

Require: Invariant map data containing barycentric coordinates.
function COLORINVARIANTMAPS(invariantMapData)
pixelColors < empty list
for (C1, Cy, C3) ininvariantMapData do
RGB_triplet < (Cy, C2, C3)
Append RGB_triplet to pixelColors
end for
return pixelColors > List of RGB triplets for pixel colouring
end function
barycentricColor List <— COLORSCATTERPLOT(invariant Map Data)
> Use barycentricColor List as RGB values to colour the scatter plot pixels.
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Algorithm 2 Generating random, symmetric, deviatoric 3 x 3 matrices

Require: Randomly generated stack of 3 x 3 matrices.
function RANDOMANISOTROPY TENSOR(randomMatrix)
randomT ensor < empty list
for A in RandomMatrix do
Agymm < %(A + AT)
Asymm,dev <~ Asymm - %I  {Asymm}
Append Agymm,dev to randomT ensor
end for
return randomT ensor
end function

Algorithm 3 Barycentric map-based correction

Require: Initial prediction of b;.
function BARYCENTRICCORRECTION(b;;)
Compute eigenvalues 1, A2, 43, and eigenvector matrix V

C] < /1] — /7.2
Cr < 2(l — A3)
C3 <1431
xp < Ci + %C3
yB < §C3 )
— —XB
XB,c < XB 32—y YB
YB,c ~0 3 |
1 —1 —5 AI,C XB,c — 5
Solve 3V3 | | e | = V3
0 0 —_— YB,c — —~~
2 1 2
11 1 e 0
Alye 0 0
Ac<~| 0 2. O
0 0 3¢
bijc < VA V™!
return b;;

end function
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Algorithm 4 Polar invariant map-based correction

Require: Initial prediction of b;;.
function POLARCORRECTION(b;;)

6 < L arccos (3«@ det <i>)
3 16411
ap < +/6l|bjjl| cos (6 — %)
b,‘jyc < aiobif
return b;; .
end function
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